aboutsummaryrefslogtreecommitdiff
path: root/theories/IntMap
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap')
-rw-r--r--theories/IntMap/Adalloc.v438
-rw-r--r--theories/IntMap/Addec.v248
-rw-r--r--theories/IntMap/Addr.v637
-rw-r--r--theories/IntMap/Adist.v397
-rw-r--r--theories/IntMap/Allmaps.v2
-rw-r--r--theories/IntMap/Fset.v481
-rw-r--r--theories/IntMap/Lsort.v1007
-rw-r--r--theories/IntMap/Map.v1415
-rw-r--r--theories/IntMap/Mapaxioms.v909
-rw-r--r--theories/IntMap/Mapc.v673
-rw-r--r--theories/IntMap/Mapcanon.v569
-rw-r--r--theories/IntMap/Mapcard.v1316
-rw-r--r--theories/IntMap/Mapfold.v533
-rw-r--r--theories/IntMap/Mapiter.v865
-rw-r--r--theories/IntMap/Maplists.v562
-rw-r--r--theories/IntMap/Mapsubset.v740
16 files changed, 5803 insertions, 4989 deletions
diff --git a/theories/IntMap/Adalloc.v b/theories/IntMap/Adalloc.v
index 5dcd41c84a..550633a212 100644
--- a/theories/IntMap/Adalloc.v
+++ b/theories/IntMap/Adalloc.v
@@ -7,333 +7,359 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Bool.
-Require Sumbool.
-Require ZArith.
-Require Arith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
-Require Fset.
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Arith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Fset.
Section AdAlloc.
Variable A : Set.
- Definition nat_of_ad := [a:ad] Cases a of
- ad_z => O
- | (ad_x p) => (convert p)
- end.
-
- Fixpoint nat_le [m:nat] : nat -> bool :=
- Cases m of
- O => [_:nat] true
- | (S m') => [n:nat] Cases n of
- O => false
- | (S n') => (nat_le m' n')
- end
+ Definition nat_of_ad (a:ad) :=
+ match a with
+ | ad_z => 0
+ | ad_x p => nat_of_P p
end.
- Lemma nat_le_correct : (m,n:nat) (le m n) -> (nat_le m n)=true.
+ Fixpoint nat_le (m:nat) : nat -> bool :=
+ match m with
+ | O => fun _:nat => true
+ | S m' =>
+ fun n:nat => match n with
+ | O => false
+ | S n' => nat_le m' n'
+ end
+ end.
+
+ Lemma nat_le_correct : forall m n:nat, m <= n -> nat_le m n = true.
Proof.
- NewInduction m as [|m IHm]. Trivial.
- NewDestruct n. Intro H. Elim (le_Sn_O ? H).
- Intros. Simpl. Apply IHm. Apply le_S_n. Assumption.
+ induction m as [| m IHm]. trivial.
+ destruct n. intro H. elim (le_Sn_O _ H).
+ intros. simpl in |- *. apply IHm. apply le_S_n. assumption.
Qed.
- Lemma nat_le_complete : (m,n:nat) (nat_le m n)=true -> (le m n).
+ Lemma nat_le_complete : forall m n:nat, nat_le m n = true -> m <= n.
Proof.
- NewInduction m. Trivial with arith.
- NewDestruct n. Intro H. Discriminate H.
- Auto with arith.
+ induction m. trivial with arith.
+ destruct n. intro H. discriminate H.
+ auto with arith.
Qed.
- Lemma nat_le_correct_conv : (m,n:nat) (lt m n) -> (nat_le n m)=false.
+ Lemma nat_le_correct_conv : forall m n:nat, m < n -> nat_le n m = false.
Proof.
- Intros. Elim (sumbool_of_bool (nat_le n m)). Intro H0.
- Elim (lt_n_n ? (lt_le_trans ? ? ? H (nat_le_complete ? ? H0))).
- Trivial.
+ intros. elim (sumbool_of_bool (nat_le n m)). intro H0.
+ elim (lt_irrefl _ (lt_le_trans _ _ _ H (nat_le_complete _ _ H0))).
+ trivial.
Qed.
- Lemma nat_le_complete_conv : (m,n:nat) (nat_le n m)=false -> (lt m n).
+ Lemma nat_le_complete_conv : forall m n:nat, nat_le n m = false -> m < n.
Proof.
- Intros. Elim (le_or_lt n m). Intro. Conditional Trivial Rewrite nat_le_correct in H. Discriminate H.
- Trivial.
+ intros. elim (le_or_lt n m). intro. conditional trivial rewrite nat_le_correct in H. discriminate H.
+ trivial.
Qed.
- Definition ad_of_nat := [n:nat] Cases n of
- O => ad_z
- | (S n') => (ad_x (anti_convert n'))
- end.
+ Definition ad_of_nat (n:nat) :=
+ match n with
+ | O => ad_z
+ | S n' => ad_x (P_of_succ_nat n')
+ end.
- Lemma ad_of_nat_of_ad : (a:ad) (ad_of_nat (nat_of_ad a))=a.
+ Lemma ad_of_nat_of_ad : forall a:ad, ad_of_nat (nat_of_ad a) = a.
Proof.
- NewDestruct a as [|p]. Reflexivity.
- Simpl. Elim (ZL4 p). Intros n H. Rewrite H. Simpl. Rewrite <- bij1 in H.
- Rewrite convert_intro with 1:=H. Reflexivity.
+ destruct a as [| p]. reflexivity.
+ simpl in |- *. elim (ZL4 p). intros n H. rewrite H. simpl in |- *. rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ in H.
+ rewrite nat_of_P_inj with (1 := H). reflexivity.
Qed.
- Lemma nat_of_ad_of_nat : (n:nat) (nat_of_ad (ad_of_nat n))=n.
+ Lemma nat_of_ad_of_nat : forall n:nat, nat_of_ad (ad_of_nat n) = n.
Proof.
- NewInduction n. Trivial.
- Intros. Simpl. Apply bij1.
+ induction n. trivial.
+ intros. simpl in |- *. apply nat_of_P_o_P_of_succ_nat_eq_succ.
Qed.
- Definition ad_le := [a,b:ad] (nat_le (nat_of_ad a) (nat_of_ad b)).
+ Definition ad_le (a b:ad) := nat_le (nat_of_ad a) (nat_of_ad b).
- Lemma ad_le_refl : (a:ad) (ad_le a a)=true.
+ Lemma ad_le_refl : forall a:ad, ad_le a a = true.
Proof.
- Intro. Unfold ad_le. Apply nat_le_correct. Apply le_n.
+ intro. unfold ad_le in |- *. apply nat_le_correct. apply le_n.
Qed.
- Lemma ad_le_antisym : (a,b:ad) (ad_le a b)=true -> (ad_le b a)=true -> a=b.
+ Lemma ad_le_antisym :
+ forall a b:ad, ad_le a b = true -> ad_le b a = true -> a = b.
Proof.
- Unfold ad_le. Intros. Rewrite <- (ad_of_nat_of_ad a). Rewrite <- (ad_of_nat_of_ad b).
- Rewrite (le_antisym ? ? (nat_le_complete ? ? H) (nat_le_complete ? ? H0)). Reflexivity.
+ unfold ad_le in |- *. intros. rewrite <- (ad_of_nat_of_ad a). rewrite <- (ad_of_nat_of_ad b).
+ rewrite (le_antisym _ _ (nat_le_complete _ _ H) (nat_le_complete _ _ H0)). reflexivity.
Qed.
- Lemma ad_le_trans : (a,b,c:ad) (ad_le a b)=true -> (ad_le b c)=true ->
- (ad_le a c)=true.
+ Lemma ad_le_trans :
+ forall a b c:ad, ad_le a b = true -> ad_le b c = true -> ad_le a c = true.
Proof.
- Unfold ad_le. Intros. Apply nat_le_correct. Apply le_trans with m:=(nat_of_ad b).
- Apply nat_le_complete. Assumption.
- Apply nat_le_complete. Assumption.
+ unfold ad_le in |- *. intros. apply nat_le_correct. apply le_trans with (m := nat_of_ad b).
+ apply nat_le_complete. assumption.
+ apply nat_le_complete. assumption.
Qed.
- Lemma ad_le_lt_trans : (a,b,c:ad) (ad_le a b)=true -> (ad_le c b)=false ->
- (ad_le c a)=false.
+ Lemma ad_le_lt_trans :
+ forall a b c:ad,
+ ad_le a b = true -> ad_le c b = false -> ad_le c a = false.
Proof.
- Unfold ad_le. Intros. Apply nat_le_correct_conv. Apply le_lt_trans with m:=(nat_of_ad b).
- Apply nat_le_complete. Assumption.
- Apply nat_le_complete_conv. Assumption.
+ unfold ad_le in |- *. intros. apply nat_le_correct_conv. apply le_lt_trans with (m := nat_of_ad b).
+ apply nat_le_complete. assumption.
+ apply nat_le_complete_conv. assumption.
Qed.
- Lemma ad_lt_le_trans : (a,b,c:ad) (ad_le b a)=false -> (ad_le b c)=true ->
- (ad_le c a)=false.
+ Lemma ad_lt_le_trans :
+ forall a b c:ad,
+ ad_le b a = false -> ad_le b c = true -> ad_le c a = false.
Proof.
- Unfold ad_le. Intros. Apply nat_le_correct_conv. Apply lt_le_trans with m:=(nat_of_ad b).
- Apply nat_le_complete_conv. Assumption.
- Apply nat_le_complete. Assumption.
+ unfold ad_le in |- *. intros. apply nat_le_correct_conv. apply lt_le_trans with (m := nat_of_ad b).
+ apply nat_le_complete_conv. assumption.
+ apply nat_le_complete. assumption.
Qed.
- Lemma ad_lt_trans : (a,b,c:ad) (ad_le b a)=false -> (ad_le c b)=false ->
- (ad_le c a)=false.
+ Lemma ad_lt_trans :
+ forall a b c:ad,
+ ad_le b a = false -> ad_le c b = false -> ad_le c a = false.
Proof.
- Unfold ad_le. Intros. Apply nat_le_correct_conv. Apply lt_trans with m:=(nat_of_ad b).
- Apply nat_le_complete_conv. Assumption.
- Apply nat_le_complete_conv. Assumption.
+ unfold ad_le in |- *. intros. apply nat_le_correct_conv. apply lt_trans with (m := nat_of_ad b).
+ apply nat_le_complete_conv. assumption.
+ apply nat_le_complete_conv. assumption.
Qed.
- Lemma ad_lt_le_weak : (a,b:ad) (ad_le b a)=false -> (ad_le a b)=true.
+ Lemma ad_lt_le_weak : forall a b:ad, ad_le b a = false -> ad_le a b = true.
Proof.
- Unfold ad_le. Intros. Apply nat_le_correct. Apply lt_le_weak.
- Apply nat_le_complete_conv. Assumption.
+ unfold ad_le in |- *. intros. apply nat_le_correct. apply lt_le_weak.
+ apply nat_le_complete_conv. assumption.
Qed.
- Definition ad_min := [a,b:ad] if (ad_le a b) then a else b.
+ Definition ad_min (a b:ad) := if ad_le a b then a else b.
- Lemma ad_min_choice : (a,b:ad) {(ad_min a b)=a}+{(ad_min a b)=b}.
+ Lemma ad_min_choice : forall a b:ad, {ad_min a b = a} + {ad_min a b = b}.
Proof.
- Unfold ad_min. Intros. Elim (sumbool_of_bool (ad_le a b)). Intro H. Left . Rewrite H.
- Reflexivity.
- Intro H. Right . Rewrite H. Reflexivity.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le a b)). intro H. left. rewrite H.
+ reflexivity.
+ intro H. right. rewrite H. reflexivity.
Qed.
- Lemma ad_min_le_1 : (a,b:ad) (ad_le (ad_min a b) a)=true.
+ Lemma ad_min_le_1 : forall a b:ad, ad_le (ad_min a b) a = true.
Proof.
- Unfold ad_min. Intros. Elim (sumbool_of_bool (ad_le a b)). Intro H. Rewrite H.
- Apply ad_le_refl.
- Intro H. Rewrite H. Apply ad_lt_le_weak. Assumption.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le a b)). intro H. rewrite H.
+ apply ad_le_refl.
+ intro H. rewrite H. apply ad_lt_le_weak. assumption.
Qed.
- Lemma ad_min_le_2 : (a,b:ad) (ad_le (ad_min a b) b)=true.
+ Lemma ad_min_le_2 : forall a b:ad, ad_le (ad_min a b) b = true.
Proof.
- Unfold ad_min. Intros. Elim (sumbool_of_bool (ad_le a b)). Intro H. Rewrite H. Assumption.
- Intro H. Rewrite H. Apply ad_le_refl.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le a b)). intro H. rewrite H. assumption.
+ intro H. rewrite H. apply ad_le_refl.
Qed.
- Lemma ad_min_le_3 : (a,b,c:ad) (ad_le a (ad_min b c))=true -> (ad_le a b)=true.
+ Lemma ad_min_le_3 :
+ forall a b c:ad, ad_le a (ad_min b c) = true -> ad_le a b = true.
Proof.
- Unfold ad_min. Intros. Elim (sumbool_of_bool (ad_le b c)). Intro H0. Rewrite H0 in H.
- Assumption.
- Intro H0. Rewrite H0 in H. Apply ad_lt_le_weak. Apply ad_le_lt_trans with b:=c; Assumption.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H.
+ assumption.
+ intro H0. rewrite H0 in H. apply ad_lt_le_weak. apply ad_le_lt_trans with (b := c); assumption.
Qed.
- Lemma ad_min_le_4 : (a,b,c:ad) (ad_le a (ad_min b c))=true -> (ad_le a c)=true.
+ Lemma ad_min_le_4 :
+ forall a b c:ad, ad_le a (ad_min b c) = true -> ad_le a c = true.
Proof.
- Unfold ad_min. Intros. Elim (sumbool_of_bool (ad_le b c)). Intro H0. Rewrite H0 in H.
- Apply ad_le_trans with b:=b; Assumption.
- Intro H0. Rewrite H0 in H. Assumption.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H.
+ apply ad_le_trans with (b := b); assumption.
+ intro H0. rewrite H0 in H. assumption.
Qed.
- Lemma ad_min_le_5 : (a,b,c:ad) (ad_le a b)=true -> (ad_le a c)=true ->
- (ad_le a (ad_min b c))=true.
+ Lemma ad_min_le_5 :
+ forall a b c:ad,
+ ad_le a b = true -> ad_le a c = true -> ad_le a (ad_min b c) = true.
Proof.
- Intros. Elim (ad_min_choice b c). Intro H1. Rewrite H1. Assumption.
- Intro H1. Rewrite H1. Assumption.
+ intros. elim (ad_min_choice b c). intro H1. rewrite H1. assumption.
+ intro H1. rewrite H1. assumption.
Qed.
- Lemma ad_min_lt_3 : (a,b,c:ad) (ad_le (ad_min b c) a)=false -> (ad_le b a)=false.
+ Lemma ad_min_lt_3 :
+ forall a b c:ad, ad_le (ad_min b c) a = false -> ad_le b a = false.
Proof.
- Unfold ad_min. Intros. Elim (sumbool_of_bool (ad_le b c)). Intro H0. Rewrite H0 in H.
- Assumption.
- Intro H0. Rewrite H0 in H. Apply ad_lt_trans with b:=c; Assumption.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H.
+ assumption.
+ intro H0. rewrite H0 in H. apply ad_lt_trans with (b := c); assumption.
Qed.
- Lemma ad_min_lt_4 : (a,b,c:ad) (ad_le (ad_min b c) a)=false -> (ad_le c a)=false.
+ Lemma ad_min_lt_4 :
+ forall a b c:ad, ad_le (ad_min b c) a = false -> ad_le c a = false.
Proof.
- Unfold ad_min. Intros. Elim (sumbool_of_bool (ad_le b c)). Intro H0. Rewrite H0 in H.
- Apply ad_lt_le_trans with b:=b; Assumption.
- Intro H0. Rewrite H0 in H. Assumption.
+ unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H.
+ apply ad_lt_le_trans with (b := b); assumption.
+ intro H0. rewrite H0 in H. assumption.
Qed.
(** Allocator: returns an address not in the domain of [m].
This allocator is optimal in that it returns the lowest possible address,
in the usual ordering on integers. It is not the most efficient, however. *)
- Fixpoint ad_alloc_opt [m:(Map A)] : ad :=
- Cases m of
- M0 => ad_z
- | (M1 a _) => if (ad_eq a ad_z)
- then (ad_x xH)
- else ad_z
- | (M2 m1 m2) => (ad_min (ad_double (ad_alloc_opt m1))
- (ad_double_plus_un (ad_alloc_opt m2)))
+ Fixpoint ad_alloc_opt (m:Map A) : ad :=
+ match m with
+ | M0 => ad_z
+ | M1 a _ => if ad_eq a ad_z then ad_x 1 else ad_z
+ | M2 m1 m2 =>
+ ad_min (ad_double (ad_alloc_opt m1))
+ (ad_double_plus_un (ad_alloc_opt m2))
end.
- Lemma ad_alloc_opt_allocates_1 : (m:(Map A)) (MapGet A m (ad_alloc_opt m))=(NONE A).
+ Lemma ad_alloc_opt_allocates_1 :
+ forall m:Map A, MapGet A m (ad_alloc_opt m) = NONE A.
Proof.
- NewInduction m as [|a|m0 H m1 H0]. Reflexivity.
- Simpl. Elim (sumbool_of_bool (ad_eq a ad_z)). Intro H. Rewrite H.
- Rewrite (ad_eq_complete ? ? H). Reflexivity.
- Intro H. Rewrite H. Rewrite H. Reflexivity.
- Intros. Change (ad_alloc_opt (M2 A m0 m1)) with
- (ad_min (ad_double (ad_alloc_opt m0)) (ad_double_plus_un (ad_alloc_opt m1))).
- Elim (ad_min_choice (ad_double (ad_alloc_opt m0)) (ad_double_plus_un (ad_alloc_opt m1))).
- Intro H1. Rewrite H1. Rewrite MapGet_M2_bit_0_0. Rewrite ad_double_div_2. Assumption.
- Apply ad_double_bit_0.
- Intro H1. Rewrite H1. Rewrite MapGet_M2_bit_0_1. Rewrite ad_double_plus_un_div_2. Assumption.
- Apply ad_double_plus_un_bit_0.
+ induction m as [| a| m0 H m1 H0]. reflexivity.
+ simpl in |- *. elim (sumbool_of_bool (ad_eq a ad_z)). intro H. rewrite H.
+ rewrite (ad_eq_complete _ _ H). reflexivity.
+ intro H. rewrite H. rewrite H. reflexivity.
+ intros. change
+ (ad_alloc_opt (M2 A m0 m1)) with (ad_min (ad_double (ad_alloc_opt m0))
+ (ad_double_plus_un (ad_alloc_opt m1)))
+ in |- *.
+ elim
+ (ad_min_choice (ad_double (ad_alloc_opt m0))
+ (ad_double_plus_un (ad_alloc_opt m1))).
+ intro H1. rewrite H1. rewrite MapGet_M2_bit_0_0. rewrite ad_double_div_2. assumption.
+ apply ad_double_bit_0.
+ intro H1. rewrite H1. rewrite MapGet_M2_bit_0_1. rewrite ad_double_plus_un_div_2. assumption.
+ apply ad_double_plus_un_bit_0.
Qed.
- Lemma ad_alloc_opt_allocates : (m:(Map A)) (in_dom A (ad_alloc_opt m) m)=false.
+ Lemma ad_alloc_opt_allocates :
+ forall m:Map A, in_dom A (ad_alloc_opt m) m = false.
Proof.
- Unfold in_dom. Intro. Rewrite (ad_alloc_opt_allocates_1 m). Reflexivity.
+ unfold in_dom in |- *. intro. rewrite (ad_alloc_opt_allocates_1 m). reflexivity.
Qed.
(** Moreover, this is optimal: all addresses below [(ad_alloc_opt m)]
are in [dom m]: *)
- Lemma nat_of_ad_double : (a:ad) (nat_of_ad (ad_double a))=(mult (2) (nat_of_ad a)).
+ Lemma nat_of_ad_double :
+ forall a:ad, nat_of_ad (ad_double a) = 2 * nat_of_ad a.
Proof.
- NewDestruct a as [|p]. Trivial.
- Exact (convert_xO p).
+ destruct a as [| p]. trivial.
+ exact (nat_of_P_xO p).
Qed.
- Lemma nat_of_ad_double_plus_un : (a:ad)
- (nat_of_ad (ad_double_plus_un a))=(S (mult (2) (nat_of_ad a))).
+ Lemma nat_of_ad_double_plus_un :
+ forall a:ad, nat_of_ad (ad_double_plus_un a) = S (2 * nat_of_ad a).
Proof.
- NewDestruct a as [|p]. Trivial.
- Exact (convert_xI p).
+ destruct a as [| p]. trivial.
+ exact (nat_of_P_xI p).
Qed.
- Lemma ad_le_double_mono : (a,b:ad) (ad_le a b)=true ->
- (ad_le (ad_double a) (ad_double b))=true.
+ Lemma ad_le_double_mono :
+ forall a b:ad,
+ ad_le a b = true -> ad_le (ad_double a) (ad_double b) = true.
Proof.
- Unfold ad_le. Intros. Rewrite nat_of_ad_double. Rewrite nat_of_ad_double. Apply nat_le_correct.
- Simpl. Apply le_plus_plus. Apply nat_le_complete. Assumption.
- Apply le_plus_plus. Apply nat_le_complete. Assumption.
- Apply le_n.
+ unfold ad_le in |- *. intros. rewrite nat_of_ad_double. rewrite nat_of_ad_double. apply nat_le_correct.
+ simpl in |- *. apply plus_le_compat. apply nat_le_complete. assumption.
+ apply plus_le_compat. apply nat_le_complete. assumption.
+ apply le_n.
Qed.
- Lemma ad_le_double_plus_un_mono : (a,b:ad) (ad_le a b)=true ->
- (ad_le (ad_double_plus_un a) (ad_double_plus_un b))=true.
+ Lemma ad_le_double_plus_un_mono :
+ forall a b:ad,
+ ad_le a b = true ->
+ ad_le (ad_double_plus_un a) (ad_double_plus_un b) = true.
Proof.
- Unfold ad_le. Intros. Rewrite nat_of_ad_double_plus_un. Rewrite nat_of_ad_double_plus_un.
- Apply nat_le_correct. Apply le_n_S. Simpl. Apply le_plus_plus. Apply nat_le_complete.
- Assumption.
- Apply le_plus_plus. Apply nat_le_complete. Assumption.
- Apply le_n.
+ unfold ad_le in |- *. intros. rewrite nat_of_ad_double_plus_un. rewrite nat_of_ad_double_plus_un.
+ apply nat_le_correct. apply le_n_S. simpl in |- *. apply plus_le_compat. apply nat_le_complete.
+ assumption.
+ apply plus_le_compat. apply nat_le_complete. assumption.
+ apply le_n.
Qed.
- Lemma ad_le_double_mono_conv : (a,b:ad) (ad_le (ad_double a) (ad_double b))=true ->
- (ad_le a b)=true.
+ Lemma ad_le_double_mono_conv :
+ forall a b:ad,
+ ad_le (ad_double a) (ad_double b) = true -> ad_le a b = true.
Proof.
- Unfold ad_le. Intros a b. Rewrite nat_of_ad_double. Rewrite nat_of_ad_double. Intro.
- Apply nat_le_correct. Apply (mult_le_conv_1 (1)). Apply nat_le_complete. Assumption.
+ unfold ad_le in |- *. intros a b. rewrite nat_of_ad_double. rewrite nat_of_ad_double. intro.
+ apply nat_le_correct. apply (mult_S_le_reg_l 1). apply nat_le_complete. assumption.
Qed.
- Lemma ad_le_double_plus_un_mono_conv : (a,b:ad)
- (ad_le (ad_double_plus_un a) (ad_double_plus_un b))=true -> (ad_le a b)=true.
+ Lemma ad_le_double_plus_un_mono_conv :
+ forall a b:ad,
+ ad_le (ad_double_plus_un a) (ad_double_plus_un b) = true ->
+ ad_le a b = true.
Proof.
- Unfold ad_le. Intros a b. Rewrite nat_of_ad_double_plus_un. Rewrite nat_of_ad_double_plus_un.
- Intro. Apply nat_le_correct. Apply (mult_le_conv_1 (1)). Apply le_S_n. Apply nat_le_complete.
- Assumption.
+ unfold ad_le in |- *. intros a b. rewrite nat_of_ad_double_plus_un. rewrite nat_of_ad_double_plus_un.
+ intro. apply nat_le_correct. apply (mult_S_le_reg_l 1). apply le_S_n. apply nat_le_complete.
+ assumption.
Qed.
- Lemma ad_lt_double_mono : (a,b:ad) (ad_le a b)=false ->
- (ad_le (ad_double a) (ad_double b))=false.
+ Lemma ad_lt_double_mono :
+ forall a b:ad,
+ ad_le a b = false -> ad_le (ad_double a) (ad_double b) = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_le (ad_double a) (ad_double b))). Intro H0.
- Rewrite (ad_le_double_mono_conv ? ? H0) in H. Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_le (ad_double a) (ad_double b))). intro H0.
+ rewrite (ad_le_double_mono_conv _ _ H0) in H. discriminate H.
+ trivial.
Qed.
- Lemma ad_lt_double_plus_un_mono : (a,b:ad) (ad_le a b)=false ->
- (ad_le (ad_double_plus_un a) (ad_double_plus_un b))=false.
+ Lemma ad_lt_double_plus_un_mono :
+ forall a b:ad,
+ ad_le a b = false ->
+ ad_le (ad_double_plus_un a) (ad_double_plus_un b) = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_le (ad_double_plus_un a) (ad_double_plus_un b))). Intro H0.
- Rewrite (ad_le_double_plus_un_mono_conv ? ? H0) in H. Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_le (ad_double_plus_un a) (ad_double_plus_un b))). intro H0.
+ rewrite (ad_le_double_plus_un_mono_conv _ _ H0) in H. discriminate H.
+ trivial.
Qed.
- Lemma ad_lt_double_mono_conv : (a,b:ad) (ad_le (ad_double a) (ad_double b))=false ->
- (ad_le a b)=false.
+ Lemma ad_lt_double_mono_conv :
+ forall a b:ad,
+ ad_le (ad_double a) (ad_double b) = false -> ad_le a b = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_le a b)). Intro H0. Rewrite (ad_le_double_mono ? ? H0) in H.
- Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_le a b)). intro H0. rewrite (ad_le_double_mono _ _ H0) in H.
+ discriminate H.
+ trivial.
Qed.
- Lemma ad_lt_double_plus_un_mono_conv : (a,b:ad)
- (ad_le (ad_double_plus_un a) (ad_double_plus_un b))=false -> (ad_le a b)=false.
+ Lemma ad_lt_double_plus_un_mono_conv :
+ forall a b:ad,
+ ad_le (ad_double_plus_un a) (ad_double_plus_un b) = false ->
+ ad_le a b = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_le a b)). Intro H0.
- Rewrite (ad_le_double_plus_un_mono ? ? H0) in H. Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_le a b)). intro H0.
+ rewrite (ad_le_double_plus_un_mono _ _ H0) in H. discriminate H.
+ trivial.
Qed.
- Lemma ad_alloc_opt_optimal_1 : (m:(Map A)) (a:ad) (ad_le (ad_alloc_opt m) a)=false ->
- {y:A | (MapGet A m a)=(SOME A y)}.
+ Lemma ad_alloc_opt_optimal_1 :
+ forall (m:Map A) (a:ad),
+ ad_le (ad_alloc_opt m) a = false -> {y : A | MapGet A m a = SOME A y}.
Proof.
- NewInduction m as [|a y|m0 H m1 H0]. Simpl. Unfold ad_le. Simpl. Intros. Discriminate H.
- Simpl. Intros b H. Elim (sumbool_of_bool (ad_eq a ad_z)). Intro H0. Rewrite H0 in H.
- Unfold ad_le in H. Cut ad_z=b. Intro. Split with y. Rewrite <- H1. Rewrite H0. Reflexivity.
- Rewrite <- (ad_of_nat_of_ad b).
- Rewrite <- (le_n_O_eq ? (le_S_n ? ? (nat_le_complete_conv ? ? H))). Reflexivity.
- Intro H0. Rewrite H0 in H. Discriminate H.
- Intros. Simpl in H1. Elim (ad_double_or_double_plus_un a). Intro H2. Elim H2. Intros a0 H3.
- Rewrite H3 in H1. Elim (H ? (ad_lt_double_mono_conv ? ? (ad_min_lt_3 ? ? ? H1))). Intros y H4.
- Split with y. Rewrite H3. Rewrite MapGet_M2_bit_0_0. Rewrite ad_double_div_2. Assumption.
- Apply ad_double_bit_0.
- Intro H2. Elim H2. Intros a0 H3. Rewrite H3 in H1.
- Elim (H0 ? (ad_lt_double_plus_un_mono_conv ? ? (ad_min_lt_4 ? ? ? H1))). Intros y H4.
- Split with y. Rewrite H3. Rewrite MapGet_M2_bit_0_1. Rewrite ad_double_plus_un_div_2.
- Assumption.
- Apply ad_double_plus_un_bit_0.
+ induction m as [| a y| m0 H m1 H0]. simpl in |- *. unfold ad_le in |- *. simpl in |- *. intros. discriminate H.
+ simpl in |- *. intros b H. elim (sumbool_of_bool (ad_eq a ad_z)). intro H0. rewrite H0 in H.
+ unfold ad_le in H. cut (ad_z = b). intro. split with y. rewrite <- H1. rewrite H0. reflexivity.
+ rewrite <- (ad_of_nat_of_ad b).
+ rewrite <- (le_n_O_eq _ (le_S_n _ _ (nat_le_complete_conv _ _ H))). reflexivity.
+ intro H0. rewrite H0 in H. discriminate H.
+ intros. simpl in H1. elim (ad_double_or_double_plus_un a). intro H2. elim H2. intros a0 H3.
+ rewrite H3 in H1. elim (H _ (ad_lt_double_mono_conv _ _ (ad_min_lt_3 _ _ _ H1))). intros y H4.
+ split with y. rewrite H3. rewrite MapGet_M2_bit_0_0. rewrite ad_double_div_2. assumption.
+ apply ad_double_bit_0.
+ intro H2. elim H2. intros a0 H3. rewrite H3 in H1.
+ elim (H0 _ (ad_lt_double_plus_un_mono_conv _ _ (ad_min_lt_4 _ _ _ H1))). intros y H4.
+ split with y. rewrite H3. rewrite MapGet_M2_bit_0_1. rewrite ad_double_plus_un_div_2.
+ assumption.
+ apply ad_double_plus_un_bit_0.
Qed.
- Lemma ad_alloc_opt_optimal : (m:(Map A)) (a:ad) (ad_le (ad_alloc_opt m) a)=false ->
- (in_dom A a m)=true.
+ Lemma ad_alloc_opt_optimal :
+ forall (m:Map A) (a:ad),
+ ad_le (ad_alloc_opt m) a = false -> in_dom A a m = true.
Proof.
- Intros. Unfold in_dom. Elim (ad_alloc_opt_optimal_1 m a H). Intros y H0. Rewrite H0.
- Reflexivity.
+ intros. unfold in_dom in |- *. elim (ad_alloc_opt_optimal_1 m a H). intros y H0. rewrite H0.
+ reflexivity.
Qed.
End AdAlloc.
-
-V7only [
-(* Moved to NArith *)
-Notation positive_to_nat_2 := positive_to_nat_2.
-Notation positive_to_nat_4 := positive_to_nat_4.
-].
diff --git a/theories/IntMap/Addec.v b/theories/IntMap/Addec.v
index f0ec7b37d2..5ad2ea852b 100644
--- a/theories/IntMap/Addec.v
+++ b/theories/IntMap/Addec.v
@@ -9,171 +9,185 @@
(** Equality on adresses *)
-Require Bool.
-Require Sumbool.
-Require ZArith.
-Require Addr.
-
-Fixpoint ad_eq_1 [p1,p2:positive] : bool :=
- Cases p1 p2 of
- xH xH => true
- | (xO p'1) (xO p'2) => (ad_eq_1 p'1 p'2)
- | (xI p'1) (xI p'2) => (ad_eq_1 p'1 p'2)
- | _ _ => false
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+
+Fixpoint ad_eq_1 (p1 p2:positive) {struct p2} : bool :=
+ match p1, p2 with
+ | xH, xH => true
+ | xO p'1, xO p'2 => ad_eq_1 p'1 p'2
+ | xI p'1, xI p'2 => ad_eq_1 p'1 p'2
+ | _, _ => false
end.
-Definition ad_eq := [a,a':ad]
- Cases a a' of
- ad_z ad_z => true
- | (ad_x p) (ad_x p') => (ad_eq_1 p p')
- | _ _ => false
+Definition ad_eq (a a':ad) :=
+ match a, a' with
+ | ad_z, ad_z => true
+ | ad_x p, ad_x p' => ad_eq_1 p p'
+ | _, _ => false
end.
-Lemma ad_eq_correct : (a:ad) (ad_eq a a)=true.
+Lemma ad_eq_correct : forall a:ad, ad_eq a a = true.
Proof.
- NewDestruct a; Trivial.
- NewInduction p; Trivial.
+ destruct a; trivial.
+ induction p; trivial.
Qed.
-Lemma ad_eq_complete : (a,a':ad) (ad_eq a a')=true -> a=a'.
-Proof.
- NewDestruct a. NewDestruct a'; Trivial. NewDestruct p.
- Discriminate 1.
- Discriminate 1.
- Discriminate 1.
- NewDestruct a'. Intros. Discriminate H.
- Unfold ad_eq. Intros. Cut p=p0. Intros. Rewrite H0. Reflexivity.
- Generalize Dependent p0.
- NewInduction p as [p IHp|p IHp|]. NewDestruct p0; Intro H.
- Rewrite (IHp p0). Reflexivity.
- Exact H.
- Discriminate H.
- Discriminate H.
- NewDestruct p0; Intro H. Discriminate H.
- Rewrite (IHp p0 H). Reflexivity.
- Discriminate H.
- NewDestruct p0; Intro H. Discriminate H.
- Discriminate H.
- Trivial.
+Lemma ad_eq_complete : forall a a':ad, ad_eq a a' = true -> a = a'.
+Proof.
+ destruct a. destruct a'; trivial. destruct p.
+ discriminate 1.
+ discriminate 1.
+ discriminate 1.
+ destruct a'. intros. discriminate H.
+ unfold ad_eq in |- *. intros. cut (p = p0). intros. rewrite H0. reflexivity.
+ generalize dependent p0.
+ induction p as [p IHp| p IHp| ]. destruct p0; intro H.
+ rewrite (IHp p0). reflexivity.
+ exact H.
+ discriminate H.
+ discriminate H.
+ destruct p0; intro H. discriminate H.
+ rewrite (IHp p0 H). reflexivity.
+ discriminate H.
+ destruct p0 as [p| p| ]; intro H. discriminate H.
+ discriminate H.
+ trivial.
Qed.
-Lemma ad_eq_comm : (a,a':ad) (ad_eq a a')=(ad_eq a' a).
-Proof.
- Intros. Cut (b,b':bool)(ad_eq a a')=b->(ad_eq a' a)=b'->b=b'.
- Intros. Apply H. Reflexivity.
- Reflexivity.
- NewDestruct b. Intros. Cut a=a'.
- Intro. Rewrite H1 in H0. Rewrite (ad_eq_correct a') in H0. Exact H0.
- Apply ad_eq_complete. Exact H.
- NewDestruct b'. Intros. Cut a'=a.
- Intro. Rewrite H1 in H. Rewrite H1 in H0. Rewrite <- H. Exact H0.
- Apply ad_eq_complete. Exact H0.
- Trivial.
+Lemma ad_eq_comm : forall a a':ad, ad_eq a a' = ad_eq a' a.
+Proof.
+ intros. cut (forall b b':bool, ad_eq a a' = b -> ad_eq a' a = b' -> b = b').
+ intros. apply H. reflexivity.
+ reflexivity.
+ destruct b. intros. cut (a = a').
+ intro. rewrite H1 in H0. rewrite (ad_eq_correct a') in H0. exact H0.
+ apply ad_eq_complete. exact H.
+ destruct b'. intros. cut (a' = a).
+ intro. rewrite H1 in H. rewrite H1 in H0. rewrite <- H. exact H0.
+ apply ad_eq_complete. exact H0.
+ trivial.
Qed.
-Lemma ad_xor_eq_true : (a,a':ad) (ad_xor a a')=ad_z -> (ad_eq a a')=true.
+Lemma ad_xor_eq_true :
+ forall a a':ad, ad_xor a a' = ad_z -> ad_eq a a' = true.
Proof.
- Intros. Rewrite (ad_xor_eq a a' H). Apply ad_eq_correct.
+ intros. rewrite (ad_xor_eq a a' H). apply ad_eq_correct.
Qed.
Lemma ad_xor_eq_false :
- (a,a':ad) (p:positive) (ad_xor a a')=(ad_x p) -> (ad_eq a a')=false.
+ forall (a a':ad) (p:positive), ad_xor a a' = ad_x p -> ad_eq a a' = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H0.
- Rewrite (ad_eq_complete a a' H0) in H. Rewrite (ad_xor_nilpotent a') in H. Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_eq a a')). intro H0.
+ rewrite (ad_eq_complete a a' H0) in H. rewrite (ad_xor_nilpotent a') in H. discriminate H.
+ trivial.
Qed.
-Lemma ad_bit_0_1_not_double : (a:ad) (ad_bit_0 a)=true ->
- (a0:ad) (ad_eq (ad_double a0) a)=false.
+Lemma ad_bit_0_1_not_double :
+ forall a:ad,
+ ad_bit_0 a = true -> forall a0:ad, ad_eq (ad_double a0) a = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_eq (ad_double a0) a)). Intro H0.
- Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_bit_0 a0) in H. Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_eq (ad_double a0) a)). intro H0.
+ rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_bit_0 a0) in H. discriminate H.
+ trivial.
Qed.
-Lemma ad_not_div_2_not_double : (a,a0:ad) (ad_eq (ad_div_2 a) a0)=false ->
- (ad_eq a (ad_double a0))=false.
+Lemma ad_not_div_2_not_double :
+ forall a a0:ad,
+ ad_eq (ad_div_2 a) a0 = false -> ad_eq a (ad_double a0) = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_eq (ad_double a0) a)). Intro H0.
- Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_div_2 a0) in H.
- Rewrite (ad_eq_correct a0) in H. Discriminate H.
- Intro. Rewrite ad_eq_comm. Assumption.
+ intros. elim (sumbool_of_bool (ad_eq (ad_double a0) a)). intro H0.
+ rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_div_2 a0) in H.
+ rewrite (ad_eq_correct a0) in H. discriminate H.
+ intro. rewrite ad_eq_comm. assumption.
Qed.
-Lemma ad_bit_0_0_not_double_plus_un : (a:ad) (ad_bit_0 a)=false ->
- (a0:ad) (ad_eq (ad_double_plus_un a0) a)=false.
+Lemma ad_bit_0_0_not_double_plus_un :
+ forall a:ad,
+ ad_bit_0 a = false -> forall a0:ad, ad_eq (ad_double_plus_un a0) a = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_eq (ad_double_plus_un a0) a)). Intro H0.
- Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_plus_un_bit_0 a0) in H.
- Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_eq (ad_double_plus_un a0) a)). intro H0.
+ rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_plus_un_bit_0 a0) in H.
+ discriminate H.
+ trivial.
Qed.
-Lemma ad_not_div_2_not_double_plus_un : (a,a0:ad) (ad_eq (ad_div_2 a) a0)=false ->
- (ad_eq (ad_double_plus_un a0) a)=false.
+Lemma ad_not_div_2_not_double_plus_un :
+ forall a a0:ad,
+ ad_eq (ad_div_2 a) a0 = false -> ad_eq (ad_double_plus_un a0) a = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_eq a (ad_double_plus_un a0))). Intro H0.
- Rewrite (ad_eq_complete ? ? H0) in H. Rewrite (ad_double_plus_un_div_2 a0) in H.
- Rewrite (ad_eq_correct a0) in H. Discriminate H.
- Intro H0. Rewrite ad_eq_comm. Assumption.
+ intros. elim (sumbool_of_bool (ad_eq a (ad_double_plus_un a0))). intro H0.
+ rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_double_plus_un_div_2 a0) in H.
+ rewrite (ad_eq_correct a0) in H. discriminate H.
+ intro H0. rewrite ad_eq_comm. assumption.
Qed.
Lemma ad_bit_0_neq :
- (a,a':ad) (ad_bit_0 a)=false -> (ad_bit_0 a')=true -> (ad_eq a a')=false.
+ forall a a':ad,
+ ad_bit_0 a = false -> ad_bit_0 a' = true -> ad_eq a a' = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H1. Rewrite (ad_eq_complete ? ? H1) in H.
- Rewrite H in H0. Discriminate H0.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_eq a a')). intro H1. rewrite (ad_eq_complete _ _ H1) in H.
+ rewrite H in H0. discriminate H0.
+ trivial.
Qed.
Lemma ad_div_eq :
- (a,a':ad) (ad_eq a a')=true -> (ad_eq (ad_div_2 a) (ad_div_2 a'))=true.
+ forall a a':ad, ad_eq a a' = true -> ad_eq (ad_div_2 a) (ad_div_2 a') = true.
Proof.
- Intros. Cut a=a'. Intros. Rewrite H0. Apply ad_eq_correct.
- Apply ad_eq_complete. Exact H.
+ intros. cut (a = a'). intros. rewrite H0. apply ad_eq_correct.
+ apply ad_eq_complete. exact H.
Qed.
-Lemma ad_div_neq : (a,a':ad) (ad_eq (ad_div_2 a) (ad_div_2 a'))=false ->
- (ad_eq a a')=false.
+Lemma ad_div_neq :
+ forall a a':ad,
+ ad_eq (ad_div_2 a) (ad_div_2 a') = false -> ad_eq a a' = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_eq a a')). Intro H0.
- Rewrite (ad_eq_complete ? ? H0) in H. Rewrite (ad_eq_correct (ad_div_2 a')) in H. Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_eq a a')). intro H0.
+ rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_eq_correct (ad_div_2 a')) in H. discriminate H.
+ trivial.
Qed.
-Lemma ad_div_bit_eq : (a,a':ad) (ad_bit_0 a)=(ad_bit_0 a') ->
- (ad_div_2 a)=(ad_div_2 a') -> a=a'.
+Lemma ad_div_bit_eq :
+ forall a a':ad,
+ ad_bit_0 a = ad_bit_0 a' -> ad_div_2 a = ad_div_2 a' -> a = a'.
Proof.
- Intros. Apply ad_faithful. Unfold eqf. NewDestruct n.
- Rewrite ad_bit_0_correct. Rewrite ad_bit_0_correct. Assumption.
- Rewrite <- ad_div_2_correct. Rewrite <- ad_div_2_correct.
- Rewrite H0. Reflexivity.
+ intros. apply ad_faithful. unfold eqf in |- *. destruct n.
+ rewrite ad_bit_0_correct. rewrite ad_bit_0_correct. assumption.
+ rewrite <- ad_div_2_correct. rewrite <- ad_div_2_correct.
+ rewrite H0. reflexivity.
Qed.
-Lemma ad_div_bit_neq : (a,a':ad) (ad_eq a a')=false -> (ad_bit_0 a)=(ad_bit_0 a') ->
- (ad_eq (ad_div_2 a) (ad_div_2 a'))=false.
+Lemma ad_div_bit_neq :
+ forall a a':ad,
+ ad_eq a a' = false ->
+ ad_bit_0 a = ad_bit_0 a' -> ad_eq (ad_div_2 a) (ad_div_2 a') = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_eq (ad_div_2 a) (ad_div_2 a'))). Intro H1.
- Rewrite (ad_div_bit_eq ? ? H0 (ad_eq_complete ? ? H1)) in H.
- Rewrite (ad_eq_correct a') in H. Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_eq (ad_div_2 a) (ad_div_2 a'))). intro H1.
+ rewrite (ad_div_bit_eq _ _ H0 (ad_eq_complete _ _ H1)) in H.
+ rewrite (ad_eq_correct a') in H. discriminate H.
+ trivial.
Qed.
-Lemma ad_neq : (a,a':ad) (ad_eq a a')=false ->
- (ad_bit_0 a)=(negb (ad_bit_0 a')) \/ (ad_eq (ad_div_2 a) (ad_div_2 a'))=false.
+Lemma ad_neq :
+ forall a a':ad,
+ ad_eq a a' = false ->
+ ad_bit_0 a = negb (ad_bit_0 a') \/
+ ad_eq (ad_div_2 a) (ad_div_2 a') = false.
Proof.
- Intros. Cut (ad_bit_0 a)=(ad_bit_0 a')\/(ad_bit_0 a)=(negb (ad_bit_0 a')).
- Intros. Elim H0. Intro. Right . Apply ad_div_bit_neq. Assumption.
- Assumption.
- Intro. Left . Assumption.
- Case (ad_bit_0 a); Case (ad_bit_0 a'); Auto.
+ intros. cut (ad_bit_0 a = ad_bit_0 a' \/ ad_bit_0 a = negb (ad_bit_0 a')).
+ intros. elim H0. intro. right. apply ad_div_bit_neq. assumption.
+ assumption.
+ intro. left. assumption.
+ case (ad_bit_0 a); case (ad_bit_0 a'); auto.
Qed.
-Lemma ad_double_or_double_plus_un : (a:ad)
- {a0:ad | a=(ad_double a0)}+{a1:ad | a=(ad_double_plus_un a1)}.
+Lemma ad_double_or_double_plus_un :
+ forall a:ad,
+ {a0 : ad | a = ad_double a0} + {a1 : ad | a = ad_double_plus_un a1}.
Proof.
- Intro. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H. Right . Split with (ad_div_2 a).
- Rewrite (ad_div_2_double_plus_un a H). Reflexivity.
- Intro H. Left . Split with (ad_div_2 a). Rewrite (ad_div_2_double a H). Reflexivity.
-Qed.
+ intro. elim (sumbool_of_bool (ad_bit_0 a)). intro H. right. split with (ad_div_2 a).
+ rewrite (ad_div_2_double_plus_un a H). reflexivity.
+ intro H. left. split with (ad_div_2 a). rewrite (ad_div_2_double a H). reflexivity.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Addr.v b/theories/IntMap/Addr.v
index cff8936b6f..fcab8b565c 100644
--- a/theories/IntMap/Addr.v
+++ b/theories/IntMap/Addr.v
@@ -9,448 +9,483 @@
(** Representation of adresses by the [positive] type of binary numbers *)
-Require Bool.
-Require ZArith.
+Require Import Bool.
+Require Import ZArith.
Inductive ad : Set :=
- ad_z : ad
+ | ad_z : ad
| ad_x : positive -> ad.
-Lemma ad_sum : (a:ad) {p:positive | a=(ad_x p)}+{a=ad_z}.
-Proof.
- NewDestruct a; Auto.
- Left; Exists p; Trivial.
-Qed.
-
-Fixpoint p_xor [p:positive] : positive -> ad :=
- [p2] Cases p of
- xH => Cases p2 of
- xH => ad_z
- | (xO p'2) => (ad_x (xI p'2))
- | (xI p'2) => (ad_x (xO p'2))
- end
- | (xO p') => Cases p2 of
- xH => (ad_x (xI p'))
- | (xO p'2) => Cases (p_xor p' p'2) of
- ad_z => ad_z
- | (ad_x p'') => (ad_x (xO p''))
- end
- | (xI p'2) => Cases (p_xor p' p'2) of
- ad_z => (ad_x xH)
- | (ad_x p'') => (ad_x (xI p''))
- end
- end
- | (xI p') => Cases p2 of
- xH => (ad_x (xO p'))
- | (xO p'2) => Cases (p_xor p' p'2) of
- ad_z => (ad_x xH)
- | (ad_x p'') => (ad_x (xI p''))
- end
- | (xI p'2) => Cases (p_xor p' p'2) of
- ad_z => ad_z
- | (ad_x p'') => (ad_x (xO p''))
- end
- end
+Lemma ad_sum : forall a:ad, {p : positive | a = ad_x p} + {a = ad_z}.
+Proof.
+ destruct a; auto.
+ left; exists p; trivial.
+Qed.
+
+Fixpoint p_xor (p p2:positive) {struct p} : ad :=
+ match p with
+ | xH =>
+ match p2 with
+ | xH => ad_z
+ | xO p'2 => ad_x (xI p'2)
+ | xI p'2 => ad_x (xO p'2)
+ end
+ | xO p' =>
+ match p2 with
+ | xH => ad_x (xI p')
+ | xO p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_z
+ | ad_x p'' => ad_x (xO p'')
+ end
+ | xI p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_x 1
+ | ad_x p'' => ad_x (xI p'')
+ end
+ end
+ | xI p' =>
+ match p2 with
+ | xH => ad_x (xO p')
+ | xO p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_x 1
+ | ad_x p'' => ad_x (xI p'')
+ end
+ | xI p'2 =>
+ match p_xor p' p'2 with
+ | ad_z => ad_z
+ | ad_x p'' => ad_x (xO p'')
+ end
+ end
end.
-Definition ad_xor := [a,a':ad]
- Cases a of
- ad_z => a'
- | (ad_x p) => Cases a' of
- ad_z => a
- | (ad_x p') => (p_xor p p')
- end
+Definition ad_xor (a a':ad) :=
+ match a with
+ | ad_z => a'
+ | ad_x p => match a' with
+ | ad_z => a
+ | ad_x p' => p_xor p p'
+ end
end.
-Lemma ad_xor_neutral_left : (a:ad) (ad_xor ad_z a)=a.
+Lemma ad_xor_neutral_left : forall a:ad, ad_xor ad_z a = a.
Proof.
- Trivial.
+ trivial.
Qed.
-Lemma ad_xor_neutral_right : (a:ad) (ad_xor a ad_z)=a.
+Lemma ad_xor_neutral_right : forall a:ad, ad_xor a ad_z = a.
Proof.
- NewDestruct a; Trivial.
+ destruct a; trivial.
Qed.
-Lemma ad_xor_comm : (a,a':ad) (ad_xor a a')=(ad_xor a' a).
+Lemma ad_xor_comm : forall a a':ad, ad_xor a a' = ad_xor a' a.
Proof.
- NewDestruct a; NewDestruct a'; Simpl; Auto.
- Generalize p0; Clear p0; NewInduction p as [p Hrecp|p Hrecp|]; Simpl; Auto.
- NewDestruct p0; Simpl; Trivial; Intros.
- Rewrite Hrecp; Trivial.
- Rewrite Hrecp; Trivial.
- NewDestruct p0; Simpl; Trivial; Intros.
- Rewrite Hrecp; Trivial.
- Rewrite Hrecp; Trivial.
- NewDestruct p0; Simpl; Auto.
+ destruct a; destruct a'; simpl in |- *; auto.
+ generalize p0; clear p0; induction p as [p Hrecp| p Hrecp| ]; simpl in |- *;
+ auto.
+ destruct p0; simpl in |- *; trivial; intros.
+ rewrite Hrecp; trivial.
+ rewrite Hrecp; trivial.
+ destruct p0; simpl in |- *; trivial; intros.
+ rewrite Hrecp; trivial.
+ rewrite Hrecp; trivial.
+ destruct p0 as [p| p| ]; simpl in |- *; auto.
Qed.
-Lemma ad_xor_nilpotent : (a:ad) (ad_xor a a)=ad_z.
+Lemma ad_xor_nilpotent : forall a:ad, ad_xor a a = ad_z.
Proof.
- NewDestruct a; Trivial.
- Simpl. NewInduction p as [p IHp|p IHp|]; Trivial.
- Simpl. Rewrite IHp; Reflexivity.
- Simpl. Rewrite IHp; Reflexivity.
+ destruct a; trivial.
+ simpl in |- *. induction p as [p IHp| p IHp| ]; trivial.
+ simpl in |- *. rewrite IHp; reflexivity.
+ simpl in |- *. rewrite IHp; reflexivity.
Qed.
-Fixpoint ad_bit_1 [p:positive] : nat -> bool :=
- Cases p of
- xH => [n:nat] Cases n of
- O => true
- | (S _) => false
- end
- | (xO p) => [n:nat] Cases n of
- O => false
- | (S n') => (ad_bit_1 p n')
- end
- | (xI p) => [n:nat] Cases n of
- O => true
- | (S n') => (ad_bit_1 p n')
- end
+Fixpoint ad_bit_1 (p:positive) : nat -> bool :=
+ match p with
+ | xH => fun n:nat => match n with
+ | O => true
+ | S _ => false
+ end
+ | xO p =>
+ fun n:nat => match n with
+ | O => false
+ | S n' => ad_bit_1 p n'
+ end
+ | xI p => fun n:nat => match n with
+ | O => true
+ | S n' => ad_bit_1 p n'
+ end
end.
-Definition ad_bit := [a:ad]
- Cases a of
- ad_z => [_:nat] false
- | (ad_x p) => (ad_bit_1 p)
+Definition ad_bit (a:ad) :=
+ match a with
+ | ad_z => fun _:nat => false
+ | ad_x p => ad_bit_1 p
end.
-Definition eqf := [f,g:nat->bool] (n:nat) (f n)=(g n).
+Definition eqf (f g:nat -> bool) := forall n:nat, f n = g n.
-Lemma ad_faithful_1 : (a:ad) (eqf (ad_bit ad_z) (ad_bit a)) -> ad_z=a.
+Lemma ad_faithful_1 : forall a:ad, eqf (ad_bit ad_z) (ad_bit a) -> ad_z = a.
Proof.
- NewDestruct a. Trivial.
- NewInduction p as [p IHp|p IHp|];Intro H. Absurd ad_z=(ad_x p). Discriminate.
- Exact (IHp [n:nat](H (S n))).
- Absurd ad_z=(ad_x p). Discriminate.
- Exact (IHp [n:nat](H (S n))).
- Absurd false=true. Discriminate.
- Exact (H O).
+ destruct a. trivial.
+ induction p as [p IHp| p IHp| ]; intro H. absurd (ad_z = ad_x p). discriminate.
+ exact (IHp (fun n:nat => H (S n))).
+ absurd (ad_z = ad_x p). discriminate.
+ exact (IHp (fun n:nat => H (S n))).
+ absurd (false = true). discriminate.
+ exact (H 0).
Qed.
-Lemma ad_faithful_2 : (a:ad) (eqf (ad_bit (ad_x xH)) (ad_bit a)) -> (ad_x xH)=a.
+Lemma ad_faithful_2 :
+ forall a:ad, eqf (ad_bit (ad_x 1)) (ad_bit a) -> ad_x 1 = a.
Proof.
- NewDestruct a. Intros. Absurd true=false. Discriminate.
- Exact (H O).
- NewDestruct p. Intro H. Absurd ad_z=(ad_x p). Discriminate.
- Exact (ad_faithful_1 (ad_x p) [n:nat](H (S n))).
- Intros. Absurd true=false. Discriminate.
- Exact (H O).
- Trivial.
+ destruct a. intros. absurd (true = false). discriminate.
+ exact (H 0).
+ destruct p. intro H. absurd (ad_z = ad_x p). discriminate.
+ exact (ad_faithful_1 (ad_x p) (fun n:nat => H (S n))).
+ intros. absurd (true = false). discriminate.
+ exact (H 0).
+ trivial.
Qed.
Lemma ad_faithful_3 :
- (a:ad) (p:positive)
- ((p':positive) (eqf (ad_bit (ad_x p)) (ad_bit (ad_x p'))) -> p=p') ->
- (eqf (ad_bit (ad_x (xO p))) (ad_bit a)) ->
- (ad_x (xO p))=a.
+ forall (a:ad) (p:positive),
+ (forall p':positive, eqf (ad_bit (ad_x p)) (ad_bit (ad_x p')) -> p = p') ->
+ eqf (ad_bit (ad_x (xO p))) (ad_bit a) -> ad_x (xO p) = a.
Proof.
- NewDestruct a. Intros. Cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xO p)))).
- Intro. Rewrite (ad_faithful_1 (ad_x (xO p)) H1). Reflexivity.
- Unfold eqf. Intro. Unfold eqf in H0. Rewrite H0. Reflexivity.
- Case p. Intros. Absurd false=true. Discriminate.
- Exact (H0 O).
- Intros. Rewrite (H p0 [n:nat](H0 (S n))). Reflexivity.
- Intros. Absurd false=true. Discriminate.
- Exact (H0 O).
+ destruct a. intros. cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xO p)))).
+ intro. rewrite (ad_faithful_1 (ad_x (xO p)) H1). reflexivity.
+ unfold eqf in |- *. intro. unfold eqf in H0. rewrite H0. reflexivity.
+ case p. intros. absurd (false = true). discriminate.
+ exact (H0 0).
+ intros. rewrite (H p0 (fun n:nat => H0 (S n))). reflexivity.
+ intros. absurd (false = true). discriminate.
+ exact (H0 0).
Qed.
Lemma ad_faithful_4 :
- (a:ad) (p:positive)
- ((p':positive) (eqf (ad_bit (ad_x p)) (ad_bit (ad_x p'))) -> p=p') ->
- (eqf (ad_bit (ad_x (xI p))) (ad_bit a)) ->
- (ad_x (xI p))=a.
+ forall (a:ad) (p:positive),
+ (forall p':positive, eqf (ad_bit (ad_x p)) (ad_bit (ad_x p')) -> p = p') ->
+ eqf (ad_bit (ad_x (xI p))) (ad_bit a) -> ad_x (xI p) = a.
Proof.
- NewDestruct a. Intros. Cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xI p)))).
- Intro. Rewrite (ad_faithful_1 (ad_x (xI p)) H1). Reflexivity.
- Unfold eqf. Intro. Unfold eqf in H0. Rewrite H0. Reflexivity.
- Case p. Intros. Rewrite (H p0 [n:nat](H0 (S n))). Reflexivity.
- Intros. Absurd true=false. Discriminate.
- Exact (H0 O).
- Intros. Absurd ad_z=(ad_x p0). Discriminate.
- Cut (eqf (ad_bit (ad_x xH)) (ad_bit (ad_x (xI p0)))).
- Intro. Exact (ad_faithful_1 (ad_x p0) [n:nat](H1 (S n))).
- Unfold eqf. Unfold eqf in H0. Intro. Rewrite H0. Reflexivity.
+ destruct a. intros. cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xI p)))).
+ intro. rewrite (ad_faithful_1 (ad_x (xI p)) H1). reflexivity.
+ unfold eqf in |- *. intro. unfold eqf in H0. rewrite H0. reflexivity.
+ case p. intros. rewrite (H p0 (fun n:nat => H0 (S n))). reflexivity.
+ intros. absurd (true = false). discriminate.
+ exact (H0 0).
+ intros. absurd (ad_z = ad_x p0). discriminate.
+ cut (eqf (ad_bit (ad_x 1)) (ad_bit (ad_x (xI p0)))).
+ intro. exact (ad_faithful_1 (ad_x p0) (fun n:nat => H1 (S n))).
+ unfold eqf in |- *. unfold eqf in H0. intro. rewrite H0. reflexivity.
Qed.
-Lemma ad_faithful : (a,a':ad) (eqf (ad_bit a) (ad_bit a')) -> a=a'.
+Lemma ad_faithful : forall a a':ad, eqf (ad_bit a) (ad_bit a') -> a = a'.
Proof.
- NewDestruct a. Exact ad_faithful_1.
- NewInduction p. Intros a' H. Apply ad_faithful_4. Intros. Cut (ad_x p)=(ad_x p').
- Intro. Inversion H1. Reflexivity.
- Exact (IHp (ad_x p') H0).
- Assumption.
- Intros. Apply ad_faithful_3. Intros. Cut (ad_x p)=(ad_x p'). Intro. Inversion H1. Reflexivity.
- Exact (IHp (ad_x p') H0).
- Assumption.
- Exact ad_faithful_2.
+ destruct a. exact ad_faithful_1.
+ induction p. intros a' H. apply ad_faithful_4. intros. cut (ad_x p = ad_x p').
+ intro. inversion H1. reflexivity.
+ exact (IHp (ad_x p') H0).
+ assumption.
+ intros. apply ad_faithful_3. intros. cut (ad_x p = ad_x p'). intro. inversion H1. reflexivity.
+ exact (IHp (ad_x p') H0).
+ assumption.
+ exact ad_faithful_2.
Qed.
-Definition adf_xor := [f,g:nat->bool; n:nat] (xorb (f n) (g n)).
+Definition adf_xor (f g:nat -> bool) (n:nat) := xorb (f n) (g n).
-Lemma ad_xor_sem_1 : (a':ad) (ad_bit (ad_xor ad_z a') O)=(ad_bit a' O).
+Lemma ad_xor_sem_1 : forall a':ad, ad_bit (ad_xor ad_z a') 0 = ad_bit a' 0.
Proof.
- Trivial.
+ trivial.
Qed.
-Lemma ad_xor_sem_2 : (a':ad) (ad_bit (ad_xor (ad_x xH) a') O)=(negb (ad_bit a' O)).
+Lemma ad_xor_sem_2 :
+ forall a':ad, ad_bit (ad_xor (ad_x 1) a') 0 = negb (ad_bit a' 0).
Proof.
- Intro. Case a'. Trivial.
- Simpl. Intro.
- Case p; Trivial.
+ intro. case a'. trivial.
+ simpl in |- *. intro.
+ case p; trivial.
Qed.
Lemma ad_xor_sem_3 :
- (p:positive) (a':ad) (ad_bit (ad_xor (ad_x (xO p)) a') O)=(ad_bit a' O).
+ forall (p:positive) (a':ad),
+ ad_bit (ad_xor (ad_x (xO p)) a') 0 = ad_bit a' 0.
Proof.
- Intros. Case a'. Trivial.
- Simpl. Intro.
- Case p0; Trivial. Intro.
- Case (p_xor p p1); Trivial.
- Intro. Case (p_xor p p1); Trivial.
+ intros. case a'. trivial.
+ simpl in |- *. intro.
+ case p0; trivial. intro.
+ case (p_xor p p1); trivial.
+ intro. case (p_xor p p1); trivial.
Qed.
-Lemma ad_xor_sem_4 : (p:positive) (a':ad)
- (ad_bit (ad_xor (ad_x (xI p)) a') O)=(negb (ad_bit a' O)).
+Lemma ad_xor_sem_4 :
+ forall (p:positive) (a':ad),
+ ad_bit (ad_xor (ad_x (xI p)) a') 0 = negb (ad_bit a' 0).
Proof.
- Intros. Case a'. Trivial.
- Simpl. Intro. Case p0; Trivial. Intro.
- Case (p_xor p p1); Trivial.
- Intro.
- Case (p_xor p p1); Trivial.
+ intros. case a'. trivial.
+ simpl in |- *. intro. case p0; trivial. intro.
+ case (p_xor p p1); trivial.
+ intro.
+ case (p_xor p p1); trivial.
Qed.
Lemma ad_xor_sem_5 :
- (a,a':ad) (ad_bit (ad_xor a a') O)=(adf_xor (ad_bit a) (ad_bit a') O).
-Proof.
- NewDestruct a. Intro. Change (ad_bit a' O)=(xorb false (ad_bit a' O)). Rewrite false_xorb. Trivial.
- Case p. Exact ad_xor_sem_4.
- Intros. Change (ad_bit (ad_xor (ad_x (xO p0)) a') O)=(xorb false (ad_bit a' O)).
- Rewrite false_xorb. Apply ad_xor_sem_3. Exact ad_xor_sem_2.
-Qed.
-
-Lemma ad_xor_sem_6 : (n:nat)
- ((a,a':ad) (ad_bit (ad_xor a a') n)=(adf_xor (ad_bit a) (ad_bit a') n)) ->
- (a,a':ad) (ad_bit (ad_xor a a') (S n))=(adf_xor (ad_bit a) (ad_bit a') (S n)).
-Proof.
- Intros. Case a. Unfold adf_xor. Unfold 2 ad_bit. Rewrite false_xorb. Reflexivity.
- Case a'. Unfold adf_xor. Unfold 3 ad_bit. Intro. Rewrite xorb_false. Reflexivity.
- Intros. Case p0. Case p. Intros.
- Change (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xI p1))) (S n))
- =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n).
- Rewrite <- H. Simpl.
- Case (p_xor p2 p1); Trivial.
- Intros.
- Change (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xO p1))) (S n))
- =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n).
- Rewrite <- H. Simpl.
- Case (p_xor p2 p1); Trivial.
- Intro. Unfold adf_xor. Unfold 3 ad_bit. Unfold ad_bit_1. Rewrite xorb_false. Reflexivity.
- Case p. Intros.
- Change (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xI p1))) (S n))
- =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n).
- Rewrite <- H. Simpl.
- Case (p_xor p2 p1); Trivial.
- Intros.
- Change (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xO p1))) (S n))
- =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n).
- Rewrite <- H. Simpl.
- Case (p_xor p2 p1); Trivial.
- Intro. Unfold adf_xor. Unfold 3 ad_bit. Unfold ad_bit_1. Rewrite xorb_false. Reflexivity.
- Unfold adf_xor. Unfold 2 ad_bit. Unfold ad_bit_1. Rewrite false_xorb. Simpl. Case p; Trivial.
+ forall a a':ad, ad_bit (ad_xor a a') 0 = adf_xor (ad_bit a) (ad_bit a') 0.
+Proof.
+ destruct a. intro. change (ad_bit a' 0 = xorb false (ad_bit a' 0)) in |- *. rewrite false_xorb. trivial.
+ case p. exact ad_xor_sem_4.
+ intros. change (ad_bit (ad_xor (ad_x (xO p0)) a') 0 = xorb false (ad_bit a' 0))
+ in |- *.
+ rewrite false_xorb. apply ad_xor_sem_3. exact ad_xor_sem_2.
+Qed.
+
+Lemma ad_xor_sem_6 :
+ forall n:nat,
+ (forall a a':ad, ad_bit (ad_xor a a') n = adf_xor (ad_bit a) (ad_bit a') n) ->
+ forall a a':ad,
+ ad_bit (ad_xor a a') (S n) = adf_xor (ad_bit a) (ad_bit a') (S n).
+Proof.
+ intros. case a. unfold adf_xor in |- *. unfold ad_bit at 2 in |- *. rewrite false_xorb. reflexivity.
+ case a'. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. intro. rewrite xorb_false. reflexivity.
+ intros. case p0. case p. intros.
+ change
+ (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xI p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intros.
+ change
+ (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xO p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intro. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. unfold ad_bit_1 in |- *. rewrite xorb_false. reflexivity.
+ case p. intros.
+ change
+ (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xI p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intros.
+ change
+ (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xO p1))) (S n) =
+ adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n)
+ in |- *.
+ rewrite <- H. simpl in |- *.
+ case (p_xor p2 p1); trivial.
+ intro. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. unfold ad_bit_1 in |- *. rewrite xorb_false. reflexivity.
+ unfold adf_xor in |- *. unfold ad_bit at 2 in |- *. unfold ad_bit_1 in |- *. rewrite false_xorb. simpl in |- *. case p; trivial.
Qed.
Lemma ad_xor_semantics :
- (a,a':ad) (eqf (ad_bit (ad_xor a a')) (adf_xor (ad_bit a) (ad_bit a'))).
+ forall a a':ad, eqf (ad_bit (ad_xor a a')) (adf_xor (ad_bit a) (ad_bit a')).
Proof.
- Unfold eqf. Intros. Generalize a a'. Elim n. Exact ad_xor_sem_5.
- Exact ad_xor_sem_6.
+ unfold eqf in |- *. intros. generalize a a'. elim n. exact ad_xor_sem_5.
+ exact ad_xor_sem_6.
Qed.
-Lemma eqf_sym : (f,f':nat->bool) (eqf f f') -> (eqf f' f).
+Lemma eqf_sym : forall f f':nat -> bool, eqf f f' -> eqf f' f.
Proof.
- Unfold eqf. Intros. Rewrite H. Reflexivity.
+ unfold eqf in |- *. intros. rewrite H. reflexivity.
Qed.
-Lemma eqf_refl : (f:nat->bool) (eqf f f).
+Lemma eqf_refl : forall f:nat -> bool, eqf f f.
Proof.
- Unfold eqf. Trivial.
+ unfold eqf in |- *. trivial.
Qed.
-Lemma eqf_trans : (f,f',f'':nat->bool) (eqf f f') -> (eqf f' f'') -> (eqf f f'').
+Lemma eqf_trans :
+ forall f f' f'':nat -> bool, eqf f f' -> eqf f' f'' -> eqf f f''.
Proof.
- Unfold eqf. Intros. Rewrite H. Exact (H0 n).
+ unfold eqf in |- *. intros. rewrite H. exact (H0 n).
Qed.
-Lemma adf_xor_eq : (f,f':nat->bool) (eqf (adf_xor f f') [n:nat] false) -> (eqf f f').
+Lemma adf_xor_eq :
+ forall f f':nat -> bool, eqf (adf_xor f f') (fun n:nat => false) -> eqf f f'.
Proof.
- Unfold eqf. Unfold adf_xor. Intros. Apply xorb_eq. Apply H.
+ unfold eqf in |- *. unfold adf_xor in |- *. intros. apply xorb_eq. apply H.
Qed.
-Lemma ad_xor_eq : (a,a':ad) (ad_xor a a')=ad_z -> a=a'.
+Lemma ad_xor_eq : forall a a':ad, ad_xor a a' = ad_z -> a = a'.
Proof.
- Intros. Apply ad_faithful. Apply adf_xor_eq. Apply eqf_trans with f':=(ad_bit (ad_xor a a')).
- Apply eqf_sym. Apply ad_xor_semantics.
- Rewrite H. Unfold eqf. Trivial.
+ intros. apply ad_faithful. apply adf_xor_eq. apply eqf_trans with (f' := ad_bit (ad_xor a a')).
+ apply eqf_sym. apply ad_xor_semantics.
+ rewrite H. unfold eqf in |- *. trivial.
Qed.
-Lemma adf_xor_assoc : (f,f',f'':nat->bool)
- (eqf (adf_xor (adf_xor f f') f'') (adf_xor f (adf_xor f' f''))).
+Lemma adf_xor_assoc :
+ forall f f' f'':nat -> bool,
+ eqf (adf_xor (adf_xor f f') f'') (adf_xor f (adf_xor f' f'')).
Proof.
- Unfold eqf. Unfold adf_xor. Intros. Apply xorb_assoc.
+ unfold eqf in |- *. unfold adf_xor in |- *. intros. apply xorb_assoc.
Qed.
-Lemma eqf_xor_1 : (f,f',f'',f''':nat->bool) (eqf f f') -> (eqf f'' f''') ->
- (eqf (adf_xor f f'') (adf_xor f' f''')).
+Lemma eqf_xor_1 :
+ forall f f' f'' f''':nat -> bool,
+ eqf f f' -> eqf f'' f''' -> eqf (adf_xor f f'') (adf_xor f' f''').
Proof.
- Unfold eqf. Intros. Unfold adf_xor. Rewrite H. Rewrite H0. Reflexivity.
+ unfold eqf in |- *. intros. unfold adf_xor in |- *. rewrite H. rewrite H0. reflexivity.
Qed.
Lemma ad_xor_assoc :
- (a,a',a'':ad) (ad_xor (ad_xor a a') a'')=(ad_xor a (ad_xor a' a'')).
-Proof.
- Intros. Apply ad_faithful.
- Apply eqf_trans with f':=(adf_xor (adf_xor (ad_bit a) (ad_bit a')) (ad_bit a'')).
- Apply eqf_trans with f':=(adf_xor (ad_bit (ad_xor a a')) (ad_bit a'')).
- Apply ad_xor_semantics.
- Apply eqf_xor_1. Apply ad_xor_semantics.
- Apply eqf_refl.
- Apply eqf_trans with f':=(adf_xor (ad_bit a) (adf_xor (ad_bit a') (ad_bit a''))).
- Apply adf_xor_assoc.
- Apply eqf_trans with f':=(adf_xor (ad_bit a) (ad_bit (ad_xor a' a''))).
- Apply eqf_xor_1. Apply eqf_refl.
- Apply eqf_sym. Apply ad_xor_semantics.
- Apply eqf_sym. Apply ad_xor_semantics.
-Qed.
-
-Definition ad_double := [a:ad]
- Cases a of
- ad_z => ad_z
- | (ad_x p) => (ad_x (xO p))
+ forall a a' a'':ad, ad_xor (ad_xor a a') a'' = ad_xor a (ad_xor a' a'').
+Proof.
+ intros. apply ad_faithful.
+ apply eqf_trans with
+ (f' := adf_xor (adf_xor (ad_bit a) (ad_bit a')) (ad_bit a'')).
+ apply eqf_trans with (f' := adf_xor (ad_bit (ad_xor a a')) (ad_bit a'')).
+ apply ad_xor_semantics.
+ apply eqf_xor_1. apply ad_xor_semantics.
+ apply eqf_refl.
+ apply eqf_trans with
+ (f' := adf_xor (ad_bit a) (adf_xor (ad_bit a') (ad_bit a''))).
+ apply adf_xor_assoc.
+ apply eqf_trans with (f' := adf_xor (ad_bit a) (ad_bit (ad_xor a' a''))).
+ apply eqf_xor_1. apply eqf_refl.
+ apply eqf_sym. apply ad_xor_semantics.
+ apply eqf_sym. apply ad_xor_semantics.
+Qed.
+
+Definition ad_double (a:ad) :=
+ match a with
+ | ad_z => ad_z
+ | ad_x p => ad_x (xO p)
end.
-Definition ad_double_plus_un := [a:ad]
- Cases a of
- ad_z => (ad_x xH)
- | (ad_x p) => (ad_x (xI p))
+Definition ad_double_plus_un (a:ad) :=
+ match a with
+ | ad_z => ad_x 1
+ | ad_x p => ad_x (xI p)
end.
-Definition ad_div_2 := [a:ad]
- Cases a of
- ad_z => ad_z
- | (ad_x xH) => ad_z
- | (ad_x (xO p)) => (ad_x p)
- | (ad_x (xI p)) => (ad_x p)
+Definition ad_div_2 (a:ad) :=
+ match a with
+ | ad_z => ad_z
+ | ad_x xH => ad_z
+ | ad_x (xO p) => ad_x p
+ | ad_x (xI p) => ad_x p
end.
-Lemma ad_double_div_2 : (a:ad) (ad_div_2 (ad_double a))=a.
+Lemma ad_double_div_2 : forall a:ad, ad_div_2 (ad_double a) = a.
Proof.
- NewDestruct a; Trivial.
+ destruct a; trivial.
Qed.
-Lemma ad_double_plus_un_div_2 : (a:ad) (ad_div_2 (ad_double_plus_un a))=a.
+Lemma ad_double_plus_un_div_2 :
+ forall a:ad, ad_div_2 (ad_double_plus_un a) = a.
Proof.
- NewDestruct a; Trivial.
+ destruct a; trivial.
Qed.
-Lemma ad_double_inj : (a0,a1:ad) (ad_double a0)=(ad_double a1) -> a0=a1.
+Lemma ad_double_inj : forall a0 a1:ad, ad_double a0 = ad_double a1 -> a0 = a1.
Proof.
- Intros. Rewrite <- (ad_double_div_2 a0). Rewrite H. Apply ad_double_div_2.
+ intros. rewrite <- (ad_double_div_2 a0). rewrite H. apply ad_double_div_2.
Qed.
Lemma ad_double_plus_un_inj :
- (a0,a1:ad) (ad_double_plus_un a0)=(ad_double_plus_un a1) -> a0=a1.
+ forall a0 a1:ad, ad_double_plus_un a0 = ad_double_plus_un a1 -> a0 = a1.
Proof.
- Intros. Rewrite <- (ad_double_plus_un_div_2 a0). Rewrite H. Apply ad_double_plus_un_div_2.
+ intros. rewrite <- (ad_double_plus_un_div_2 a0). rewrite H. apply ad_double_plus_un_div_2.
Qed.
-Definition ad_bit_0 := [a:ad]
- Cases a of
- ad_z => false
- | (ad_x (xO _)) => false
- | _ => true
+Definition ad_bit_0 (a:ad) :=
+ match a with
+ | ad_z => false
+ | ad_x (xO _) => false
+ | _ => true
end.
-Lemma ad_double_bit_0 : (a:ad) (ad_bit_0 (ad_double a))=false.
+Lemma ad_double_bit_0 : forall a:ad, ad_bit_0 (ad_double a) = false.
Proof.
- NewDestruct a; Trivial.
+ destruct a; trivial.
Qed.
-Lemma ad_double_plus_un_bit_0 : (a:ad) (ad_bit_0 (ad_double_plus_un a))=true.
+Lemma ad_double_plus_un_bit_0 :
+ forall a:ad, ad_bit_0 (ad_double_plus_un a) = true.
Proof.
- NewDestruct a; Trivial.
+ destruct a; trivial.
Qed.
-Lemma ad_div_2_double : (a:ad) (ad_bit_0 a)=false -> (ad_double (ad_div_2 a))=a.
+Lemma ad_div_2_double :
+ forall a:ad, ad_bit_0 a = false -> ad_double (ad_div_2 a) = a.
Proof.
- NewDestruct a. Trivial. NewDestruct p. Intro H. Discriminate H.
- Intros. Reflexivity.
- Intro H. Discriminate H.
+ destruct a. trivial. destruct p. intro H. discriminate H.
+ intros. reflexivity.
+ intro H. discriminate H.
Qed.
Lemma ad_div_2_double_plus_un :
- (a:ad) (ad_bit_0 a)=true -> (ad_double_plus_un (ad_div_2 a))=a.
+ forall a:ad, ad_bit_0 a = true -> ad_double_plus_un (ad_div_2 a) = a.
Proof.
- NewDestruct a. Intro. Discriminate H.
- NewDestruct p. Intros. Reflexivity.
- Intro H. Discriminate H.
- Intro. Reflexivity.
+ destruct a. intro. discriminate H.
+ destruct p. intros. reflexivity.
+ intro H. discriminate H.
+ intro. reflexivity.
Qed.
-Lemma ad_bit_0_correct : (a:ad) (ad_bit a O)=(ad_bit_0 a).
+Lemma ad_bit_0_correct : forall a:ad, ad_bit a 0 = ad_bit_0 a.
Proof.
- NewDestruct a; Trivial.
- NewDestruct p; Trivial.
+ destruct a; trivial.
+ destruct p; trivial.
Qed.
-Lemma ad_div_2_correct : (a:ad) (n:nat) (ad_bit (ad_div_2 a) n)=(ad_bit a (S n)).
+Lemma ad_div_2_correct :
+ forall (a:ad) (n:nat), ad_bit (ad_div_2 a) n = ad_bit a (S n).
Proof.
- NewDestruct a; Trivial.
- NewDestruct p; Trivial.
+ destruct a; trivial.
+ destruct p; trivial.
Qed.
Lemma ad_xor_bit_0 :
- (a,a':ad) (ad_bit_0 (ad_xor a a'))=(xorb (ad_bit_0 a) (ad_bit_0 a')).
+ forall a a':ad, ad_bit_0 (ad_xor a a') = xorb (ad_bit_0 a) (ad_bit_0 a').
Proof.
- Intros. Rewrite <- ad_bit_0_correct. Rewrite (ad_xor_semantics a a' O).
- Unfold adf_xor. Rewrite ad_bit_0_correct. Rewrite ad_bit_0_correct. Reflexivity.
+ intros. rewrite <- ad_bit_0_correct. rewrite (ad_xor_semantics a a' 0).
+ unfold adf_xor in |- *. rewrite ad_bit_0_correct. rewrite ad_bit_0_correct. reflexivity.
Qed.
Lemma ad_xor_div_2 :
- (a,a':ad) (ad_div_2 (ad_xor a a'))=(ad_xor (ad_div_2 a) (ad_div_2 a')).
+ forall a a':ad, ad_div_2 (ad_xor a a') = ad_xor (ad_div_2 a) (ad_div_2 a').
Proof.
- Intros. Apply ad_faithful. Unfold eqf. Intro.
- Rewrite (ad_xor_semantics (ad_div_2 a) (ad_div_2 a') n).
- Rewrite ad_div_2_correct.
- Rewrite (ad_xor_semantics a a' (S n)).
- Unfold adf_xor. Rewrite ad_div_2_correct. Rewrite ad_div_2_correct.
- Reflexivity.
+ intros. apply ad_faithful. unfold eqf in |- *. intro.
+ rewrite (ad_xor_semantics (ad_div_2 a) (ad_div_2 a') n).
+ rewrite ad_div_2_correct.
+ rewrite (ad_xor_semantics a a' (S n)).
+ unfold adf_xor in |- *. rewrite ad_div_2_correct. rewrite ad_div_2_correct.
+ reflexivity.
Qed.
-Lemma ad_neg_bit_0 : (a,a':ad) (ad_bit_0 (ad_xor a a'))=true ->
- (ad_bit_0 a)=(negb (ad_bit_0 a')).
+Lemma ad_neg_bit_0 :
+ forall a a':ad,
+ ad_bit_0 (ad_xor a a') = true -> ad_bit_0 a = negb (ad_bit_0 a').
Proof.
- Intros. Rewrite <- true_xorb. Rewrite <- H. Rewrite ad_xor_bit_0.
- Rewrite xorb_assoc. Rewrite xorb_nilpotent. Rewrite xorb_false. Reflexivity.
+ intros. rewrite <- true_xorb. rewrite <- H. rewrite ad_xor_bit_0.
+ rewrite xorb_assoc. rewrite xorb_nilpotent. rewrite xorb_false. reflexivity.
Qed.
Lemma ad_neg_bit_0_1 :
- (a,a':ad) (ad_xor a a')=(ad_x xH) -> (ad_bit_0 a)=(negb (ad_bit_0 a')).
+ forall a a':ad, ad_xor a a' = ad_x 1 -> ad_bit_0 a = negb (ad_bit_0 a').
Proof.
- Intros. Apply ad_neg_bit_0. Rewrite H. Reflexivity.
+ intros. apply ad_neg_bit_0. rewrite H. reflexivity.
Qed.
-Lemma ad_neg_bit_0_2 : (a,a':ad) (p:positive) (ad_xor a a')=(ad_x (xI p)) ->
- (ad_bit_0 a)=(negb (ad_bit_0 a')).
+Lemma ad_neg_bit_0_2 :
+ forall (a a':ad) (p:positive),
+ ad_xor a a' = ad_x (xI p) -> ad_bit_0 a = negb (ad_bit_0 a').
Proof.
- Intros. Apply ad_neg_bit_0. Rewrite H. Reflexivity.
+ intros. apply ad_neg_bit_0. rewrite H. reflexivity.
Qed.
-Lemma ad_same_bit_0 : (a,a':ad) (p:positive) (ad_xor a a')=(ad_x (xO p)) ->
- (ad_bit_0 a)=(ad_bit_0 a').
+Lemma ad_same_bit_0 :
+ forall (a a':ad) (p:positive),
+ ad_xor a a' = ad_x (xO p) -> ad_bit_0 a = ad_bit_0 a'.
Proof.
- Intros. Rewrite <- (xorb_false (ad_bit_0 a)). Cut (ad_bit_0 (ad_x (xO p)))=false.
- Intro. Rewrite <- H0. Rewrite <- H. Rewrite ad_xor_bit_0. Rewrite <- xorb_assoc.
- Rewrite xorb_nilpotent. Rewrite false_xorb. Reflexivity.
- Reflexivity.
-Qed.
+ intros. rewrite <- (xorb_false (ad_bit_0 a)). cut (ad_bit_0 (ad_x (xO p)) = false).
+ intro. rewrite <- H0. rewrite <- H. rewrite ad_xor_bit_0. rewrite <- xorb_assoc.
+ rewrite xorb_nilpotent. rewrite false_xorb. reflexivity.
+ reflexivity.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Adist.v b/theories/IntMap/Adist.v
index fbc2870f16..30b54ac14f 100644
--- a/theories/IntMap/Adist.v
+++ b/theories/IntMap/Adist.v
@@ -7,233 +7,244 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Bool.
-Require ZArith.
-Require Arith.
-Require Min.
-Require Addr.
-
-Fixpoint ad_plength_1 [p:positive] : nat :=
- Cases p of
- xH => O
- | (xI _) => O
- | (xO p') => (S (ad_plength_1 p'))
+Require Import Bool.
+Require Import ZArith.
+Require Import Arith.
+Require Import Min.
+Require Import Addr.
+
+Fixpoint ad_plength_1 (p:positive) : nat :=
+ match p with
+ | xH => 0
+ | xI _ => 0
+ | xO p' => S (ad_plength_1 p')
end.
Inductive natinf : Set :=
- infty : natinf
+ | infty : natinf
| ni : nat -> natinf.
-Definition ad_plength := [a:ad]
- Cases a of
- ad_z => infty
- | (ad_x p) => (ni (ad_plength_1 p))
+Definition ad_plength (a:ad) :=
+ match a with
+ | ad_z => infty
+ | ad_x p => ni (ad_plength_1 p)
end.
-Lemma ad_plength_infty : (a:ad) (ad_plength a)=infty -> a=ad_z.
+Lemma ad_plength_infty : forall a:ad, ad_plength a = infty -> a = ad_z.
Proof.
- Induction a; Trivial.
- Unfold ad_plength; Intros; Discriminate H.
+ simple induction a; trivial.
+ unfold ad_plength in |- *; intros; discriminate H.
Qed.
-Lemma ad_plength_zeros : (a:ad) (n:nat) (ad_plength a)=(ni n) ->
- (k:nat) (lt k n) -> (ad_bit a k)=false.
+Lemma ad_plength_zeros :
+ forall (a:ad) (n:nat),
+ ad_plength a = ni n -> forall k:nat, k < n -> ad_bit a k = false.
Proof.
- Induction a; Trivial.
- Induction p. Induction n. Intros. Inversion H1.
- Induction k. Simpl in H1. Discriminate H1.
- Intros. Simpl in H1. Discriminate H1.
- Induction k. Trivial.
- Generalize H0. Case n. Intros. Inversion H3.
- Intros. Simpl. Unfold ad_bit in H. Apply (H n0). Simpl in H1. Inversion H1. Reflexivity.
- Exact (lt_S_n n1 n0 H3).
- Simpl. Intros n H. Inversion H. Intros. Inversion H0.
+ simple induction a; trivial.
+ simple induction p. simple induction n. intros. inversion H1.
+ simple induction k. simpl in H1. discriminate H1.
+ intros. simpl in H1. discriminate H1.
+ simple induction k. trivial.
+ generalize H0. case n. intros. inversion H3.
+ intros. simpl in |- *. unfold ad_bit in H. apply (H n0). simpl in H1. inversion H1. reflexivity.
+ exact (lt_S_n n1 n0 H3).
+ simpl in |- *. intros n H. inversion H. intros. inversion H0.
Qed.
-Lemma ad_plength_one : (a:ad) (n:nat) (ad_plength a)=(ni n) -> (ad_bit a n)=true.
+Lemma ad_plength_one :
+ forall (a:ad) (n:nat), ad_plength a = ni n -> ad_bit a n = true.
Proof.
- Induction a. Intros. Inversion H.
- Induction p. Intros. Simpl in H0. Inversion H0. Reflexivity.
- Intros. Simpl in H0. Inversion H0. Simpl. Unfold ad_bit in H. Apply H. Reflexivity.
- Intros. Simpl in H. Inversion H. Reflexivity.
+ simple induction a. intros. inversion H.
+ simple induction p. intros. simpl in H0. inversion H0. reflexivity.
+ intros. simpl in H0. inversion H0. simpl in |- *. unfold ad_bit in H. apply H. reflexivity.
+ intros. simpl in H. inversion H. reflexivity.
Qed.
-Lemma ad_plength_first_one : (a:ad) (n:nat)
- ((k:nat) (lt k n) -> (ad_bit a k)=false) -> (ad_bit a n)=true ->
- (ad_plength a)=(ni n).
+Lemma ad_plength_first_one :
+ forall (a:ad) (n:nat),
+ (forall k:nat, k < n -> ad_bit a k = false) ->
+ ad_bit a n = true -> ad_plength a = ni n.
Proof.
- Induction a. Intros. Simpl in H0. Discriminate H0.
- Induction p. Intros. Generalize H0. Case n. Intros. Reflexivity.
- Intros. Absurd (ad_bit (ad_x (xI p0)) O)=false. Trivial with bool.
- Auto with bool arith.
- Intros. Generalize H0 H1. Case n. Intros. Simpl in H3. Discriminate H3.
- Intros. Simpl. Unfold ad_plength in H.
- Cut (ni (ad_plength_1 p0))=(ni n0). Intro. Inversion H4. Reflexivity.
- Apply H. Intros. Change (ad_bit (ad_x (xO p0)) (S k))=false. Apply H2. Apply lt_n_S. Exact H4.
- Exact H3.
- Intro. Case n. Trivial.
- Intros. Simpl in H0. Discriminate H0.
+ simple induction a. intros. simpl in H0. discriminate H0.
+ simple induction p. intros. generalize H0. case n. intros. reflexivity.
+ intros. absurd (ad_bit (ad_x (xI p0)) 0 = false). trivial with bool.
+ auto with bool arith.
+ intros. generalize H0 H1. case n. intros. simpl in H3. discriminate H3.
+ intros. simpl in |- *. unfold ad_plength in H.
+ cut (ni (ad_plength_1 p0) = ni n0). intro. inversion H4. reflexivity.
+ apply H. intros. change (ad_bit (ad_x (xO p0)) (S k) = false) in |- *. apply H2. apply lt_n_S. exact H4.
+ exact H3.
+ intro. case n. trivial.
+ intros. simpl in H0. discriminate H0.
Qed.
-Definition ni_min := [d,d':natinf]
- Cases d of
- infty => d'
- | (ni n) => Cases d' of
- infty => d
- | (ni n') => (ni (min n n'))
- end
+Definition ni_min (d d':natinf) :=
+ match d with
+ | infty => d'
+ | ni n => match d' with
+ | infty => d
+ | ni n' => ni (min n n')
+ end
end.
-Lemma ni_min_idemp : (d:natinf) (ni_min d d)=d.
+Lemma ni_min_idemp : forall d:natinf, ni_min d d = d.
Proof.
- Induction d; Trivial.
- Unfold ni_min.
- Induction n; Trivial.
- Intros.
- Simpl.
- Inversion H.
- Rewrite H1.
- Rewrite H1.
- Reflexivity.
+ simple induction d; trivial.
+ unfold ni_min in |- *.
+ simple induction n; trivial.
+ intros.
+ simpl in |- *.
+ inversion H.
+ rewrite H1.
+ rewrite H1.
+ reflexivity.
Qed.
-Lemma ni_min_comm : (d,d':natinf) (ni_min d d')=(ni_min d' d).
+Lemma ni_min_comm : forall d d':natinf, ni_min d d' = ni_min d' d.
Proof.
- Induction d. Induction d'; Trivial.
- Induction d'; Trivial. Elim n. Induction n0; Trivial.
- Intros. Elim n1; Trivial. Intros. Unfold ni_min in H. Cut (min n0 n2)=(min n2 n0).
- Intro. Unfold ni_min. Simpl. Rewrite H1. Reflexivity.
- Cut (ni (min n0 n2))=(ni (min n2 n0)). Intros.
- Inversion H1; Trivial.
- Exact (H n2).
+ simple induction d. simple induction d'; trivial.
+ simple induction d'; trivial. elim n. simple induction n0; trivial.
+ intros. elim n1; trivial. intros. unfold ni_min in H. cut (min n0 n2 = min n2 n0).
+ intro. unfold ni_min in |- *. simpl in |- *. rewrite H1. reflexivity.
+ cut (ni (min n0 n2) = ni (min n2 n0)). intros.
+ inversion H1; trivial.
+ exact (H n2).
Qed.
-Lemma ni_min_assoc : (d,d',d'':natinf) (ni_min (ni_min d d') d'')=(ni_min d (ni_min d' d'')).
+Lemma ni_min_assoc :
+ forall d d' d'':natinf, ni_min (ni_min d d') d'' = ni_min d (ni_min d' d'').
Proof.
- Induction d; Trivial. Induction d'; Trivial.
- Induction d''; Trivial.
- Unfold ni_min. Intro. Cut (min (min n n0) n1)=(min n (min n0 n1)).
- Intro. Rewrite H. Reflexivity.
- Generalize n0 n1. Elim n; Trivial.
- Induction n3; Trivial. Induction n5; Trivial.
- Intros. Simpl. Auto.
+ simple induction d; trivial. simple induction d'; trivial.
+ simple induction d''; trivial.
+ unfold ni_min in |- *. intro. cut (min (min n n0) n1 = min n (min n0 n1)).
+ intro. rewrite H. reflexivity.
+ generalize n0 n1. elim n; trivial.
+ simple induction n3; trivial. simple induction n5; trivial.
+ intros. simpl in |- *. auto.
Qed.
-Lemma ni_min_O_l : (d:natinf) (ni_min (ni O) d)=(ni O).
+Lemma ni_min_O_l : forall d:natinf, ni_min (ni 0) d = ni 0.
Proof.
- Induction d; Trivial.
+ simple induction d; trivial.
Qed.
-Lemma ni_min_O_r : (d:natinf) (ni_min d (ni O))=(ni O).
+Lemma ni_min_O_r : forall d:natinf, ni_min d (ni 0) = ni 0.
Proof.
- Intros. Rewrite ni_min_comm. Apply ni_min_O_l.
+ intros. rewrite ni_min_comm. apply ni_min_O_l.
Qed.
-Lemma ni_min_inf_l : (d:natinf) (ni_min infty d)=d.
+Lemma ni_min_inf_l : forall d:natinf, ni_min infty d = d.
Proof.
- Trivial.
+ trivial.
Qed.
-Lemma ni_min_inf_r : (d:natinf) (ni_min d infty)=d.
+Lemma ni_min_inf_r : forall d:natinf, ni_min d infty = d.
Proof.
- Induction d; Trivial.
+ simple induction d; trivial.
Qed.
-Definition ni_le := [d,d':natinf] (ni_min d d')=d.
+Definition ni_le (d d':natinf) := ni_min d d' = d.
-Lemma ni_le_refl : (d:natinf) (ni_le d d).
+Lemma ni_le_refl : forall d:natinf, ni_le d d.
Proof.
- Exact ni_min_idemp.
+ exact ni_min_idemp.
Qed.
-Lemma ni_le_antisym : (d,d':natinf) (ni_le d d') -> (ni_le d' d) -> d=d'.
+Lemma ni_le_antisym : forall d d':natinf, ni_le d d' -> ni_le d' d -> d = d'.
Proof.
- Unfold ni_le. Intros d d'. Rewrite ni_min_comm. Intro H. Rewrite H. Trivial.
+ unfold ni_le in |- *. intros d d'. rewrite ni_min_comm. intro H. rewrite H. trivial.
Qed.
-Lemma ni_le_trans : (d,d',d'':natinf) (ni_le d d') -> (ni_le d' d'') -> (ni_le d d'').
+Lemma ni_le_trans :
+ forall d d' d'':natinf, ni_le d d' -> ni_le d' d'' -> ni_le d d''.
Proof.
- Unfold ni_le. Intros. Rewrite <- H. Rewrite ni_min_assoc. Rewrite H0. Reflexivity.
+ unfold ni_le in |- *. intros. rewrite <- H. rewrite ni_min_assoc. rewrite H0. reflexivity.
Qed.
-Lemma ni_le_min_1 : (d,d':natinf) (ni_le (ni_min d d') d).
+Lemma ni_le_min_1 : forall d d':natinf, ni_le (ni_min d d') d.
Proof.
- Unfold ni_le. Intros. Rewrite (ni_min_comm d d'). Rewrite ni_min_assoc.
- Rewrite ni_min_idemp. Reflexivity.
+ unfold ni_le in |- *. intros. rewrite (ni_min_comm d d'). rewrite ni_min_assoc.
+ rewrite ni_min_idemp. reflexivity.
Qed.
-Lemma ni_le_min_2 : (d,d':natinf) (ni_le (ni_min d d') d').
+Lemma ni_le_min_2 : forall d d':natinf, ni_le (ni_min d d') d'.
Proof.
- Unfold ni_le. Intros. Rewrite ni_min_assoc. Rewrite ni_min_idemp. Reflexivity.
+ unfold ni_le in |- *. intros. rewrite ni_min_assoc. rewrite ni_min_idemp. reflexivity.
Qed.
-Lemma ni_min_case : (d,d':natinf) (ni_min d d')=d \/ (ni_min d d')=d'.
+Lemma ni_min_case : forall d d':natinf, ni_min d d' = d \/ ni_min d d' = d'.
Proof.
- Induction d. Intro. Right . Exact (ni_min_inf_l d').
- Induction d'. Left . Exact (ni_min_inf_r (ni n)).
- Unfold ni_min. Cut (n0:nat)(min n n0)=n\/(min n n0)=n0.
- Intros. Case (H n0). Intro. Left . Rewrite H0. Reflexivity.
- Intro. Right . Rewrite H0. Reflexivity.
- Elim n. Intro. Left . Reflexivity.
- Induction n1. Right . Reflexivity.
- Intros. Case (H n2). Intro. Left . Simpl. Rewrite H1. Reflexivity.
- Intro. Right . Simpl. Rewrite H1. Reflexivity.
+ simple induction d. intro. right. exact (ni_min_inf_l d').
+ simple induction d'. left. exact (ni_min_inf_r (ni n)).
+ unfold ni_min in |- *. cut (forall n0:nat, min n n0 = n \/ min n n0 = n0).
+ intros. case (H n0). intro. left. rewrite H0. reflexivity.
+ intro. right. rewrite H0. reflexivity.
+ elim n. intro. left. reflexivity.
+ simple induction n1. right. reflexivity.
+ intros. case (H n2). intro. left. simpl in |- *. rewrite H1. reflexivity.
+ intro. right. simpl in |- *. rewrite H1. reflexivity.
Qed.
-Lemma ni_le_total : (d,d':natinf) (ni_le d d') \/ (ni_le d' d).
+Lemma ni_le_total : forall d d':natinf, ni_le d d' \/ ni_le d' d.
Proof.
- Unfold ni_le. Intros. Rewrite (ni_min_comm d' d). Apply ni_min_case.
+ unfold ni_le in |- *. intros. rewrite (ni_min_comm d' d). apply ni_min_case.
Qed.
-Lemma ni_le_min_induc : (d,d',dm:natinf) (ni_le dm d) -> (ni_le dm d') ->
- ((d'':natinf) (ni_le d'' d) -> (ni_le d'' d') -> (ni_le d'' dm)) ->
- (ni_min d d')=dm.
+Lemma ni_le_min_induc :
+ forall d d' dm:natinf,
+ ni_le dm d ->
+ ni_le dm d' ->
+ (forall d'':natinf, ni_le d'' d -> ni_le d'' d' -> ni_le d'' dm) ->
+ ni_min d d' = dm.
Proof.
- Intros. Case (ni_min_case d d'). Intro. Rewrite H2.
- Apply ni_le_antisym. Apply H1. Apply ni_le_refl.
- Exact H2.
- Exact H.
- Intro. Rewrite H2. Apply ni_le_antisym. Apply H1. Unfold ni_le. Rewrite ni_min_comm. Exact H2.
- Apply ni_le_refl.
- Exact H0.
+ intros. case (ni_min_case d d'). intro. rewrite H2.
+ apply ni_le_antisym. apply H1. apply ni_le_refl.
+ exact H2.
+ exact H.
+ intro. rewrite H2. apply ni_le_antisym. apply H1. unfold ni_le in |- *. rewrite ni_min_comm. exact H2.
+ apply ni_le_refl.
+ exact H0.
Qed.
-Lemma le_ni_le : (m,n:nat) (le m n) -> (ni_le (ni m) (ni n)).
+Lemma le_ni_le : forall m n:nat, m <= n -> ni_le (ni m) (ni n).
Proof.
- Cut (m,n:nat)(le m n)->(min m n)=m.
- Intros. Unfold ni_le ni_min. Rewrite (H m n H0). Reflexivity.
- Induction m. Trivial.
- Induction n0. Intro. Inversion H0.
- Intros. Simpl. Rewrite (H n1 (le_S_n n n1 H1)). Reflexivity.
+ cut (forall m n:nat, m <= n -> min m n = m).
+ intros. unfold ni_le, ni_min in |- *. rewrite (H m n H0). reflexivity.
+ simple induction m. trivial.
+ simple induction n0. intro. inversion H0.
+ intros. simpl in |- *. rewrite (H n1 (le_S_n n n1 H1)). reflexivity.
Qed.
-Lemma ni_le_le : (m,n:nat) (ni_le (ni m) (ni n)) -> (le m n).
+Lemma ni_le_le : forall m n:nat, ni_le (ni m) (ni n) -> m <= n.
Proof.
- Unfold ni_le. Unfold ni_min. Intros. Inversion H. Apply le_min_r.
+ unfold ni_le in |- *. unfold ni_min in |- *. intros. inversion H. apply le_min_r.
Qed.
-Lemma ad_plength_lb : (a:ad) (n:nat) ((k:nat) (lt k n) -> (ad_bit a k)=false) ->
- (ni_le (ni n) (ad_plength a)).
+Lemma ad_plength_lb :
+ forall (a:ad) (n:nat),
+ (forall k:nat, k < n -> ad_bit a k = false) -> ni_le (ni n) (ad_plength a).
Proof.
- Induction a. Intros. Exact (ni_min_inf_r (ni n)).
- Intros. Unfold ad_plength. Apply le_ni_le. Case (le_or_lt n (ad_plength_1 p)). Trivial.
- Intro. Absurd (ad_bit (ad_x p) (ad_plength_1 p))=false.
- Rewrite (ad_plength_one (ad_x p) (ad_plength_1 p)
- (refl_equal natinf (ad_plength (ad_x p)))).
- Discriminate.
- Apply H. Exact H0.
+ simple induction a. intros. exact (ni_min_inf_r (ni n)).
+ intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt n (ad_plength_1 p)). trivial.
+ intro. absurd (ad_bit (ad_x p) (ad_plength_1 p) = false).
+ rewrite
+ (ad_plength_one (ad_x p) (ad_plength_1 p)
+ (refl_equal (ad_plength (ad_x p)))).
+ discriminate.
+ apply H. exact H0.
Qed.
-Lemma ad_plength_ub : (a:ad) (n:nat) (ad_bit a n)=true ->
- (ni_le (ad_plength a) (ni n)).
+Lemma ad_plength_ub :
+ forall (a:ad) (n:nat), ad_bit a n = true -> ni_le (ad_plength a) (ni n).
Proof.
- Induction a. Intros. Discriminate H.
- Intros. Unfold ad_plength. Apply le_ni_le. Case (le_or_lt (ad_plength_1 p) n). Trivial.
- Intro. Absurd (ad_bit (ad_x p) n)=true.
- Rewrite (ad_plength_zeros (ad_x p) (ad_plength_1 p)
- (refl_equal natinf (ad_plength (ad_x p))) n H0).
- Discriminate.
- Exact H.
+ simple induction a. intros. discriminate H.
+ intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt (ad_plength_1 p) n). trivial.
+ intro. absurd (ad_bit (ad_x p) n = true).
+ rewrite
+ (ad_plength_zeros (ad_x p) (ad_plength_1 p)
+ (refl_equal (ad_plength (ad_x p))) n H0).
+ discriminate.
+ exact H.
Qed.
@@ -244,26 +255,26 @@ Qed.
Instead of working with $d$, we work with $pd$, namely
[ad_pdist]: *)
-Definition ad_pdist := [a,a':ad] (ad_plength (ad_xor a a')).
+Definition ad_pdist (a a':ad) := ad_plength (ad_xor a a').
(** d is a distance, so $d(a,a')=0$ iff $a=a'$; this means that
$pd(a,a')=infty$ iff $a=a'$: *)
-Lemma ad_pdist_eq_1 : (a:ad) (ad_pdist a a)=infty.
+Lemma ad_pdist_eq_1 : forall a:ad, ad_pdist a a = infty.
Proof.
- Intros. Unfold ad_pdist. Rewrite ad_xor_nilpotent. Reflexivity.
+ intros. unfold ad_pdist in |- *. rewrite ad_xor_nilpotent. reflexivity.
Qed.
-Lemma ad_pdist_eq_2 : (a,a':ad) (ad_pdist a a')=infty -> a=a'.
+Lemma ad_pdist_eq_2 : forall a a':ad, ad_pdist a a' = infty -> a = a'.
Proof.
- Intros. Apply ad_xor_eq. Apply ad_plength_infty. Exact H.
+ intros. apply ad_xor_eq. apply ad_plength_infty. exact H.
Qed.
(** $d$ is a distance, so $d(a,a')=d(a',a)$: *)
-Lemma ad_pdist_comm : (a,a':ad) (ad_pdist a a')=(ad_pdist a' a).
+Lemma ad_pdist_comm : forall a a':ad, ad_pdist a a' = ad_pdist a' a.
Proof.
- Unfold ad_pdist. Intros. Rewrite ad_xor_comm. Reflexivity.
+ unfold ad_pdist in |- *. intros. rewrite ad_xor_comm. reflexivity.
Qed.
(** $d$ is an ultrametric distance, that is, not only $d(a,a')\leq
@@ -278,44 +289,48 @@ Qed.
(lemma [ad_plength_ultra]).
*)
-Lemma ad_plength_ultra_1 : (a,a':ad)
- (ni_le (ad_plength a) (ad_plength a')) ->
- (ni_le (ad_plength a) (ad_plength (ad_xor a a'))).
+Lemma ad_plength_ultra_1 :
+ forall a a':ad,
+ ni_le (ad_plength a) (ad_plength a') ->
+ ni_le (ad_plength a) (ad_plength (ad_xor a a')).
Proof.
- Induction a. Intros. Unfold ni_le in H. Unfold 1 3 ad_plength in H.
- Rewrite (ni_min_inf_l (ad_plength a')) in H.
- Rewrite (ad_plength_infty a' H). Simpl. Apply ni_le_refl.
- Intros. Unfold 1 ad_plength. Apply ad_plength_lb. Intros.
- Cut (a'':ad)(ad_xor (ad_x p) a')=a''->(ad_bit a'' k)=false.
- Intros. Apply H1. Reflexivity.
- Intro a''. Case a''. Intro. Reflexivity.
- Intros. Rewrite <- H1. Rewrite (ad_xor_semantics (ad_x p) a' k). Unfold adf_xor.
- Rewrite (ad_plength_zeros (ad_x p) (ad_plength_1 p)
- (refl_equal natinf (ad_plength (ad_x p))) k H0).
- Generalize H. Case a'. Trivial.
- Intros. Cut (ad_bit (ad_x p1) k)=false. Intros. Rewrite H3. Reflexivity.
- Apply ad_plength_zeros with n:=(ad_plength_1 p1). Reflexivity.
- Apply (lt_le_trans k (ad_plength_1 p) (ad_plength_1 p1)). Exact H0.
- Apply ni_le_le. Exact H2.
+ simple induction a. intros. unfold ni_le in H. unfold ad_plength at 1 3 in H.
+ rewrite (ni_min_inf_l (ad_plength a')) in H.
+ rewrite (ad_plength_infty a' H). simpl in |- *. apply ni_le_refl.
+ intros. unfold ad_plength at 1 in |- *. apply ad_plength_lb. intros.
+ cut (forall a'':ad, ad_xor (ad_x p) a' = a'' -> ad_bit a'' k = false).
+ intros. apply H1. reflexivity.
+ intro a''. case a''. intro. reflexivity.
+ intros. rewrite <- H1. rewrite (ad_xor_semantics (ad_x p) a' k). unfold adf_xor in |- *.
+ rewrite
+ (ad_plength_zeros (ad_x p) (ad_plength_1 p)
+ (refl_equal (ad_plength (ad_x p))) k H0).
+ generalize H. case a'. trivial.
+ intros. cut (ad_bit (ad_x p1) k = false). intros. rewrite H3. reflexivity.
+ apply ad_plength_zeros with (n := ad_plength_1 p1). reflexivity.
+ apply (lt_le_trans k (ad_plength_1 p) (ad_plength_1 p1)). exact H0.
+ apply ni_le_le. exact H2.
Qed.
-Lemma ad_plength_ultra : (a,a':ad)
- (ni_le (ni_min (ad_plength a) (ad_plength a')) (ad_plength (ad_xor a a'))).
+Lemma ad_plength_ultra :
+ forall a a':ad,
+ ni_le (ni_min (ad_plength a) (ad_plength a')) (ad_plength (ad_xor a a')).
Proof.
- Intros. Case (ni_le_total (ad_plength a) (ad_plength a')). Intro.
- Cut (ni_min (ad_plength a) (ad_plength a'))=(ad_plength a).
- Intro. Rewrite H0. Apply ad_plength_ultra_1. Exact H.
- Exact H.
- Intro. Cut (ni_min (ad_plength a) (ad_plength a'))=(ad_plength a').
- Intro. Rewrite H0. Rewrite ad_xor_comm. Apply ad_plength_ultra_1. Exact H.
- Rewrite ni_min_comm. Exact H.
+ intros. case (ni_le_total (ad_plength a) (ad_plength a')). intro.
+ cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a).
+ intro. rewrite H0. apply ad_plength_ultra_1. exact H.
+ exact H.
+ intro. cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a').
+ intro. rewrite H0. rewrite ad_xor_comm. apply ad_plength_ultra_1. exact H.
+ rewrite ni_min_comm. exact H.
Qed.
-Lemma ad_pdist_ultra : (a,a',a'':ad)
- (ni_le (ni_min (ad_pdist a a'') (ad_pdist a'' a')) (ad_pdist a a')).
+Lemma ad_pdist_ultra :
+ forall a a' a'':ad,
+ ni_le (ni_min (ad_pdist a a'') (ad_pdist a'' a')) (ad_pdist a a').
Proof.
- Intros. Unfold ad_pdist. Cut (ad_xor (ad_xor a a'') (ad_xor a'' a'))=(ad_xor a a').
- Intro. Rewrite <- H. Apply ad_plength_ultra.
- Rewrite ad_xor_assoc. Rewrite <- (ad_xor_assoc a'' a'' a'). Rewrite ad_xor_nilpotent.
- Rewrite ad_xor_neutral_left. Reflexivity.
-Qed.
+ intros. unfold ad_pdist in |- *. cut (ad_xor (ad_xor a a'') (ad_xor a'' a') = ad_xor a a').
+ intro. rewrite <- H. apply ad_plength_ultra.
+ rewrite ad_xor_assoc. rewrite <- (ad_xor_assoc a'' a'' a'). rewrite ad_xor_nilpotent.
+ rewrite ad_xor_neutral_left. reflexivity.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Allmaps.v b/theories/IntMap/Allmaps.v
index fcd111694d..0020219d00 100644
--- a/theories/IntMap/Allmaps.v
+++ b/theories/IntMap/Allmaps.v
@@ -23,4 +23,4 @@ Require Export Mapcard.
Require Export Mapcanon.
Require Export Mapc.
Require Export Maplists.
-Require Export Adalloc.
+Require Export Adalloc. \ No newline at end of file
diff --git a/theories/IntMap/Fset.v b/theories/IntMap/Fset.v
index 3c00c21e09..8a2ab00c35 100644
--- a/theories/IntMap/Fset.v
+++ b/theories/IntMap/Fset.v
@@ -9,330 +9,363 @@
(*s Sets operations on maps *)
-Require Bool.
-Require Sumbool.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
Section Dom.
- Variable A, B : Set.
-
- Fixpoint MapDomRestrTo [m:(Map A)] : (Map B) -> (Map A) :=
- Cases m of
- M0 => [_:(Map B)] (M0 A)
- | (M1 a y) => [m':(Map B)] Cases (MapGet B m' a) of
- NONE => (M0 A)
- | _ => m
- end
- | (M2 m1 m2) => [m':(Map B)] Cases m' of
- M0 => (M0 A)
- | (M1 a' y') => Cases (MapGet A m a') of
- NONE => (M0 A)
- | (SOME y) => (M1 A a' y)
- end
- | (M2 m'1 m'2) => (makeM2 A (MapDomRestrTo m1 m'1)
- (MapDomRestrTo m2 m'2))
- end
+ Variables A B : Set.
+
+ Fixpoint MapDomRestrTo (m:Map A) : Map B -> Map A :=
+ match m with
+ | M0 => fun _:Map B => M0 A
+ | M1 a y =>
+ fun m':Map B => match MapGet B m' a with
+ | NONE => M0 A
+ | _ => m
+ end
+ | M2 m1 m2 =>
+ fun m':Map B =>
+ match m' with
+ | M0 => M0 A
+ | M1 a' y' =>
+ match MapGet A m a' with
+ | NONE => M0 A
+ | SOME y => M1 A a' y
+ end
+ | M2 m'1 m'2 =>
+ makeM2 A (MapDomRestrTo m1 m'1) (MapDomRestrTo m2 m'2)
+ end
end.
- Lemma MapDomRestrTo_semantics : (m:(Map A)) (m':(Map B))
- (eqm A (MapGet A (MapDomRestrTo m m'))
- [a0:ad] Cases (MapGet B m' a0) of
- NONE => (NONE A)
- | _ => (MapGet A m a0)
- end).
- Proof.
- Unfold eqm. Induction m. Simpl. Intros. Case (MapGet B m' a); Trivial.
- Intros. Simpl. Elim (sumbool_of_bool (ad_eq a a1)). Intro H. Rewrite H.
- Rewrite <- (ad_eq_complete ? ? H). Case (MapGet B m' a). Reflexivity.
- Intro. Apply M1_semantics_1.
- Intro H. Rewrite H. Case (MapGet B m' a).
- Case (MapGet B m' a1); Reflexivity.
- Case (MapGet B m' a1); Intros; Exact (M1_semantics_2 A a a1 a0 H).
- Induction m'. Trivial.
- Unfold MapDomRestrTo. Intros. Elim (sumbool_of_bool (ad_eq a a1)).
- Intro H1.
- Rewrite (ad_eq_complete ? ? H1). Rewrite (M1_semantics_1 B a1 a0).
- Case (MapGet A (M2 A m0 m1) a1). Reflexivity.
- Intro. Apply M1_semantics_1.
- Intro H1. Rewrite (M1_semantics_2 B a a1 a0 H1). Case (MapGet A (M2 A m0 m1) a). Reflexivity.
- Intro. Exact (M1_semantics_2 A a a1 a2 H1).
- Intros. Change (MapGet A (makeM2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3)) a)
- =(Cases (MapGet B (M2 B m2 m3) a) of
- NONE => (NONE A)
- | (SOME _) => (MapGet A (M2 A m0 m1) a)
+ Lemma MapDomRestrTo_semantics :
+ forall (m:Map A) (m':Map B),
+ eqm A (MapGet A (MapDomRestrTo m m'))
+ (fun a0:ad =>
+ match MapGet B m' a0 with
+ | NONE => NONE A
+ | _ => MapGet A m a0
end).
- Rewrite (makeM2_M2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3) a).
- Rewrite MapGet_M2_bit_0_if. Rewrite (H0 m3 (ad_div_2 a)). Rewrite (H m2 (ad_div_2 a)).
- Rewrite (MapGet_M2_bit_0_if B m2 m3 a). Rewrite (MapGet_M2_bit_0_if A m0 m1 a).
- Case (ad_bit_0 a); Reflexivity.
+ Proof.
+ unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (MapGet B m' a); trivial.
+ intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a a1)). intro H. rewrite H.
+ rewrite <- (ad_eq_complete _ _ H). case (MapGet B m' a). reflexivity.
+ intro. apply M1_semantics_1.
+ intro H. rewrite H. case (MapGet B m' a).
+ case (MapGet B m' a1); reflexivity.
+ case (MapGet B m' a1); intros; exact (M1_semantics_2 A a a1 a0 H).
+ simple induction m'. trivial.
+ unfold MapDomRestrTo in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)).
+ intro H1.
+ rewrite (ad_eq_complete _ _ H1). rewrite (M1_semantics_1 B a1 a0).
+ case (MapGet A (M2 A m0 m1) a1). reflexivity.
+ intro. apply M1_semantics_1.
+ intro H1. rewrite (M1_semantics_2 B a a1 a0 H1). case (MapGet A (M2 A m0 m1) a). reflexivity.
+ intro. exact (M1_semantics_2 A a a1 a2 H1).
+ intros. change
+ (MapGet A (makeM2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3)) a =
+ match MapGet B (M2 B m2 m3) a with
+ | NONE => NONE A
+ | SOME _ => MapGet A (M2 A m0 m1) a
+ end) in |- *.
+ rewrite (makeM2_M2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3) a).
+ rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (ad_div_2 a)). rewrite (H m2 (ad_div_2 a)).
+ rewrite (MapGet_M2_bit_0_if B m2 m3 a). rewrite (MapGet_M2_bit_0_if A m0 m1 a).
+ case (ad_bit_0 a); reflexivity.
Qed.
- Fixpoint MapDomRestrBy [m:(Map A)] : (Map B) -> (Map A) :=
- Cases m of
- M0 => [_:(Map B)] (M0 A)
- | (M1 a y) => [m':(Map B)] Cases (MapGet B m' a) of
- NONE => m
- | _ => (M0 A)
- end
- | (M2 m1 m2) => [m':(Map B)] Cases m' of
- M0 => m
- | (M1 a' y') => (MapRemove A m a')
- | (M2 m'1 m'2) => (makeM2 A (MapDomRestrBy m1 m'1)
- (MapDomRestrBy m2 m'2))
- end
+ Fixpoint MapDomRestrBy (m:Map A) : Map B -> Map A :=
+ match m with
+ | M0 => fun _:Map B => M0 A
+ | M1 a y =>
+ fun m':Map B => match MapGet B m' a with
+ | NONE => m
+ | _ => M0 A
+ end
+ | M2 m1 m2 =>
+ fun m':Map B =>
+ match m' with
+ | M0 => m
+ | M1 a' y' => MapRemove A m a'
+ | M2 m'1 m'2 =>
+ makeM2 A (MapDomRestrBy m1 m'1) (MapDomRestrBy m2 m'2)
+ end
end.
- Lemma MapDomRestrBy_semantics : (m:(Map A)) (m':(Map B))
- (eqm A (MapGet A (MapDomRestrBy m m'))
- [a0:ad] Cases (MapGet B m' a0) of
- NONE => (MapGet A m a0)
- | _ => (NONE A)
- end).
- Proof.
- Unfold eqm. Induction m. Simpl. Intros. Case (MapGet B m' a); Trivial.
- Intros. Simpl. Elim (sumbool_of_bool (ad_eq a a1)). Intro H. Rewrite H.
- Rewrite (ad_eq_complete ? ? H). Case (MapGet B m' a1). Apply M1_semantics_1.
- Trivial.
- Intro H. Rewrite H. Case (MapGet B m' a). Rewrite (M1_semantics_2 A a a1 a0 H).
- Case (MapGet B m' a1); Trivial.
- Case (MapGet B m' a1); Trivial.
- Induction m'. Trivial.
- Unfold MapDomRestrBy. Intros. Rewrite (MapRemove_semantics A (M2 A m0 m1) a a1).
- Elim (sumbool_of_bool (ad_eq a a1)). Intro H1. Rewrite H1. Rewrite (ad_eq_complete ? ? H1).
- Rewrite (M1_semantics_1 B a1 a0). Reflexivity.
- Intro H1. Rewrite H1. Rewrite (M1_semantics_2 B a a1 a0 H1). Reflexivity.
- Intros. Change (MapGet A (makeM2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3)) a)
- =(Cases (MapGet B (M2 B m2 m3) a) of
- NONE => (MapGet A (M2 A m0 m1) a)
- | (SOME _) => (NONE A)
+ Lemma MapDomRestrBy_semantics :
+ forall (m:Map A) (m':Map B),
+ eqm A (MapGet A (MapDomRestrBy m m'))
+ (fun a0:ad =>
+ match MapGet B m' a0 with
+ | NONE => MapGet A m a0
+ | _ => NONE A
end).
- Rewrite (makeM2_M2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3) a).
- Rewrite MapGet_M2_bit_0_if. Rewrite (H0 m3 (ad_div_2 a)). Rewrite (H m2 (ad_div_2 a)).
- Rewrite (MapGet_M2_bit_0_if B m2 m3 a). Rewrite (MapGet_M2_bit_0_if A m0 m1 a).
- Case (ad_bit_0 a); Reflexivity.
+ Proof.
+ unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (MapGet B m' a); trivial.
+ intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a a1)). intro H. rewrite H.
+ rewrite (ad_eq_complete _ _ H). case (MapGet B m' a1). apply M1_semantics_1.
+ trivial.
+ intro H. rewrite H. case (MapGet B m' a). rewrite (M1_semantics_2 A a a1 a0 H).
+ case (MapGet B m' a1); trivial.
+ case (MapGet B m' a1); trivial.
+ simple induction m'. trivial.
+ unfold MapDomRestrBy in |- *. intros. rewrite (MapRemove_semantics A (M2 A m0 m1) a a1).
+ elim (sumbool_of_bool (ad_eq a a1)). intro H1. rewrite H1. rewrite (ad_eq_complete _ _ H1).
+ rewrite (M1_semantics_1 B a1 a0). reflexivity.
+ intro H1. rewrite H1. rewrite (M1_semantics_2 B a a1 a0 H1). reflexivity.
+ intros. change
+ (MapGet A (makeM2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3)) a =
+ match MapGet B (M2 B m2 m3) a with
+ | NONE => MapGet A (M2 A m0 m1) a
+ | SOME _ => NONE A
+ end) in |- *.
+ rewrite (makeM2_M2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3) a).
+ rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (ad_div_2 a)). rewrite (H m2 (ad_div_2 a)).
+ rewrite (MapGet_M2_bit_0_if B m2 m3 a). rewrite (MapGet_M2_bit_0_if A m0 m1 a).
+ case (ad_bit_0 a); reflexivity.
Qed.
- Definition in_dom := [a:ad; m:(Map A)]
- Cases (MapGet A m a) of
- NONE => false
- | _ => true
+ Definition in_dom (a:ad) (m:Map A) :=
+ match MapGet A m a with
+ | NONE => false
+ | _ => true
end.
- Lemma in_dom_M0 : (a:ad) (in_dom a (M0 A))=false.
+ Lemma in_dom_M0 : forall a:ad, in_dom a (M0 A) = false.
Proof.
- Trivial.
+ trivial.
Qed.
- Lemma in_dom_M1 : (a,a0:ad) (y:A) (in_dom a0 (M1 A a y))=(ad_eq a a0).
+ Lemma in_dom_M1 : forall (a a0:ad) (y:A), in_dom a0 (M1 A a y) = ad_eq a a0.
Proof.
- Unfold in_dom. Intros. Simpl. Case (ad_eq a a0); Reflexivity.
+ unfold in_dom in |- *. intros. simpl in |- *. case (ad_eq a a0); reflexivity.
Qed.
- Lemma in_dom_M1_1 : (a:ad) (y:A) (in_dom a (M1 A a y))=true.
+ Lemma in_dom_M1_1 : forall (a:ad) (y:A), in_dom a (M1 A a y) = true.
Proof.
- Intros. Rewrite in_dom_M1. Apply ad_eq_correct.
+ intros. rewrite in_dom_M1. apply ad_eq_correct.
Qed.
- Lemma in_dom_M1_2 : (a,a0:ad) (y:A) (in_dom a0 (M1 A a y))=true -> a=a0.
+ Lemma in_dom_M1_2 :
+ forall (a a0:ad) (y:A), in_dom a0 (M1 A a y) = true -> a = a0.
Proof.
- Intros. Apply (ad_eq_complete a a0). Rewrite (in_dom_M1 a a0 y) in H. Assumption.
+ intros. apply (ad_eq_complete a a0). rewrite (in_dom_M1 a a0 y) in H. assumption.
Qed.
- Lemma in_dom_some : (m:(Map A)) (a:ad) (in_dom a m)=true ->
- {y:A | (MapGet A m a)=(SOME A y)}.
+ Lemma in_dom_some :
+ forall (m:Map A) (a:ad),
+ in_dom a m = true -> {y : A | MapGet A m a = SOME A y}.
Proof.
- Unfold in_dom. Intros. Elim (option_sum ? (MapGet A m a)). Trivial.
- Intro H0. Rewrite H0 in H. Discriminate H.
+ unfold in_dom in |- *. intros. elim (option_sum _ (MapGet A m a)). trivial.
+ intro H0. rewrite H0 in H. discriminate H.
Qed.
- Lemma in_dom_none : (m:(Map A)) (a:ad) (in_dom a m)=false ->
- (MapGet A m a)=(NONE A).
+ Lemma in_dom_none :
+ forall (m:Map A) (a:ad), in_dom a m = false -> MapGet A m a = NONE A.
Proof.
- Unfold in_dom. Intros. Elim (option_sum ? (MapGet A m a)). Intro H0. Elim H0.
- Intros y H1. Rewrite H1 in H. Discriminate H.
- Trivial.
+ unfold in_dom in |- *. intros. elim (option_sum _ (MapGet A m a)). intro H0. elim H0.
+ intros y H1. rewrite H1 in H. discriminate H.
+ trivial.
Qed.
- Lemma in_dom_put : (m:(Map A)) (a0:ad) (y0:A) (a:ad)
- (in_dom a (MapPut A m a0 y0))=(orb (ad_eq a a0) (in_dom a m)).
+ Lemma in_dom_put :
+ forall (m:Map A) (a0:ad) (y0:A) (a:ad),
+ in_dom a (MapPut A m a0 y0) = orb (ad_eq a a0) (in_dom a m).
Proof.
- Unfold in_dom. Intros. Rewrite (MapPut_semantics A m a0 y0 a).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H.
- Rewrite H. Rewrite orb_true_b. Reflexivity.
- Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H. Rewrite orb_false_b.
- Reflexivity.
+ unfold in_dom in |- *. intros. rewrite (MapPut_semantics A m a0 y0 a).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H. rewrite (ad_eq_comm a a0) in H.
+ rewrite H. rewrite orb_true_b. reflexivity.
+ intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H. rewrite orb_false_b.
+ reflexivity.
Qed.
- Lemma in_dom_put_behind : (m:(Map A)) (a0:ad) (y0:A) (a:ad)
- (in_dom a (MapPut_behind A m a0 y0))=(orb (ad_eq a a0) (in_dom a m)).
+ Lemma in_dom_put_behind :
+ forall (m:Map A) (a0:ad) (y0:A) (a:ad),
+ in_dom a (MapPut_behind A m a0 y0) = orb (ad_eq a a0) (in_dom a m).
Proof.
- Unfold in_dom. Intros. Rewrite (MapPut_behind_semantics A m a0 y0 a).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H.
- Rewrite H. Case (MapGet A m a); Reflexivity.
- Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H. Case (MapGet A m a); Trivial.
+ unfold in_dom in |- *. intros. rewrite (MapPut_behind_semantics A m a0 y0 a).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H. rewrite (ad_eq_comm a a0) in H.
+ rewrite H. case (MapGet A m a); reflexivity.
+ intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H. case (MapGet A m a); trivial.
Qed.
- Lemma in_dom_remove : (m:(Map A)) (a0:ad) (a:ad)
- (in_dom a (MapRemove A m a0))=(andb (negb (ad_eq a a0)) (in_dom a m)).
+ Lemma in_dom_remove :
+ forall (m:Map A) (a0 a:ad),
+ in_dom a (MapRemove A m a0) = andb (negb (ad_eq a a0)) (in_dom a m).
Proof.
- Unfold in_dom. Intros. Rewrite (MapRemove_semantics A m a0 a).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H.
- Rewrite H. Reflexivity.
- Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H.
- Case (MapGet A m a); Reflexivity.
+ unfold in_dom in |- *. intros. rewrite (MapRemove_semantics A m a0 a).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H. rewrite (ad_eq_comm a a0) in H.
+ rewrite H. reflexivity.
+ intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H.
+ case (MapGet A m a); reflexivity.
Qed.
- Lemma in_dom_merge : (m,m':(Map A)) (a:ad)
- (in_dom a (MapMerge A m m'))=(orb (in_dom a m) (in_dom a m')).
+ Lemma in_dom_merge :
+ forall (m m':Map A) (a:ad),
+ in_dom a (MapMerge A m m') = orb (in_dom a m) (in_dom a m').
Proof.
- Unfold in_dom. Intros. Rewrite (MapMerge_semantics A m m' a).
- Elim (option_sum A (MapGet A m' a)). Intro H. Elim H. Intros y H0. Rewrite H0.
- Case (MapGet A m a); Reflexivity.
- Intro H. Rewrite H. Rewrite orb_b_false. Reflexivity.
+ unfold in_dom in |- *. intros. rewrite (MapMerge_semantics A m m' a).
+ elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y H0. rewrite H0.
+ case (MapGet A m a); reflexivity.
+ intro H. rewrite H. rewrite orb_b_false. reflexivity.
Qed.
- Lemma in_dom_delta : (m,m':(Map A)) (a:ad)
- (in_dom a (MapDelta A m m'))=(xorb (in_dom a m) (in_dom a m')).
+ Lemma in_dom_delta :
+ forall (m m':Map A) (a:ad),
+ in_dom a (MapDelta A m m') = xorb (in_dom a m) (in_dom a m').
Proof.
- Unfold in_dom. Intros. Rewrite (MapDelta_semantics A m m' a).
- Elim (option_sum A (MapGet A m' a)). Intro H. Elim H. Intros y H0. Rewrite H0.
- Case (MapGet A m a); Reflexivity.
- Intro H. Rewrite H. Case (MapGet A m a); Reflexivity.
+ unfold in_dom in |- *. intros. rewrite (MapDelta_semantics A m m' a).
+ elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y H0. rewrite H0.
+ case (MapGet A m a); reflexivity.
+ intro H. rewrite H. case (MapGet A m a); reflexivity.
Qed.
End Dom.
Section InDom.
- Variable A, B : Set.
+ Variables A B : Set.
- Lemma in_dom_restrto : (m:(Map A)) (m':(Map B)) (a:ad)
- (in_dom A a (MapDomRestrTo A B m m'))=(andb (in_dom A a m) (in_dom B a m')).
+ Lemma in_dom_restrto :
+ forall (m:Map A) (m':Map B) (a:ad),
+ in_dom A a (MapDomRestrTo A B m m') =
+ andb (in_dom A a m) (in_dom B a m').
Proof.
- Unfold in_dom. Intros. Rewrite (MapDomRestrTo_semantics A B m m' a).
- Elim (option_sum B (MapGet B m' a)). Intro H. Elim H. Intros y H0. Rewrite H0.
- Rewrite andb_b_true. Reflexivity.
- Intro H. Rewrite H. Rewrite andb_b_false. Reflexivity.
+ unfold in_dom in |- *. intros. rewrite (MapDomRestrTo_semantics A B m m' a).
+ elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y H0. rewrite H0.
+ rewrite andb_b_true. reflexivity.
+ intro H. rewrite H. rewrite andb_b_false. reflexivity.
Qed.
- Lemma in_dom_restrby : (m:(Map A)) (m':(Map B)) (a:ad)
- (in_dom A a (MapDomRestrBy A B m m'))=(andb (in_dom A a m) (negb (in_dom B a m'))).
+ Lemma in_dom_restrby :
+ forall (m:Map A) (m':Map B) (a:ad),
+ in_dom A a (MapDomRestrBy A B m m') =
+ andb (in_dom A a m) (negb (in_dom B a m')).
Proof.
- Unfold in_dom. Intros. Rewrite (MapDomRestrBy_semantics A B m m' a).
- Elim (option_sum B (MapGet B m' a)). Intro H. Elim H. Intros y H0. Rewrite H0.
- Unfold negb. Rewrite andb_b_false. Reflexivity.
- Intro H. Rewrite H. Unfold negb. Rewrite andb_b_true. Reflexivity.
+ unfold in_dom in |- *. intros. rewrite (MapDomRestrBy_semantics A B m m' a).
+ elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y H0. rewrite H0.
+ unfold negb in |- *. rewrite andb_b_false. reflexivity.
+ intro H. rewrite H. unfold negb in |- *. rewrite andb_b_true. reflexivity.
Qed.
End InDom.
-Definition FSet := (Map unit).
+Definition FSet := Map unit.
Section FSetDefs.
Variable A : Set.
- Definition in_FSet : ad -> FSet -> bool := (in_dom unit).
+ Definition in_FSet : ad -> FSet -> bool := in_dom unit.
- Fixpoint MapDom [m:(Map A)] : FSet :=
- Cases m of
- M0 => (M0 unit)
- | (M1 a _) => (M1 unit a tt)
- | (M2 m m') => (M2 unit (MapDom m) (MapDom m'))
+ Fixpoint MapDom (m:Map A) : FSet :=
+ match m with
+ | M0 => M0 unit
+ | M1 a _ => M1 unit a tt
+ | M2 m m' => M2 unit (MapDom m) (MapDom m')
end.
- Lemma MapDom_semantics_1 : (m:(Map A)) (a:ad)
- (y:A) (MapGet A m a)=(SOME A y) -> (in_FSet a (MapDom m))=true.
+ Lemma MapDom_semantics_1 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = SOME A y -> in_FSet a (MapDom m) = true.
Proof.
- Induction m. Intros. Discriminate H.
- Unfold MapDom. Unfold in_FSet. Unfold in_dom. Unfold MapGet. Intros a y a0 y0.
- Case (ad_eq a a0). Trivial.
- Intro. Discriminate H.
- Intros m0 H m1 H0 a y. Rewrite (MapGet_M2_bit_0_if A m0 m1 a). Simpl. Unfold in_FSet.
- Unfold in_dom. Rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a).
- Case (ad_bit_0 a). Unfold in_FSet in_dom in H0. Intro. Apply H0 with y:=y. Assumption.
- Unfold in_FSet in_dom in H. Intro. Apply H with y:=y. Assumption.
+ simple induction m. intros. discriminate H.
+ unfold MapDom in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. unfold MapGet in |- *. intros a y a0 y0.
+ case (ad_eq a a0). trivial.
+ intro. discriminate H.
+ intros m0 H m1 H0 a y. rewrite (MapGet_M2_bit_0_if A m0 m1 a). simpl in |- *. unfold in_FSet in |- *.
+ unfold in_dom in |- *. rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a).
+ case (ad_bit_0 a). unfold in_FSet, in_dom in H0. intro. apply H0 with (y := y). assumption.
+ unfold in_FSet, in_dom in H. intro. apply H with (y := y). assumption.
Qed.
- Lemma MapDom_semantics_2 : (m:(Map A)) (a:ad)
- (in_FSet a (MapDom m))=true -> {y:A | (MapGet A m a)=(SOME A y)}.
+ Lemma MapDom_semantics_2 :
+ forall (m:Map A) (a:ad),
+ in_FSet a (MapDom m) = true -> {y : A | MapGet A m a = SOME A y}.
Proof.
- Induction m. Intros. Discriminate H.
- Unfold MapDom. Unfold in_FSet. Unfold in_dom. Unfold MapGet. Intros a y a0. Case (ad_eq a a0).
- Intro. Split with y. Reflexivity.
- Intro. Discriminate H.
- Intros m0 H m1 H0 a. Rewrite (MapGet_M2_bit_0_if A m0 m1 a). Simpl. Unfold in_FSet.
- Unfold in_dom. Rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a).
- Case (ad_bit_0 a). Unfold in_FSet in_dom in H0. Intro. Apply H0. Assumption.
- Unfold in_FSet in_dom in H. Intro. Apply H. Assumption.
+ simple induction m. intros. discriminate H.
+ unfold MapDom in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. unfold MapGet in |- *. intros a y a0. case (ad_eq a a0).
+ intro. split with y. reflexivity.
+ intro. discriminate H.
+ intros m0 H m1 H0 a. rewrite (MapGet_M2_bit_0_if A m0 m1 a). simpl in |- *. unfold in_FSet in |- *.
+ unfold in_dom in |- *. rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a).
+ case (ad_bit_0 a). unfold in_FSet, in_dom in H0. intro. apply H0. assumption.
+ unfold in_FSet, in_dom in H. intro. apply H. assumption.
Qed.
- Lemma MapDom_semantics_3 : (m:(Map A)) (a:ad)
- (MapGet A m a)=(NONE A) -> (in_FSet a (MapDom m))=false.
+ Lemma MapDom_semantics_3 :
+ forall (m:Map A) (a:ad),
+ MapGet A m a = NONE A -> in_FSet a (MapDom m) = false.
Proof.
- Intros. Elim (sumbool_of_bool (in_FSet a (MapDom m))). Intro H0.
- Elim (MapDom_semantics_2 m a H0). Intros y H1. Rewrite H in H1. Discriminate H1.
- Trivial.
+ intros. elim (sumbool_of_bool (in_FSet a (MapDom m))). intro H0.
+ elim (MapDom_semantics_2 m a H0). intros y H1. rewrite H in H1. discriminate H1.
+ trivial.
Qed.
- Lemma MapDom_semantics_4 : (m:(Map A)) (a:ad)
- (in_FSet a (MapDom m))=false -> (MapGet A m a)=(NONE A).
+ Lemma MapDom_semantics_4 :
+ forall (m:Map A) (a:ad),
+ in_FSet a (MapDom m) = false -> MapGet A m a = NONE A.
Proof.
- Intros. Elim (option_sum A (MapGet A m a)). Intro H0. Elim H0. Intros y H1.
- Rewrite (MapDom_semantics_1 m a y H1) in H. Discriminate H.
- Trivial.
+ intros. elim (option_sum A (MapGet A m a)). intro H0. elim H0. intros y H1.
+ rewrite (MapDom_semantics_1 m a y H1) in H. discriminate H.
+ trivial.
Qed.
- Lemma MapDom_Dom : (m:(Map A)) (a:ad) (in_dom A a m)=(in_FSet a (MapDom m)).
+ Lemma MapDom_Dom :
+ forall (m:Map A) (a:ad), in_dom A a m = in_FSet a (MapDom m).
Proof.
- Intros. Elim (sumbool_of_bool (in_FSet a (MapDom m))). Intro H.
- Elim (MapDom_semantics_2 m a H). Intros y H0. Rewrite H. Unfold in_dom. Rewrite H0.
- Reflexivity.
- Intro H. Rewrite H. Unfold in_dom. Rewrite (MapDom_semantics_4 m a H). Reflexivity.
+ intros. elim (sumbool_of_bool (in_FSet a (MapDom m))). intro H.
+ elim (MapDom_semantics_2 m a H). intros y H0. rewrite H. unfold in_dom in |- *. rewrite H0.
+ reflexivity.
+ intro H. rewrite H. unfold in_dom in |- *. rewrite (MapDom_semantics_4 m a H). reflexivity.
Qed.
- Definition FSetUnion : FSet -> FSet -> FSet := [s,s':FSet] (MapMerge unit s s').
+ Definition FSetUnion (s s':FSet) : FSet := MapMerge unit s s'.
- Lemma in_FSet_union : (s,s':FSet) (a:ad)
- (in_FSet a (FSetUnion s s'))=(orb (in_FSet a s) (in_FSet a s')).
+ Lemma in_FSet_union :
+ forall (s s':FSet) (a:ad),
+ in_FSet a (FSetUnion s s') = orb (in_FSet a s) (in_FSet a s').
Proof.
- Exact (in_dom_merge unit).
+ exact (in_dom_merge unit).
Qed.
- Definition FSetInter : FSet -> FSet -> FSet := [s,s':FSet] (MapDomRestrTo unit unit s s').
+ Definition FSetInter (s s':FSet) : FSet := MapDomRestrTo unit unit s s'.
- Lemma in_FSet_inter : (s,s':FSet) (a:ad)
- (in_FSet a (FSetInter s s'))=(andb (in_FSet a s) (in_FSet a s')).
+ Lemma in_FSet_inter :
+ forall (s s':FSet) (a:ad),
+ in_FSet a (FSetInter s s') = andb (in_FSet a s) (in_FSet a s').
Proof.
- Exact (in_dom_restrto unit unit).
+ exact (in_dom_restrto unit unit).
Qed.
- Definition FSetDiff : FSet -> FSet -> FSet := [s,s':FSet] (MapDomRestrBy unit unit s s').
+ Definition FSetDiff (s s':FSet) : FSet := MapDomRestrBy unit unit s s'.
- Lemma in_FSet_diff : (s,s':FSet) (a:ad)
- (in_FSet a (FSetDiff s s'))=(andb (in_FSet a s) (negb (in_FSet a s'))).
+ Lemma in_FSet_diff :
+ forall (s s':FSet) (a:ad),
+ in_FSet a (FSetDiff s s') = andb (in_FSet a s) (negb (in_FSet a s')).
Proof.
- Exact (in_dom_restrby unit unit).
+ exact (in_dom_restrby unit unit).
Qed.
- Definition FSetDelta : FSet -> FSet -> FSet := [s,s':FSet] (MapDelta unit s s').
+ Definition FSetDelta (s s':FSet) : FSet := MapDelta unit s s'.
- Lemma in_FSet_delta : (s,s':FSet) (a:ad)
- (in_FSet a (FSetDelta s s'))=(xorb (in_FSet a s) (in_FSet a s')).
+ Lemma in_FSet_delta :
+ forall (s s':FSet) (a:ad),
+ in_FSet a (FSetDelta s s') = xorb (in_FSet a s) (in_FSet a s').
Proof.
- Exact (in_dom_delta unit).
+ exact (in_dom_delta unit).
Qed.
End FSetDefs.
-Lemma FSet_Dom : (s:FSet) (MapDom unit s)=s.
+Lemma FSet_Dom : forall s:FSet, MapDom unit s = s.
Proof.
- Induction s. Trivial.
- Simpl. Intros a t. Elim t. Reflexivity.
- Intros. Simpl. Rewrite H. Rewrite H0. Reflexivity.
-Qed.
+ simple induction s. trivial.
+ simpl in |- *. intros a t. elim t. reflexivity.
+ intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Lsort.v b/theories/IntMap/Lsort.v
index 80ab704de3..3399eaad24 100644
--- a/theories/IntMap/Lsort.v
+++ b/theories/IntMap/Lsort.v
@@ -7,531 +7,622 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Bool.
-Require Sumbool.
-Require Arith.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
-Require PolyList.
-Require Mapiter.
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import List.
+Require Import Mapiter.
Section LSort.
Variable A : Set.
- Fixpoint ad_less_1 [a,a':ad; p:positive] : bool :=
- Cases p of
- (xO p') => (ad_less_1 (ad_div_2 a) (ad_div_2 a') p')
- | _ => (andb (negb (ad_bit_0 a)) (ad_bit_0 a'))
+ Fixpoint ad_less_1 (a a':ad) (p:positive) {struct p} : bool :=
+ match p with
+ | xO p' => ad_less_1 (ad_div_2 a) (ad_div_2 a') p'
+ | _ => andb (negb (ad_bit_0 a)) (ad_bit_0 a')
end.
- Definition ad_less := [a,a':ad] Cases (ad_xor a a') of
- ad_z => false
- | (ad_x p) => (ad_less_1 a a' p)
- end.
-
- Lemma ad_bit_0_less : (a,a':ad) (ad_bit_0 a)=false -> (ad_bit_0 a')=true ->
- (ad_less a a')=true.
- Proof.
- Intros. Elim (ad_sum (ad_xor a a')). Intro H1. Elim H1. Intros p H2. Unfold ad_less.
- Rewrite H2. Generalize H2. Elim p. Intros. Simpl. Rewrite H. Rewrite H0. Reflexivity.
- Intros. Cut (ad_bit_0 (ad_xor a a'))=false. Intro. Rewrite (ad_xor_bit_0 a a') in H5.
- Rewrite H in H5. Rewrite H0 in H5. Discriminate H5.
- Rewrite H4. Reflexivity.
- Intro. Simpl. Rewrite H. Rewrite H0. Reflexivity.
- Intro H1. Cut (ad_bit_0 (ad_xor a a'))=false. Intro. Rewrite (ad_xor_bit_0 a a') in H2.
- Rewrite H in H2. Rewrite H0 in H2. Discriminate H2.
- Rewrite H1. Reflexivity.
- Qed.
-
- Lemma ad_bit_0_gt : (a,a':ad) (ad_bit_0 a)=true -> (ad_bit_0 a')=false ->
- (ad_less a a')=false.
- Proof.
- Intros. Elim (ad_sum (ad_xor a a')). Intro H1. Elim H1. Intros p H2. Unfold ad_less.
- Rewrite H2. Generalize H2. Elim p. Intros. Simpl. Rewrite H. Rewrite H0. Reflexivity.
- Intros. Cut (ad_bit_0 (ad_xor a a'))=false. Intro. Rewrite (ad_xor_bit_0 a a') in H5.
- Rewrite H in H5. Rewrite H0 in H5. Discriminate H5.
- Rewrite H4. Reflexivity.
- Intro. Simpl. Rewrite H. Rewrite H0. Reflexivity.
- Intro H1. Unfold ad_less. Rewrite H1. Reflexivity.
- Qed.
-
- Lemma ad_less_not_refl : (a:ad) (ad_less a a)=false.
- Proof.
- Intro. Unfold ad_less. Rewrite (ad_xor_nilpotent a). Reflexivity.
- Qed.
-
- Lemma ad_ind_double :
- (a:ad)(P:ad->Prop) (P ad_z) ->
- ((a:ad) (P a) -> (P (ad_double a))) ->
- ((a:ad) (P a) -> (P (ad_double_plus_un a))) -> (P a).
- Proof.
- Intros; Elim a. Trivial.
- Induction p. Intros.
- Apply (H1 (ad_x p0)); Trivial.
- Intros; Apply (H0 (ad_x p0)); Trivial.
- Intros; Apply (H1 ad_z); Assumption.
- Qed.
-
- Lemma ad_rec_double :
- (a:ad)(P:ad->Set) (P ad_z) ->
- ((a:ad) (P a) -> (P (ad_double a))) ->
- ((a:ad) (P a) -> (P (ad_double_plus_un a))) -> (P a).
- Proof.
- Intros; Elim a. Trivial.
- Induction p. Intros.
- Apply (H1 (ad_x p0)); Trivial.
- Intros; Apply (H0 (ad_x p0)); Trivial.
- Intros; Apply (H1 ad_z); Assumption.
- Qed.
-
- Lemma ad_less_def_1 : (a,a':ad) (ad_less (ad_double a) (ad_double a'))=(ad_less a a').
- Proof.
- Induction a. Induction a'. Reflexivity.
- Trivial.
- Induction a'. Unfold ad_less. Simpl. (Elim p; Trivial).
- Unfold ad_less. Simpl. Intro. Case (p_xor p p0). Reflexivity.
- Trivial.
- Qed.
-
- Lemma ad_less_def_2 : (a,a':ad)
- (ad_less (ad_double_plus_un a) (ad_double_plus_un a'))=(ad_less a a').
- Proof.
- Induction a. Induction a'. Reflexivity.
- Trivial.
- Induction a'. Unfold ad_less. Simpl. (Elim p; Trivial).
- Unfold ad_less. Simpl. Intro. Case (p_xor p p0). Reflexivity.
- Trivial.
- Qed.
+ Definition ad_less (a a':ad) :=
+ match ad_xor a a' with
+ | ad_z => false
+ | ad_x p => ad_less_1 a a' p
+ end.
- Lemma ad_less_def_3 : (a,a':ad) (ad_less (ad_double a) (ad_double_plus_un a'))=true.
+ Lemma ad_bit_0_less :
+ forall a a':ad,
+ ad_bit_0 a = false -> ad_bit_0 a' = true -> ad_less a a' = true.
Proof.
- Intros. Apply ad_bit_0_less. Apply ad_double_bit_0.
- Apply ad_double_plus_un_bit_0.
+ intros. elim (ad_sum (ad_xor a a')). intro H1. elim H1. intros p H2. unfold ad_less in |- *.
+ rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intros. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H5.
+ rewrite H in H5. rewrite H0 in H5. discriminate H5.
+ rewrite H4. reflexivity.
+ intro. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intro H1. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H2.
+ rewrite H in H2. rewrite H0 in H2. discriminate H2.
+ rewrite H1. reflexivity.
Qed.
- Lemma ad_less_def_4 : (a,a':ad) (ad_less (ad_double_plus_un a) (ad_double a'))=false.
+ Lemma ad_bit_0_gt :
+ forall a a':ad,
+ ad_bit_0 a = true -> ad_bit_0 a' = false -> ad_less a a' = false.
Proof.
- Intros. Apply ad_bit_0_gt. Apply ad_double_plus_un_bit_0.
- Apply ad_double_bit_0.
+ intros. elim (ad_sum (ad_xor a a')). intro H1. elim H1. intros p H2. unfold ad_less in |- *.
+ rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intros. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H5.
+ rewrite H in H5. rewrite H0 in H5. discriminate H5.
+ rewrite H4. reflexivity.
+ intro. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ intro H1. unfold ad_less in |- *. rewrite H1. reflexivity.
Qed.
- Lemma ad_less_z : (a:ad) (ad_less a ad_z)=false.
+ Lemma ad_less_not_refl : forall a:ad, ad_less a a = false.
Proof.
- Induction a. Reflexivity.
- Unfold ad_less. Intro. Rewrite (ad_xor_neutral_right (ad_x p)). (Elim p; Trivial).
+ intro. unfold ad_less in |- *. rewrite (ad_xor_nilpotent a). reflexivity.
Qed.
- Lemma ad_z_less_1 : (a:ad) (ad_less ad_z a)=true -> {p:positive | a=(ad_x p)}.
+ Lemma ad_ind_double :
+ forall (a:ad) (P:ad -> Prop),
+ P ad_z ->
+ (forall a:ad, P a -> P (ad_double a)) ->
+ (forall a:ad, P a -> P (ad_double_plus_un a)) -> P a.
Proof.
- Induction a. Intro. Discriminate H.
- Intros. Split with p. Reflexivity.
- Qed.
-
- Lemma ad_z_less_2 : (a:ad) (ad_less ad_z a)=false -> a=ad_z.
- Proof.
- Induction a. Trivial.
- Unfold ad_less. Simpl. Cut (p:positive)(ad_less_1 ad_z (ad_x p) p)=false->False.
- Intros. Elim (H p H0).
- Induction p. Intros. Discriminate H0.
- Intros. Exact (H H0).
- Intro. Discriminate H.
+ intros; elim a. trivial.
+ simple induction p. intros.
+ apply (H1 (ad_x p0)); trivial.
+ intros; apply (H0 (ad_x p0)); trivial.
+ intros; apply (H1 ad_z); assumption.
Qed.
- Lemma ad_less_trans : (a,a',a'':ad)
- (ad_less a a')=true -> (ad_less a' a'')=true -> (ad_less a a'')=true.
+ Lemma ad_rec_double :
+ forall (a:ad) (P:ad -> Set),
+ P ad_z ->
+ (forall a:ad, P a -> P (ad_double a)) ->
+ (forall a:ad, P a -> P (ad_double_plus_un a)) -> P a.
Proof.
- Intro a. Apply ad_ind_double with P:=[a:ad]
- (a',a'':ad)
- (ad_less a a')=true
- ->(ad_less a' a'')=true->(ad_less a a'')=true.
- Intros. Elim (sumbool_of_bool (ad_less ad_z a'')). Trivial.
- Intro H1. Rewrite (ad_z_less_2 a'' H1) in H0. Rewrite (ad_less_z a') in H0. Discriminate H0.
- Intros a0 H a'. Apply ad_ind_double with P:=[a':ad]
- (a'':ad)
- (ad_less (ad_double a0) a')=true
- ->(ad_less a' a'')=true->(ad_less (ad_double a0) a'')=true.
- Intros. Rewrite (ad_less_z (ad_double a0)) in H0. Discriminate H0.
- Intros a1 H0 a'' H1. Rewrite (ad_less_def_1 a0 a1) in H1.
- Apply ad_ind_double with P:=[a'':ad]
- (ad_less (ad_double a1) a'')=true
- ->(ad_less (ad_double a0) a'')=true.
- Intro. Rewrite (ad_less_z (ad_double a1)) in H2. Discriminate H2.
- Intros. Rewrite (ad_less_def_1 a1 a2) in H3. Rewrite (ad_less_def_1 a0 a2).
- Exact (H a1 a2 H1 H3).
- Intros. Apply ad_less_def_3.
- Intros a1 H0 a'' H1. Apply ad_ind_double with P:=[a'':ad]
- (ad_less (ad_double_plus_un a1) a'')=true
- ->(ad_less (ad_double a0) a'')=true.
- Intro. Rewrite (ad_less_z (ad_double_plus_un a1)) in H2. Discriminate H2.
- Intros. Rewrite (ad_less_def_4 a1 a2) in H3. Discriminate H3.
- Intros. Apply ad_less_def_3.
- Intros a0 H a'. Apply ad_ind_double with P:=[a':ad]
- (a'':ad)
- (ad_less (ad_double_plus_un a0) a')=true
- ->(ad_less a' a'')=true
- ->(ad_less (ad_double_plus_un a0) a'')=true.
- Intros. Rewrite (ad_less_z (ad_double_plus_un a0)) in H0. Discriminate H0.
- Intros. Rewrite (ad_less_def_4 a0 a1) in H1. Discriminate H1.
- Intros a1 H0 a'' H1. Apply ad_ind_double with P:=[a'':ad]
- (ad_less (ad_double_plus_un a1) a'')=true
- ->(ad_less (ad_double_plus_un a0) a'')=true.
- Intro. Rewrite (ad_less_z (ad_double_plus_un a1)) in H2. Discriminate H2.
- Intros. Rewrite (ad_less_def_4 a1 a2) in H3. Discriminate H3.
- Rewrite (ad_less_def_2 a0 a1) in H1. Intros. Rewrite (ad_less_def_2 a1 a2) in H3.
- Rewrite (ad_less_def_2 a0 a2). Exact (H a1 a2 H1 H3).
- Qed.
-
- Fixpoint alist_sorted [l:(alist A)] : bool :=
- Cases l of
- nil => true
- | (cons (a, _) l') => Cases l' of
- nil => true
- | (cons (a', y') l'') => (andb (ad_less a a')
- (alist_sorted l'))
- end
+ intros; elim a. trivial.
+ simple induction p. intros.
+ apply (H1 (ad_x p0)); trivial.
+ intros; apply (H0 (ad_x p0)); trivial.
+ intros; apply (H1 ad_z); assumption.
+ Qed.
+
+ Lemma ad_less_def_1 :
+ forall a a':ad, ad_less (ad_double a) (ad_double a') = ad_less a a'.
+ Proof.
+ simple induction a. simple induction a'. reflexivity.
+ trivial.
+ simple induction a'. unfold ad_less in |- *. simpl in |- *. elim p; trivial.
+ unfold ad_less in |- *. simpl in |- *. intro. case (p_xor p p0). reflexivity.
+ trivial.
+ Qed.
+
+ Lemma ad_less_def_2 :
+ forall a a':ad,
+ ad_less (ad_double_plus_un a) (ad_double_plus_un a') = ad_less a a'.
+ Proof.
+ simple induction a. simple induction a'. reflexivity.
+ trivial.
+ simple induction a'. unfold ad_less in |- *. simpl in |- *. elim p; trivial.
+ unfold ad_less in |- *. simpl in |- *. intro. case (p_xor p p0). reflexivity.
+ trivial.
+ Qed.
+
+ Lemma ad_less_def_3 :
+ forall a a':ad, ad_less (ad_double a) (ad_double_plus_un a') = true.
+ Proof.
+ intros. apply ad_bit_0_less. apply ad_double_bit_0.
+ apply ad_double_plus_un_bit_0.
+ Qed.
+
+ Lemma ad_less_def_4 :
+ forall a a':ad, ad_less (ad_double_plus_un a) (ad_double a') = false.
+ Proof.
+ intros. apply ad_bit_0_gt. apply ad_double_plus_un_bit_0.
+ apply ad_double_bit_0.
+ Qed.
+
+ Lemma ad_less_z : forall a:ad, ad_less a ad_z = false.
+ Proof.
+ simple induction a. reflexivity.
+ unfold ad_less in |- *. intro. rewrite (ad_xor_neutral_right (ad_x p)). elim p; trivial.
+ Qed.
+
+ Lemma ad_z_less_1 :
+ forall a:ad, ad_less ad_z a = true -> {p : positive | a = ad_x p}.
+ Proof.
+ simple induction a. intro. discriminate H.
+ intros. split with p. reflexivity.
+ Qed.
+
+ Lemma ad_z_less_2 : forall a:ad, ad_less ad_z a = false -> a = ad_z.
+ Proof.
+ simple induction a. trivial.
+ unfold ad_less in |- *. simpl in |- *. cut (forall p:positive, ad_less_1 ad_z (ad_x p) p = false -> False).
+ intros. elim (H p H0).
+ simple induction p. intros. discriminate H0.
+ intros. exact (H H0).
+ intro. discriminate H.
+ Qed.
+
+ Lemma ad_less_trans :
+ forall a a' a'':ad,
+ ad_less a a' = true -> ad_less a' a'' = true -> ad_less a a'' = true.
+ Proof.
+ intro a. apply ad_ind_double with
+ (P := fun a:ad =>
+ forall a' a'':ad,
+ ad_less a a' = true ->
+ ad_less a' a'' = true -> ad_less a a'' = true).
+ intros. elim (sumbool_of_bool (ad_less ad_z a'')). trivial.
+ intro H1. rewrite (ad_z_less_2 a'' H1) in H0. rewrite (ad_less_z a') in H0. discriminate H0.
+ intros a0 H a'. apply ad_ind_double with
+ (P := fun a':ad =>
+ forall a'':ad,
+ ad_less (ad_double a0) a' = true ->
+ ad_less a' a'' = true -> ad_less (ad_double a0) a'' = true).
+ intros. rewrite (ad_less_z (ad_double a0)) in H0. discriminate H0.
+ intros a1 H0 a'' H1. rewrite (ad_less_def_1 a0 a1) in H1.
+ apply ad_ind_double with
+ (P := fun a'':ad =>
+ ad_less (ad_double a1) a'' = true ->
+ ad_less (ad_double a0) a'' = true).
+ intro. rewrite (ad_less_z (ad_double a1)) in H2. discriminate H2.
+ intros. rewrite (ad_less_def_1 a1 a2) in H3. rewrite (ad_less_def_1 a0 a2).
+ exact (H a1 a2 H1 H3).
+ intros. apply ad_less_def_3.
+ intros a1 H0 a'' H1. apply ad_ind_double with
+ (P := fun a'':ad =>
+ ad_less (ad_double_plus_un a1) a'' = true ->
+ ad_less (ad_double a0) a'' = true).
+ intro. rewrite (ad_less_z (ad_double_plus_un a1)) in H2. discriminate H2.
+ intros. rewrite (ad_less_def_4 a1 a2) in H3. discriminate H3.
+ intros. apply ad_less_def_3.
+ intros a0 H a'. apply ad_ind_double with
+ (P := fun a':ad =>
+ forall a'':ad,
+ ad_less (ad_double_plus_un a0) a' = true ->
+ ad_less a' a'' = true ->
+ ad_less (ad_double_plus_un a0) a'' = true).
+ intros. rewrite (ad_less_z (ad_double_plus_un a0)) in H0. discriminate H0.
+ intros. rewrite (ad_less_def_4 a0 a1) in H1. discriminate H1.
+ intros a1 H0 a'' H1. apply ad_ind_double with
+ (P := fun a'':ad =>
+ ad_less (ad_double_plus_un a1) a'' = true ->
+ ad_less (ad_double_plus_un a0) a'' = true).
+ intro. rewrite (ad_less_z (ad_double_plus_un a1)) in H2. discriminate H2.
+ intros. rewrite (ad_less_def_4 a1 a2) in H3. discriminate H3.
+ rewrite (ad_less_def_2 a0 a1) in H1. intros. rewrite (ad_less_def_2 a1 a2) in H3.
+ rewrite (ad_less_def_2 a0 a2). exact (H a1 a2 H1 H3).
+ Qed.
+
+ Fixpoint alist_sorted (l:alist A) : bool :=
+ match l with
+ | nil => true
+ | (a, _) :: l' =>
+ match l' with
+ | nil => true
+ | (a', y') :: l'' => andb (ad_less a a') (alist_sorted l')
+ end
end.
- Fixpoint alist_nth_ad [n:nat; l:(alist A)] : ad :=
- Cases l of
- nil => ad_z (* dummy *)
- | (cons (a, y) l') => Cases n of
- O => a
- | (S n') => (alist_nth_ad n' l')
- end
+ Fixpoint alist_nth_ad (n:nat) (l:alist A) {struct l} : ad :=
+ match l with
+ | nil => ad_z (* dummy *)
+ | (a, y) :: l' => match n with
+ | O => a
+ | S n' => alist_nth_ad n' l'
+ end
end.
- Definition alist_sorted_1 := [l:(alist A)]
- (n:nat) (le (S (S n)) (length l)) ->
- (ad_less (alist_nth_ad n l) (alist_nth_ad (S n) l))=true.
-
- Lemma alist_sorted_imp_1 : (l:(alist A)) (alist_sorted l)=true -> (alist_sorted_1 l).
- Proof.
- Unfold alist_sorted_1. Induction l. Intros. Elim (le_Sn_O (S n) H0).
- Intro r. Elim r. Intros a y. Induction l0. Intros. Simpl in H1.
- Elim (le_Sn_O n (le_S_n (S n) O H1)).
- Intro r0. Elim r0. Intros a0 y0. Induction n. Intros. Simpl. Simpl in H1.
- Exact (proj1 ? ? (andb_prop ? ? H1)).
- Intros. Change (ad_less (alist_nth_ad n0 (cons (a0,y0) l1))
- (alist_nth_ad (S n0) (cons (a0,y0) l1)))=true.
- Apply H0. Exact (proj2 ? ? (andb_prop ? ? H1)).
- Apply le_S_n. Exact H3.
- Qed.
-
- Definition alist_sorted_2 := [l:(alist A)]
- (m,n:nat) (lt m n) -> (le (S n) (length l)) ->
- (ad_less (alist_nth_ad m l) (alist_nth_ad n l))=true.
-
- Lemma alist_sorted_1_imp_2 : (l:(alist A)) (alist_sorted_1 l) -> (alist_sorted_2 l).
- Proof.
- Unfold alist_sorted_1 alist_sorted_2 lt. Intros l H m n H0. Elim H0. Exact (H m).
- Intros. Apply ad_less_trans with a':=(alist_nth_ad m0 l). Apply H2. Apply le_trans_S.
- Assumption.
- Apply H. Assumption.
- Qed.
-
- Lemma alist_sorted_2_imp : (l:(alist A)) (alist_sorted_2 l) -> (alist_sorted l)=true.
- Proof.
- Unfold alist_sorted_2 lt. Induction l. Trivial.
- Intro r. Elim r. Intros a y. Induction l0. Trivial.
- Intro r0. Elim r0. Intros a0 y0. Intros.
- Change (andb (ad_less a a0) (alist_sorted (cons (a0,y0) l1)))=true.
- Apply andb_true_intro. Split. Apply (H1 (0) (1)). Apply le_n.
- Simpl. Apply le_n_S. Apply le_n_S. Apply le_O_n.
- Apply H0. Intros. Apply (H1 (S m) (S n)). Apply le_n_S. Assumption.
- Exact (le_n_S ? ? H3).
- Qed.
+ Definition alist_sorted_1 (l:alist A) :=
+ forall n:nat,
+ S (S n) <= length l ->
+ ad_less (alist_nth_ad n l) (alist_nth_ad (S n) l) = true.
- Lemma app_length : (C:Set) (l,l':(list C)) (length (app l l'))=(plus (length l) (length l')).
+ Lemma alist_sorted_imp_1 :
+ forall l:alist A, alist_sorted l = true -> alist_sorted_1 l.
Proof.
- Induction l. Trivial.
- Intros. Simpl. Rewrite (H l'). Reflexivity.
- Qed.
-
- Lemma aapp_length : (l,l':(alist A)) (length (aapp A l l'))=(plus (length l) (length l')).
+ unfold alist_sorted_1 in |- *. simple induction l. intros. elim (le_Sn_O (S n) H0).
+ intro r. elim r. intros a y. simple induction l0. intros. simpl in H1.
+ elim (le_Sn_O n (le_S_n (S n) 0 H1)).
+ intro r0. elim r0. intros a0 y0. simple induction n. intros. simpl in |- *. simpl in H1.
+ exact (proj1 (andb_prop _ _ H1)).
+ intros. change
+ (ad_less (alist_nth_ad n0 ((a0, y0) :: l1))
+ (alist_nth_ad (S n0) ((a0, y0) :: l1)) = true)
+ in |- *.
+ apply H0. exact (proj2 (andb_prop _ _ H1)).
+ apply le_S_n. exact H3.
+ Qed.
+
+ Definition alist_sorted_2 (l:alist A) :=
+ forall m n:nat,
+ m < n ->
+ S n <= length l -> ad_less (alist_nth_ad m l) (alist_nth_ad n l) = true.
+
+ Lemma alist_sorted_1_imp_2 :
+ forall l:alist A, alist_sorted_1 l -> alist_sorted_2 l.
+ Proof.
+ unfold alist_sorted_1, alist_sorted_2, lt in |- *. intros l H m n H0. elim H0. exact (H m).
+ intros. apply ad_less_trans with (a' := alist_nth_ad m0 l). apply H2. apply le_Sn_le.
+ assumption.
+ apply H. assumption.
+ Qed.
+
+ Lemma alist_sorted_2_imp :
+ forall l:alist A, alist_sorted_2 l -> alist_sorted l = true.
+ Proof.
+ unfold alist_sorted_2, lt in |- *. simple induction l. trivial.
+ intro r. elim r. intros a y. simple induction l0. trivial.
+ intro r0. elim r0. intros a0 y0. intros.
+ change (andb (ad_less a a0) (alist_sorted ((a0, y0) :: l1)) = true)
+ in |- *.
+ apply andb_true_intro. split. apply (H1 0 1). apply le_n.
+ simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n.
+ apply H0. intros. apply (H1 (S m) (S n)). apply le_n_S. assumption.
+ exact (le_n_S _ _ H3).
+ Qed.
+
+ Lemma app_length :
+ forall (C:Set) (l l':list C), length (l ++ l') = length l + length l'.
+ Proof.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (H l'). reflexivity.
+ Qed.
+
+ Lemma aapp_length :
+ forall l l':alist A, length (aapp A l l') = length l + length l'.
Proof.
- Exact (app_length ad*A).
+ exact (app_length (ad * A)).
Qed.
- Lemma alist_nth_ad_aapp_1 : (l,l':(alist A)) (n:nat)
- (le (S n) (length l)) -> (alist_nth_ad n (aapp A l l'))=(alist_nth_ad n l).
+ Lemma alist_nth_ad_aapp_1 :
+ forall (l l':alist A) (n:nat),
+ S n <= length l -> alist_nth_ad n (aapp A l l') = alist_nth_ad n l.
Proof.
- Induction l. Intros. Elim (le_Sn_O n H).
- Intro r. Elim r. Intros a y l' H l''. Induction n. Trivial.
- Intros. Simpl. Apply H. Apply le_S_n. Exact H1.
+ simple induction l. intros. elim (le_Sn_O n H).
+ intro r. elim r. intros a y l' H l''. simple induction n. trivial.
+ intros. simpl in |- *. apply H. apply le_S_n. exact H1.
Qed.
- Lemma alist_nth_ad_aapp_2 : (l,l':(alist A)) (n:nat)
- (le (S n) (length l')) ->
- (alist_nth_ad (plus (length l) n) (aapp A l l'))=(alist_nth_ad n l').
+ Lemma alist_nth_ad_aapp_2 :
+ forall (l l':alist A) (n:nat),
+ S n <= length l' ->
+ alist_nth_ad (length l + n) (aapp A l l') = alist_nth_ad n l'.
Proof.
- Induction l. Trivial.
- Intro r. Elim r. Intros a y l' H l'' n H0. Simpl. Apply H. Exact H0.
+ simple induction l. trivial.
+ intro r. elim r. intros a y l' H l'' n H0. simpl in |- *. apply H. exact H0.
Qed.
- Lemma interval_split : (p,q,n:nat) (le (S n) (plus p q)) ->
- {n' : nat | (le (S n') q) /\ n=(plus p n')}+{(le (S n) p)}.
+ Lemma interval_split :
+ forall p q n:nat,
+ S n <= p + q -> {n' : nat | S n' <= q /\ n = p + n'} + {S n <= p}.
Proof.
- Induction p. Simpl. Intros. Left . Split with n. (Split; [ Assumption | Reflexivity ]).
- Intros p' H q. Induction n. Intros. Right . Apply le_n_S. Apply le_O_n.
- Intros. Elim (H ? ? (le_S_n ? ? H1)). Intro H2. Left . Elim H2. Intros n' H3.
- Elim H3. Intros H4 H5. Split with n'. (Split; [ Assumption | Rewrite H5; Reflexivity ]).
- Intro H2. Right . Apply le_n_S. Assumption.
+ simple induction p. simpl in |- *. intros. left. split with n. split; [ assumption | reflexivity ].
+ intros p' H q. simple induction n. intros. right. apply le_n_S. apply le_O_n.
+ intros. elim (H _ _ (le_S_n _ _ H1)). intro H2. left. elim H2. intros n' H3.
+ elim H3. intros H4 H5. split with n'. split; [ assumption | rewrite H5; reflexivity ].
+ intro H2. right. apply le_n_S. assumption.
Qed.
- Lemma alist_conc_sorted : (l,l':(alist A)) (alist_sorted_2 l) -> (alist_sorted_2 l') ->
- ((n,n':nat) (le (S n) (length l)) -> (le (S n') (length l')) ->
- (ad_less (alist_nth_ad n l) (alist_nth_ad n' l'))=true) ->
- (alist_sorted_2 (aapp A l l')).
+ Lemma alist_conc_sorted :
+ forall l l':alist A,
+ alist_sorted_2 l ->
+ alist_sorted_2 l' ->
+ (forall n n':nat,
+ S n <= length l ->
+ S n' <= length l' ->
+ ad_less (alist_nth_ad n l) (alist_nth_ad n' l') = true) ->
+ alist_sorted_2 (aapp A l l').
Proof.
- Unfold alist_sorted_2 lt. Intros. Rewrite (aapp_length l l') in H3.
- Elim (interval_split (length l) (length l') m
- (le_trans ? ? ? (le_n_S ? ? (lt_le_weak m n H2)) H3)).
- Intro H4. Elim H4. Intros m' H5. Elim H5. Intros. Rewrite H7.
- Rewrite (alist_nth_ad_aapp_2 l l' m' H6). Elim (interval_split (length l) (length l') n H3).
- Intro H8. Elim H8. Intros n' H9. Elim H9. Intros. Rewrite H11.
- Rewrite (alist_nth_ad_aapp_2 l l' n' H10). Apply H0. Rewrite H7 in H2. Rewrite H11 in H2.
- Change (le (plus (S (length l)) m') (plus (length l) n')) in H2.
- Rewrite (plus_Snm_nSm (length l) m') in H2. Exact (simpl_le_plus_l (length l) (S m') n' H2).
- Exact H10.
- Intro H8. Rewrite H7 in H2. Cut (le (S (length l)) (length l)). Intros. Elim (le_Sn_n ? H9).
- Apply le_trans with m:=(S n). Apply le_n_S. Apply le_trans with m:=(S (plus (length l) m')).
- Apply le_trans with m:=(plus (length l) m'). Apply le_plus_l.
- Apply le_n_Sn.
- Exact H2.
- Exact H8.
- Intro H4. Rewrite (alist_nth_ad_aapp_1 l l' m H4).
- Elim (interval_split (length l) (length l') n H3). Intro H5. Elim H5. Intros n' H6. Elim H6.
- Intros. Rewrite H8. Rewrite (alist_nth_ad_aapp_2 l l' n' H7). Exact (H1 m n' H4 H7).
- Intro H5. Rewrite (alist_nth_ad_aapp_1 l l' n H5). Exact (H m n H2 H5).
+ unfold alist_sorted_2, lt in |- *. intros. rewrite (aapp_length l l') in H3.
+ elim
+ (interval_split (length l) (length l') m
+ (le_trans _ _ _ (le_n_S _ _ (lt_le_weak m n H2)) H3)).
+ intro H4. elim H4. intros m' H5. elim H5. intros. rewrite H7.
+ rewrite (alist_nth_ad_aapp_2 l l' m' H6). elim (interval_split (length l) (length l') n H3).
+ intro H8. elim H8. intros n' H9. elim H9. intros. rewrite H11.
+ rewrite (alist_nth_ad_aapp_2 l l' n' H10). apply H0. rewrite H7 in H2. rewrite H11 in H2.
+ change (S (length l) + m' <= length l + n') in H2.
+ rewrite (plus_Snm_nSm (length l) m') in H2. exact ((fun p n m:nat => plus_le_reg_l n m p) (length l) (S m') n' H2).
+ exact H10.
+ intro H8. rewrite H7 in H2. cut (S (length l) <= length l). intros. elim (le_Sn_n _ H9).
+ apply le_trans with (m := S n). apply le_n_S. apply le_trans with (m := S (length l + m')).
+ apply le_trans with (m := length l + m'). apply le_plus_l.
+ apply le_n_Sn.
+ exact H2.
+ exact H8.
+ intro H4. rewrite (alist_nth_ad_aapp_1 l l' m H4).
+ elim (interval_split (length l) (length l') n H3). intro H5. elim H5. intros n' H6. elim H6.
+ intros. rewrite H8. rewrite (alist_nth_ad_aapp_2 l l' n' H7). exact (H1 m n' H4 H7).
+ intro H5. rewrite (alist_nth_ad_aapp_1 l l' n H5). exact (H m n H2 H5).
Qed.
- Lemma alist_nth_ad_semantics : (l:(alist A)) (n:nat) (le (S n) (length l)) ->
- {y:A | (alist_semantics A l (alist_nth_ad n l))=(SOME A y)}.
+ Lemma alist_nth_ad_semantics :
+ forall (l:alist A) (n:nat),
+ S n <= length l ->
+ {y : A | alist_semantics A l (alist_nth_ad n l) = SOME A y}.
Proof.
- Induction l. Intros. Elim (le_Sn_O ? H).
- Intro r. Elim r. Intros a y l0 H. Induction n. Simpl. Intro. Split with y.
- Rewrite (ad_eq_correct a). Reflexivity.
- Intros. Elim (H ? (le_S_n ? ? H1)). Intros y0 H2.
- Elim (sumbool_of_bool (ad_eq a (alist_nth_ad n0 l0))). Intro H3. Split with y.
- Rewrite (ad_eq_complete ? ? H3). Simpl. Rewrite (ad_eq_correct (alist_nth_ad n0 l0)).
- Reflexivity.
- Intro H3. Split with y0. Simpl. Rewrite H3. Assumption.
+ simple induction l. intros. elim (le_Sn_O _ H).
+ intro r. elim r. intros a y l0 H. simple induction n. simpl in |- *. intro. split with y.
+ rewrite (ad_eq_correct a). reflexivity.
+ intros. elim (H _ (le_S_n _ _ H1)). intros y0 H2.
+ elim (sumbool_of_bool (ad_eq a (alist_nth_ad n0 l0))). intro H3. split with y.
+ rewrite (ad_eq_complete _ _ H3). simpl in |- *. rewrite (ad_eq_correct (alist_nth_ad n0 l0)).
+ reflexivity.
+ intro H3. split with y0. simpl in |- *. rewrite H3. assumption.
Qed.
- Lemma alist_of_Map_nth_ad : (m:(Map A)) (pf:ad->ad)
- (l:(alist A)) l=(MapFold1 A (alist A) (anil A) (aapp A)
- [a0:ad][y:A](acons A (a0,y) (anil A)) pf m) ->
- (n:nat) (le (S n) (length l)) -> {a':ad | (alist_nth_ad n l)=(pf a')}.
+ Lemma alist_of_Map_nth_ad :
+ forall (m:Map A) (pf:ad -> ad) (l:alist A),
+ l =
+ MapFold1 A (alist A) (anil A) (aapp A)
+ (fun (a0:ad) (y:A) => acons A (a0, y) (anil A)) pf m ->
+ forall n:nat, S n <= length l -> {a' : ad | alist_nth_ad n l = pf a'}.
Proof.
- Intros. Elim (alist_nth_ad_semantics l n H0). Intros y H1.
- Apply (alist_of_Map_semantics_1_1 A m pf (alist_nth_ad n l) y).
- Rewrite <- H. Assumption.
+ intros. elim (alist_nth_ad_semantics l n H0). intros y H1.
+ apply (alist_of_Map_semantics_1_1 A m pf (alist_nth_ad n l) y).
+ rewrite <- H. assumption.
Qed.
- Definition ad_monotonic := [pf:ad->ad] (a,a':ad)
- (ad_less a a')=true -> (ad_less (pf a) (pf a'))=true.
+ Definition ad_monotonic (pf:ad -> ad) :=
+ forall a a':ad, ad_less a a' = true -> ad_less (pf a) (pf a') = true.
- Lemma ad_double_monotonic : (ad_monotonic ad_double).
+ Lemma ad_double_monotonic : ad_monotonic ad_double.
Proof.
- Unfold ad_monotonic. Intros. Rewrite ad_less_def_1. Assumption.
+ unfold ad_monotonic in |- *. intros. rewrite ad_less_def_1. assumption.
Qed.
- Lemma ad_double_plus_un_monotonic : (ad_monotonic ad_double_plus_un).
+ Lemma ad_double_plus_un_monotonic : ad_monotonic ad_double_plus_un.
Proof.
- Unfold ad_monotonic. Intros. Rewrite ad_less_def_2. Assumption.
+ unfold ad_monotonic in |- *. intros. rewrite ad_less_def_2. assumption.
Qed.
- Lemma ad_comp_monotonic : (pf,pf':ad->ad) (ad_monotonic pf) -> (ad_monotonic pf') ->
- (ad_monotonic [a0:ad] (pf (pf' a0))).
+ Lemma ad_comp_monotonic :
+ forall pf pf':ad -> ad,
+ ad_monotonic pf ->
+ ad_monotonic pf' -> ad_monotonic (fun a0:ad => pf (pf' a0)).
Proof.
- Unfold ad_monotonic. Intros. Apply H. Apply H0. Exact H1.
+ unfold ad_monotonic in |- *. intros. apply H. apply H0. exact H1.
Qed.
- Lemma ad_comp_double_monotonic : (pf:ad->ad) (ad_monotonic pf) ->
- (ad_monotonic [a0:ad] (pf (ad_double a0))).
+ Lemma ad_comp_double_monotonic :
+ forall pf:ad -> ad,
+ ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (ad_double a0)).
Proof.
- Intros. Apply ad_comp_monotonic. Assumption.
- Exact ad_double_monotonic.
+ intros. apply ad_comp_monotonic. assumption.
+ exact ad_double_monotonic.
Qed.
- Lemma ad_comp_double_plus_un_monotonic : (pf:ad->ad) (ad_monotonic pf) ->
- (ad_monotonic [a0:ad] (pf (ad_double_plus_un a0))).
+ Lemma ad_comp_double_plus_un_monotonic :
+ forall pf:ad -> ad,
+ ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (ad_double_plus_un a0)).
Proof.
- Intros. Apply ad_comp_monotonic. Assumption.
- Exact ad_double_plus_un_monotonic.
+ intros. apply ad_comp_monotonic. assumption.
+ exact ad_double_plus_un_monotonic.
Qed.
- Lemma alist_of_Map_sorts_1 : (m:(Map A)) (pf:ad->ad) (ad_monotonic pf) ->
- (alist_sorted_2 (MapFold1 A (alist A) (anil A) (aapp A)
- [a:ad][y:A](acons A (a,y) (anil A)) pf m)).
- Proof.
- Induction m. Simpl. Intros. Apply alist_sorted_1_imp_2. Apply alist_sorted_imp_1. Reflexivity.
- Intros. Simpl. Apply alist_sorted_1_imp_2. Apply alist_sorted_imp_1. Reflexivity.
- Intros. Simpl. Apply alist_conc_sorted.
- Exact (H [a0:ad](pf (ad_double a0)) (ad_comp_double_monotonic pf H1)).
- Exact (H0 [a0:ad](pf (ad_double_plus_un a0)) (ad_comp_double_plus_un_monotonic pf H1)).
- Intros. Elim (alist_of_Map_nth_ad m0 [a0:ad](pf (ad_double a0))
- (MapFold1 A (alist A) (anil A) (aapp A)
- [a0:ad][y:A](acons A (a0,y) (anil A))
- [a0:ad](pf (ad_double a0)) m0) (refl_equal ? ?) n H2).
- Intros a H4. Rewrite H4. Elim (alist_of_Map_nth_ad m1 [a0:ad](pf (ad_double_plus_un a0))
+ Lemma alist_of_Map_sorts_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ ad_monotonic pf ->
+ alist_sorted_2
(MapFold1 A (alist A) (anil A) (aapp A)
- [a0:ad][y:A](acons A (a0,y) (anil A))
- [a0:ad](pf (ad_double_plus_un a0)) m1) (refl_equal ? ?) n' H3).
- Intros a' H5. Rewrite H5. Unfold ad_monotonic in H1. Apply H1. Apply ad_less_def_3.
- Qed.
-
- Lemma alist_of_Map_sorts : (m:(Map A)) (alist_sorted (alist_of_Map A m))=true.
- Proof.
- Intro. Apply alist_sorted_2_imp.
- Exact (alist_of_Map_sorts_1 m [a0:ad]a0 [a,a':ad][p:(ad_less a a')=true]p).
- Qed.
-
- Lemma alist_of_Map_sorts1 : (m:(Map A)) (alist_sorted_1 (alist_of_Map A m)).
- Proof.
- Intro. Apply alist_sorted_imp_1. Apply alist_of_Map_sorts.
+ (fun (a:ad) (y:A) => acons A (a, y) (anil A)) pf m).
+ Proof.
+ simple induction m. simpl in |- *. intros. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity.
+ intros. simpl in |- *. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity.
+ intros. simpl in |- *. apply alist_conc_sorted.
+ exact
+ (H (fun a0:ad => pf (ad_double a0)) (ad_comp_double_monotonic pf H1)).
+ exact
+ (H0 (fun a0:ad => pf (ad_double_plus_un a0))
+ (ad_comp_double_plus_un_monotonic pf H1)).
+ intros. elim
+ (alist_of_Map_nth_ad m0 (fun a0:ad => pf (ad_double a0))
+ (MapFold1 A (alist A) (anil A) (aapp A)
+ (fun (a0:ad) (y:A) => acons A (a0, y) (anil A))
+ (fun a0:ad => pf (ad_double a0)) m0) (refl_equal _) n H2).
+ intros a H4. rewrite H4. elim
+ (alist_of_Map_nth_ad m1 (fun a0:ad => pf (ad_double_plus_un a0))
+ (MapFold1 A (alist A) (anil A) (aapp A)
+ (fun (a0:ad) (y:A) => acons A (a0, y) (anil A))
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1) (
+ refl_equal _) n' H3).
+ intros a' H5. rewrite H5. unfold ad_monotonic in H1. apply H1. apply ad_less_def_3.
+ Qed.
+
+ Lemma alist_of_Map_sorts :
+ forall m:Map A, alist_sorted (alist_of_Map A m) = true.
+ Proof.
+ intro. apply alist_sorted_2_imp.
+ exact
+ (alist_of_Map_sorts_1 m (fun a0:ad => a0)
+ (fun (a a':ad) (p:ad_less a a' = true) => p)).
+ Qed.
+
+ Lemma alist_of_Map_sorts1 :
+ forall m:Map A, alist_sorted_1 (alist_of_Map A m).
+ Proof.
+ intro. apply alist_sorted_imp_1. apply alist_of_Map_sorts.
Qed.
- Lemma alist_of_Map_sorts2 : (m:(Map A)) (alist_sorted_2 (alist_of_Map A m)).
+ Lemma alist_of_Map_sorts2 :
+ forall m:Map A, alist_sorted_2 (alist_of_Map A m).
Proof.
- Intro. Apply alist_sorted_1_imp_2. Apply alist_of_Map_sorts1.
+ intro. apply alist_sorted_1_imp_2. apply alist_of_Map_sorts1.
Qed.
- Lemma ad_less_total : (a,a':ad) {(ad_less a a')=true}+{(ad_less a' a)=true}+{a=a'}.
- Proof.
- Intro a. Refine (ad_rec_double a [a:ad] (a':ad){(ad_less a a')=true}+{(ad_less a' a)=true}+{a=a'}
- ? ? ?).
- Intro. Elim (sumbool_of_bool (ad_less ad_z a')). Intro H. Left . Left . Assumption.
- Intro H. Right . Rewrite (ad_z_less_2 a' H). Reflexivity.
- Intros a0 H a'. Refine (ad_rec_double a' [a':ad] {(ad_less (ad_double a0) a')=true}
- +{(ad_less a' (ad_double a0))=true}+{(ad_double a0)=a'} ? ? ?).
- Elim (sumbool_of_bool (ad_less ad_z (ad_double a0))). Intro H0. Left . Right . Assumption.
- Intro H0. Right . Exact (ad_z_less_2 ? H0).
- Intros a1 H0. Rewrite ad_less_def_1. Rewrite ad_less_def_1. Elim (H a1). Intro H1.
- Left . Assumption.
- Intro H1. Right . Rewrite H1. Reflexivity.
- Intros a1 H0. Left . Left . Apply ad_less_def_3.
- Intros a0 H a'. Refine (ad_rec_double a' [a':ad] {(ad_less (ad_double_plus_un a0) a')=true}
- +{(ad_less a' (ad_double_plus_un a0))=true}
- +{(ad_double_plus_un a0)=a'} ? ? ?).
- Left . Right . (Case a0; Reflexivity).
- Intros a1 H0. Left . Right . Apply ad_less_def_3.
- Intros a1 H0. Rewrite ad_less_def_2. Rewrite ad_less_def_2. Elim (H a1). Intro H1.
- Left . Assumption.
- Intro H1. Right . Rewrite H1. Reflexivity.
- Qed.
-
- Lemma alist_too_low : (l:(alist A)) (a,a':ad) (y:A)
- (ad_less a a')=true -> (alist_sorted_2 (cons (a',y) l)) ->
- (alist_semantics A (cons (a',y) l) a)=(NONE A).
- Proof.
- Induction l. Intros. Simpl. Elim (sumbool_of_bool (ad_eq a' a)). Intro H1.
- Rewrite (ad_eq_complete ? ? H1) in H. Rewrite (ad_less_not_refl a) in H. Discriminate H.
- Intro H1. Rewrite H1. Reflexivity.
- Intro r. Elim r. Intros a y l0 H a0 a1 y0 H0 H1.
- Change (Case (ad_eq a1 a0) of
- (SOME A y0)
- (alist_semantics A (cons (a,y) l0) a0)
- end)=(NONE A).
- Elim (sumbool_of_bool (ad_eq a1 a0)). Intro H2. Rewrite (ad_eq_complete ? ? H2) in H0.
- Rewrite (ad_less_not_refl a0) in H0. Discriminate H0.
- Intro H2. Rewrite H2. Apply H. Apply ad_less_trans with a':=a1. Assumption.
- Unfold alist_sorted_2 in H1. Apply (H1 (0) (1)). Apply lt_n_Sn.
- Simpl. Apply le_n_S. Apply le_n_S. Apply le_O_n.
- Apply alist_sorted_1_imp_2. Apply alist_sorted_imp_1.
- Cut (alist_sorted (cons (a1,y0) (cons (a,y) l0)))=true. Intro H3.
- Exact (proj2 ? ? (andb_prop ? ? H3)).
- Apply alist_sorted_2_imp. Assumption.
- Qed.
-
- Lemma alist_semantics_nth_ad : (l:(alist A)) (a:ad) (y:A)
- (alist_semantics A l a)=(SOME A y) ->
- {n:nat | (le (S n) (length l)) /\ (alist_nth_ad n l)=a}.
- Proof.
- Induction l. Intros. Discriminate H.
- Intro r. Elim r. Intros a y l0 H a0 y0 H0. Simpl in H0. Elim (sumbool_of_bool (ad_eq a a0)).
- Intro H1. Rewrite H1 in H0. Split with O. Split. Simpl. Apply le_n_S. Apply le_O_n.
- Simpl. Exact (ad_eq_complete ? ? H1).
- Intro H1. Rewrite H1 in H0. Elim (H a0 y0 H0). Intros n' H2. Split with (S n'). Split.
- Simpl. Apply le_n_S. Exact (proj1 ? ? H2).
- Exact (proj2 ? ? H2).
- Qed.
-
- Lemma alist_semantics_tail : (l:(alist A)) (a:ad) (y:A)
- (alist_sorted_2 (cons (a,y) l)) ->
- (eqm A (alist_semantics A l) [a0:ad] if (ad_eq a a0)
- then (NONE A)
- else (alist_semantics A (cons (a,y) l) a0)).
- Proof.
- Unfold eqm. Intros. Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. Rewrite H0.
- Rewrite <- (ad_eq_complete ? ? H0). Unfold alist_sorted_2 in H.
- Elim (option_sum A (alist_semantics A l a)). Intro H1. Elim H1. Intros y0 H2.
- Elim (alist_semantics_nth_ad l a y0 H2). Intros n H3. Elim H3. Intros.
- Cut (ad_less (alist_nth_ad (0) (cons (a,y) l)) (alist_nth_ad (S n) (cons (a,y) l)))=true.
- Intro. Simpl in H6. Rewrite H5 in H6. Rewrite (ad_less_not_refl a) in H6. Discriminate H6.
- Apply H. Apply lt_O_Sn.
- Simpl. Apply le_n_S. Assumption.
- Trivial.
- Intro H0. Simpl. Rewrite H0. Reflexivity.
- Qed.
-
- Lemma alist_semantics_same_tail : (l,l':(alist A)) (a:ad) (y:A)
- (alist_sorted_2 (cons (a,y) l)) -> (alist_sorted_2 (cons (a,y) l')) ->
- (eqm A (alist_semantics A (cons (a,y) l)) (alist_semantics A (cons (a,y) l'))) ->
- (eqm A (alist_semantics A l) (alist_semantics A l')).
- Proof.
- Unfold eqm. Intros. Rewrite (alist_semantics_tail ? ? ? H a0).
- Rewrite (alist_semantics_tail ? ? ? H0 a0). Case (ad_eq a a0). Reflexivity.
- Exact (H1 a0).
- Qed.
-
- Lemma alist_sorted_tail : (l:(alist A)) (a:ad) (y:A)
- (alist_sorted_2 (cons (a,y) l)) -> (alist_sorted_2 l).
- Proof.
- Unfold alist_sorted_2. Intros. Apply (H (S m) (S n)). Apply lt_n_S. Assumption.
- Simpl. Apply le_n_S. Assumption.
- Qed.
-
- Lemma alist_canonical : (l,l':(alist A))
- (eqm A (alist_semantics A l) (alist_semantics A l')) ->
- (alist_sorted_2 l) -> (alist_sorted_2 l') -> l=l'.
- Proof.
- Unfold eqm. Induction l. Induction l'. Trivial.
- Intro r. Elim r. Intros a y l0 H H0 H1 H2. Simpl in H0.
- Cut (NONE A)=(Case (ad_eq a a) of (SOME A y)
- (alist_semantics A l0 a)
- end).
- Rewrite (ad_eq_correct a). Intro. Discriminate H3.
- Exact (H0 a).
- Intro r. Elim r. Intros a y l0 H. Induction l'. Intros. Simpl in H0.
- Cut (Case (ad_eq a a) of (SOME A y)
- (alist_semantics A l0 a)
- end)=(NONE A).
- Rewrite (ad_eq_correct a). Intro. Discriminate H3.
- Exact (H0 a).
- Intro r'. Elim r'. Intros a' y' l'0 H0 H1 H2 H3. Elim (ad_less_total a a'). Intro H4.
- Elim H4. Intro H5.
- Cut (alist_semantics A (cons (a,y) l0) a)=(alist_semantics A (cons (a',y') l'0) a).
- Intro. Rewrite (alist_too_low l'0 a a' y' H5 H3) in H6. Simpl in H6.
- Rewrite (ad_eq_correct a) in H6. Discriminate H6.
- Exact (H1 a).
- Intro H5. Cut (alist_semantics A (cons (a,y) l0) a')=(alist_semantics A (cons (a',y') l'0) a').
- Intro. Rewrite (alist_too_low l0 a' a y H5 H2) in H6. Simpl in H6.
- Rewrite (ad_eq_correct a') in H6. Discriminate H6.
- Exact (H1 a').
- Intro H4. Rewrite H4.
- Cut (alist_semantics A (cons (a,y) l0) a)=(alist_semantics A (cons (a',y') l'0) a).
- Intro. Simpl in H5. Rewrite H4 in H5. Rewrite (ad_eq_correct a') in H5. Inversion H5.
- Rewrite H4 in H1. Rewrite H7 in H1. Cut l0=l'0. Intro. Rewrite H6. Reflexivity.
- Apply H. Rewrite H4 in H2. Rewrite H7 in H2.
- Exact (alist_semantics_same_tail l0 l'0 a' y' H2 H3 H1).
- Exact (alist_sorted_tail ? ? ? H2).
- Exact (alist_sorted_tail ? ? ? H3).
- Exact (H1 a).
- Qed.
-
-End LSort.
+ Lemma ad_less_total :
+ forall a a':ad, {ad_less a a' = true} + {ad_less a' a = true} + {a = a'}.
+ Proof.
+ intro a. refine
+ (ad_rec_double a
+ (fun a:ad =>
+ forall a':ad,
+ {ad_less a a' = true} + {ad_less a' a = true} + {a = a'}) _ _ _).
+ intro. elim (sumbool_of_bool (ad_less ad_z a')). intro H. left. left. assumption.
+ intro H. right. rewrite (ad_z_less_2 a' H). reflexivity.
+ intros a0 H a'. refine
+ (ad_rec_double a'
+ (fun a':ad =>
+ {ad_less (ad_double a0) a' = true} +
+ {ad_less a' (ad_double a0) = true} + {ad_double a0 = a'}) _ _ _).
+ elim (sumbool_of_bool (ad_less ad_z (ad_double a0))). intro H0. left. right. assumption.
+ intro H0. right. exact (ad_z_less_2 _ H0).
+ intros a1 H0. rewrite ad_less_def_1. rewrite ad_less_def_1. elim (H a1). intro H1.
+ left. assumption.
+ intro H1. right. rewrite H1. reflexivity.
+ intros a1 H0. left. left. apply ad_less_def_3.
+ intros a0 H a'. refine
+ (ad_rec_double a'
+ (fun a':ad =>
+ {ad_less (ad_double_plus_un a0) a' = true} +
+ {ad_less a' (ad_double_plus_un a0) = true} +
+ {ad_double_plus_un a0 = a'}) _ _ _).
+ left. right. case a0; reflexivity.
+ intros a1 H0. left. right. apply ad_less_def_3.
+ intros a1 H0. rewrite ad_less_def_2. rewrite ad_less_def_2. elim (H a1). intro H1.
+ left. assumption.
+ intro H1. right. rewrite H1. reflexivity.
+ Qed.
+
+ Lemma alist_too_low :
+ forall (l:alist A) (a a':ad) (y:A),
+ ad_less a a' = true ->
+ alist_sorted_2 ((a', y) :: l) ->
+ alist_semantics A ((a', y) :: l) a = NONE A.
+ Proof.
+ simple induction l. intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a' a)). intro H1.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (ad_less_not_refl a) in H. discriminate H.
+ intro H1. rewrite H1. reflexivity.
+ intro r. elim r. intros a y l0 H a0 a1 y0 H0 H1.
+ change
+ (match ad_eq a1 a0 with
+ | true => SOME A y0
+ | false => alist_semantics A ((a, y) :: l0) a0
+ end = NONE A) in |- *.
+ elim (sumbool_of_bool (ad_eq a1 a0)). intro H2. rewrite (ad_eq_complete _ _ H2) in H0.
+ rewrite (ad_less_not_refl a0) in H0. discriminate H0.
+ intro H2. rewrite H2. apply H. apply ad_less_trans with (a' := a1). assumption.
+ unfold alist_sorted_2 in H1. apply (H1 0 1). apply lt_n_Sn.
+ simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n.
+ apply alist_sorted_1_imp_2. apply alist_sorted_imp_1.
+ cut (alist_sorted ((a1, y0) :: (a, y) :: l0) = true). intro H3.
+ exact (proj2 (andb_prop _ _ H3)).
+ apply alist_sorted_2_imp. assumption.
+ Qed.
+
+ Lemma alist_semantics_nth_ad :
+ forall (l:alist A) (a:ad) (y:A),
+ alist_semantics A l a = SOME A y ->
+ {n : nat | S n <= length l /\ alist_nth_ad n l = a}.
+ Proof.
+ simple induction l. intros. discriminate H.
+ intro r. elim r. intros a y l0 H a0 y0 H0. simpl in H0. elim (sumbool_of_bool (ad_eq a a0)).
+ intro H1. rewrite H1 in H0. split with 0. split. simpl in |- *. apply le_n_S. apply le_O_n.
+ simpl in |- *. exact (ad_eq_complete _ _ H1).
+ intro H1. rewrite H1 in H0. elim (H a0 y0 H0). intros n' H2. split with (S n'). split.
+ simpl in |- *. apply le_n_S. exact (proj1 H2).
+ exact (proj2 H2).
+ Qed.
+
+ Lemma alist_semantics_tail :
+ forall (l:alist A) (a:ad) (y:A),
+ alist_sorted_2 ((a, y) :: l) ->
+ eqm A (alist_semantics A l)
+ (fun a0:ad =>
+ if ad_eq a a0 then NONE A else alist_semantics A ((a, y) :: l) a0).
+ Proof.
+ unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0.
+ rewrite <- (ad_eq_complete _ _ H0). unfold alist_sorted_2 in H.
+ elim (option_sum A (alist_semantics A l a)). intro H1. elim H1. intros y0 H2.
+ elim (alist_semantics_nth_ad l a y0 H2). intros n H3. elim H3. intros.
+ cut
+ (ad_less (alist_nth_ad 0 ((a, y) :: l))
+ (alist_nth_ad (S n) ((a, y) :: l)) = true).
+ intro. simpl in H6. rewrite H5 in H6. rewrite (ad_less_not_refl a) in H6. discriminate H6.
+ apply H. apply lt_O_Sn.
+ simpl in |- *. apply le_n_S. assumption.
+ trivial.
+ intro H0. simpl in |- *. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma alist_semantics_same_tail :
+ forall (l l':alist A) (a:ad) (y:A),
+ alist_sorted_2 ((a, y) :: l) ->
+ alist_sorted_2 ((a, y) :: l') ->
+ eqm A (alist_semantics A ((a, y) :: l))
+ (alist_semantics A ((a, y) :: l')) ->
+ eqm A (alist_semantics A l) (alist_semantics A l').
+ Proof.
+ unfold eqm in |- *. intros. rewrite (alist_semantics_tail _ _ _ H a0).
+ rewrite (alist_semantics_tail _ _ _ H0 a0). case (ad_eq a a0). reflexivity.
+ exact (H1 a0).
+ Qed.
+
+ Lemma alist_sorted_tail :
+ forall (l:alist A) (a:ad) (y:A),
+ alist_sorted_2 ((a, y) :: l) -> alist_sorted_2 l.
+ Proof.
+ unfold alist_sorted_2 in |- *. intros. apply (H (S m) (S n)). apply lt_n_S. assumption.
+ simpl in |- *. apply le_n_S. assumption.
+ Qed.
+
+ Lemma alist_canonical :
+ forall l l':alist A,
+ eqm A (alist_semantics A l) (alist_semantics A l') ->
+ alist_sorted_2 l -> alist_sorted_2 l' -> l = l'.
+ Proof.
+ unfold eqm in |- *. simple induction l. simple induction l'. trivial.
+ intro r. elim r. intros a y l0 H H0 H1 H2. simpl in H0.
+ cut
+ (NONE A =
+ match ad_eq a a with
+ | true => SOME A y
+ | false => alist_semantics A l0 a
+ end).
+ rewrite (ad_eq_correct a). intro. discriminate H3.
+ exact (H0 a).
+ intro r. elim r. intros a y l0 H. simple induction l'. intros. simpl in H0.
+ cut
+ (match ad_eq a a with
+ | true => SOME A y
+ | false => alist_semantics A l0 a
+ end = NONE A).
+ rewrite (ad_eq_correct a). intro. discriminate H3.
+ exact (H0 a).
+ intro r'. elim r'. intros a' y' l'0 H0 H1 H2 H3. elim (ad_less_total a a'). intro H4.
+ elim H4. intro H5.
+ cut
+ (alist_semantics A ((a, y) :: l0) a =
+ alist_semantics A ((a', y') :: l'0) a).
+ intro. rewrite (alist_too_low l'0 a a' y' H5 H3) in H6. simpl in H6.
+ rewrite (ad_eq_correct a) in H6. discriminate H6.
+ exact (H1 a).
+ intro H5. cut
+ (alist_semantics A ((a, y) :: l0) a' =
+ alist_semantics A ((a', y') :: l'0) a').
+ intro. rewrite (alist_too_low l0 a' a y H5 H2) in H6. simpl in H6.
+ rewrite (ad_eq_correct a') in H6. discriminate H6.
+ exact (H1 a').
+ intro H4. rewrite H4.
+ cut
+ (alist_semantics A ((a, y) :: l0) a =
+ alist_semantics A ((a', y') :: l'0) a).
+ intro. simpl in H5. rewrite H4 in H5. rewrite (ad_eq_correct a') in H5. inversion H5.
+ rewrite H4 in H1. rewrite H7 in H1. cut (l0 = l'0). intro. rewrite H6. reflexivity.
+ apply H. rewrite H4 in H2. rewrite H7 in H2.
+ exact (alist_semantics_same_tail l0 l'0 a' y' H2 H3 H1).
+ exact (alist_sorted_tail _ _ _ H2).
+ exact (alist_sorted_tail _ _ _ H3).
+ exact (H1 a).
+ Qed.
+
+End LSort. \ No newline at end of file
diff --git a/theories/IntMap/Map.v b/theories/IntMap/Map.v
index b89f610421..68091d6f0b 100644
--- a/theories/IntMap/Map.v
+++ b/theories/IntMap/Map.v
@@ -9,12 +9,12 @@
(** Definition of finite sets as trees indexed by adresses *)
-Require Bool.
-Require Sumbool.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
Section MapDefs.
@@ -23,174 +23,197 @@ Section MapDefs.
Variable A : Set.
Inductive Map : Set :=
- M0 : Map
+ | M0 : Map
| M1 : ad -> A -> Map
| M2 : Map -> Map -> Map.
Inductive option : Set :=
- NONE : option
+ | NONE : option
| SOME : A -> option.
- Lemma option_sum : (o:option) {y:A | o=(SOME y)}+{o=NONE}.
+ Lemma option_sum : forall o:option, {y : A | o = SOME y} + {o = NONE}.
Proof.
- Induction o. Right . Reflexivity.
- Left . Split with a. Reflexivity.
+ simple induction o. right. reflexivity.
+ left. split with a. reflexivity.
Qed.
(** The semantics of maps is given by the function [MapGet].
The semantics of a map [m] is a partial, finite function from
[ad] to [A]: *)
- Fixpoint MapGet [m:Map] : ad -> option :=
- Cases m of
- M0 => [a:ad] NONE
- | (M1 x y) => [a:ad]
- if (ad_eq x a)
- then (SOME y)
- else NONE
- | (M2 m1 m2) => [a:ad]
- Cases a of
- ad_z => (MapGet m1 ad_z)
- | (ad_x xH) => (MapGet m2 ad_z)
- | (ad_x (xO p)) => (MapGet m1 (ad_x p))
- | (ad_x (xI p)) => (MapGet m2 (ad_x p))
- end
+ Fixpoint MapGet (m:Map) : ad -> option :=
+ match m with
+ | M0 => fun a:ad => NONE
+ | M1 x y => fun a:ad => if ad_eq x a then SOME y else NONE
+ | M2 m1 m2 =>
+ fun a:ad =>
+ match a with
+ | ad_z => MapGet m1 ad_z
+ | ad_x xH => MapGet m2 ad_z
+ | ad_x (xO p) => MapGet m1 (ad_x p)
+ | ad_x (xI p) => MapGet m2 (ad_x p)
+ end
end.
Definition newMap := M0.
Definition MapSingleton := M1.
- Definition eqm := [g,g':ad->option] (a:ad) (g a)=(g' a).
+ Definition eqm (g g':ad -> option) := forall a:ad, g a = g' a.
- Lemma newMap_semantics : (eqm (MapGet newMap) [a:ad] NONE).
+ Lemma newMap_semantics : eqm (MapGet newMap) (fun a:ad => NONE).
Proof.
- Simpl. Unfold eqm. Trivial.
+ simpl in |- *. unfold eqm in |- *. trivial.
Qed.
- Lemma MapSingleton_semantics : (a:ad) (y:A)
- (eqm (MapGet (MapSingleton a y)) [a':ad] if (ad_eq a a') then (SOME y) else NONE).
+ Lemma MapSingleton_semantics :
+ forall (a:ad) (y:A),
+ eqm (MapGet (MapSingleton a y))
+ (fun a':ad => if ad_eq a a' then SOME y else NONE).
Proof.
- Simpl. Unfold eqm. Trivial.
+ simpl in |- *. unfold eqm in |- *. trivial.
Qed.
- Lemma M1_semantics_1 : (a:ad) (y:A) (MapGet (M1 a y) a)=(SOME y).
+ Lemma M1_semantics_1 : forall (a:ad) (y:A), MapGet (M1 a y) a = SOME y.
Proof.
- Unfold MapGet. Intros. Rewrite (ad_eq_correct a). Reflexivity.
+ unfold MapGet in |- *. intros. rewrite (ad_eq_correct a). reflexivity.
Qed.
Lemma M1_semantics_2 :
- (a,a':ad) (y:A) (ad_eq a a')=false -> (MapGet (M1 a y) a')=NONE.
+ forall (a a':ad) (y:A), ad_eq a a' = false -> MapGet (M1 a y) a' = NONE.
Proof.
- Intros. Simpl. Rewrite H. Reflexivity.
+ intros. simpl in |- *. rewrite H. reflexivity.
Qed.
Lemma Map2_semantics_1 :
- (m,m':Map) (eqm (MapGet m) [a:ad] (MapGet (M2 m m') (ad_double a))).
+ forall m m':Map,
+ eqm (MapGet m) (fun a:ad => MapGet (M2 m m') (ad_double a)).
Proof.
- Unfold eqm. Induction a; Trivial.
+ unfold eqm in |- *. simple induction a; trivial.
Qed.
- Lemma Map2_semantics_1_eq : (m,m':Map) (f:ad->option) (eqm (MapGet (M2 m m')) f)
- -> (eqm (MapGet m) [a:ad] (f (ad_double a))).
+ Lemma Map2_semantics_1_eq :
+ forall (m m':Map) (f:ad -> option),
+ eqm (MapGet (M2 m m')) f -> eqm (MapGet m) (fun a:ad => f (ad_double a)).
Proof.
- Unfold eqm.
- Intros.
- Rewrite <- (H (ad_double a)).
- Exact (Map2_semantics_1 m m' a).
+ unfold eqm in |- *.
+ intros.
+ rewrite <- (H (ad_double a)).
+ exact (Map2_semantics_1 m m' a).
Qed.
Lemma Map2_semantics_2 :
- (m,m':Map) (eqm (MapGet m') [a:ad] (MapGet (M2 m m') (ad_double_plus_un a))).
- Proof.
- Unfold eqm. Induction a; Trivial.
- Qed.
-
- Lemma Map2_semantics_2_eq : (m,m':Map) (f:ad->option) (eqm (MapGet (M2 m m')) f)
- -> (eqm (MapGet m') [a:ad] (f (ad_double_plus_un a))).
- Proof.
- Unfold eqm.
- Intros.
- Rewrite <- (H (ad_double_plus_un a)).
- Exact (Map2_semantics_2 m m' a).
- Qed.
-
- Lemma MapGet_M2_bit_0_0 : (a:ad) (ad_bit_0 a)=false
- -> (m,m':Map) (MapGet (M2 m m') a)=(MapGet m (ad_div_2 a)).
- Proof.
- Induction a; Trivial. Induction p. Intros. Discriminate H0.
- Trivial.
- Intros. Discriminate H.
- Qed.
-
- Lemma MapGet_M2_bit_0_1 : (a:ad) (ad_bit_0 a)=true
- -> (m,m':Map) (MapGet (M2 m m') a)=(MapGet m' (ad_div_2 a)).
- Proof.
- Induction a. Intros. Discriminate H.
- Induction p. Trivial.
- Intros. Discriminate H0.
- Trivial.
- Qed.
-
- Lemma MapGet_M2_bit_0_if : (m,m':Map) (a:ad) (MapGet (M2 m m') a)=
- (if (ad_bit_0 a) then (MapGet m' (ad_div_2 a)) else (MapGet m (ad_div_2 a))).
- Proof.
- Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H. Rewrite H.
- Apply MapGet_M2_bit_0_1; Assumption.
- Intro H. Rewrite H. Apply MapGet_M2_bit_0_0; Assumption.
- Qed.
-
- Lemma MapGet_M2_bit_0 : (m,m',m'':Map)
- (a:ad) (if (ad_bit_0 a) then (MapGet (M2 m' m) a) else (MapGet (M2 m m'') a))=
- (MapGet m (ad_div_2 a)).
- Proof.
- Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H. Rewrite H.
- Apply MapGet_M2_bit_0_1; Assumption.
- Intro H. Rewrite H. Apply MapGet_M2_bit_0_0; Assumption.
- Qed.
-
- Lemma Map2_semantics_3 : (m,m':Map) (eqm (MapGet (M2 m m'))
- [a:ad] Cases (ad_bit_0 a) of
- false => (MapGet m (ad_div_2 a))
- | true => (MapGet m' (ad_div_2 a))
- end).
- Proof.
- Unfold eqm.
- Induction a; Trivial.
- Induction p; Trivial.
- Qed.
-
- Lemma Map2_semantics_3_eq : (m,m':Map) (f,f':ad->option)
- (eqm (MapGet m) f) -> (eqm (MapGet m') f') -> (eqm (MapGet (M2 m m'))
- [a:ad] Cases (ad_bit_0 a) of
- false => (f (ad_div_2 a))
- | true => (f' (ad_div_2 a))
- end).
- Proof.
- Unfold eqm.
- Intros.
- Rewrite <- (H (ad_div_2 a)).
- Rewrite <- (H0 (ad_div_2 a)).
- Exact (Map2_semantics_3 m m' a).
- Qed.
-
- Fixpoint MapPut1 [a:ad; y:A; a':ad; y':A; p:positive] : Map :=
- Cases p of
- (xO p') => let m = (MapPut1 (ad_div_2 a) y (ad_div_2 a') y' p') in
- Cases (ad_bit_0 a) of
- false => (M2 m M0)
- | true => (M2 M0 m)
- end
- | _ => Cases (ad_bit_0 a) of
- false => (M2 (M1 (ad_div_2 a) y) (M1 (ad_div_2 a') y'))
- | true => (M2 (M1 (ad_div_2 a') y') (M1 (ad_div_2 a) y))
- end
+ forall m m':Map,
+ eqm (MapGet m') (fun a:ad => MapGet (M2 m m') (ad_double_plus_un a)).
+ Proof.
+ unfold eqm in |- *. simple induction a; trivial.
+ Qed.
+
+ Lemma Map2_semantics_2_eq :
+ forall (m m':Map) (f:ad -> option),
+ eqm (MapGet (M2 m m')) f ->
+ eqm (MapGet m') (fun a:ad => f (ad_double_plus_un a)).
+ Proof.
+ unfold eqm in |- *.
+ intros.
+ rewrite <- (H (ad_double_plus_un a)).
+ exact (Map2_semantics_2 m m' a).
+ Qed.
+
+ Lemma MapGet_M2_bit_0_0 :
+ forall a:ad,
+ ad_bit_0 a = false ->
+ forall m m':Map, MapGet (M2 m m') a = MapGet m (ad_div_2 a).
+ Proof.
+ simple induction a; trivial. simple induction p. intros. discriminate H0.
+ trivial.
+ intros. discriminate H.
+ Qed.
+
+ Lemma MapGet_M2_bit_0_1 :
+ forall a:ad,
+ ad_bit_0 a = true ->
+ forall m m':Map, MapGet (M2 m m') a = MapGet m' (ad_div_2 a).
+ Proof.
+ simple induction a. intros. discriminate H.
+ simple induction p. trivial.
+ intros. discriminate H0.
+ trivial.
+ Qed.
+
+ Lemma MapGet_M2_bit_0_if :
+ forall (m m':Map) (a:ad),
+ MapGet (M2 m m') a =
+ (if ad_bit_0 a then MapGet m' (ad_div_2 a) else MapGet m (ad_div_2 a)).
+ Proof.
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H. rewrite H.
+ apply MapGet_M2_bit_0_1; assumption.
+ intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption.
+ Qed.
+
+ Lemma MapGet_M2_bit_0 :
+ forall (m m' m'':Map) (a:ad),
+ (if ad_bit_0 a then MapGet (M2 m' m) a else MapGet (M2 m m'') a) =
+ MapGet m (ad_div_2 a).
+ Proof.
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H. rewrite H.
+ apply MapGet_M2_bit_0_1; assumption.
+ intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption.
+ Qed.
+
+ Lemma Map2_semantics_3 :
+ forall m m':Map,
+ eqm (MapGet (M2 m m'))
+ (fun a:ad =>
+ match ad_bit_0 a with
+ | false => MapGet m (ad_div_2 a)
+ | true => MapGet m' (ad_div_2 a)
+ end).
+ Proof.
+ unfold eqm in |- *.
+ simple induction a; trivial.
+ simple induction p; trivial.
+ Qed.
+
+ Lemma Map2_semantics_3_eq :
+ forall (m m':Map) (f f':ad -> option),
+ eqm (MapGet m) f ->
+ eqm (MapGet m') f' ->
+ eqm (MapGet (M2 m m'))
+ (fun a:ad =>
+ match ad_bit_0 a with
+ | false => f (ad_div_2 a)
+ | true => f' (ad_div_2 a)
+ end).
+ Proof.
+ unfold eqm in |- *.
+ intros.
+ rewrite <- (H (ad_div_2 a)).
+ rewrite <- (H0 (ad_div_2 a)).
+ exact (Map2_semantics_3 m m' a).
+ Qed.
+
+ Fixpoint MapPut1 (a:ad) (y:A) (a':ad) (y':A) (p:positive) {struct p} :
+ Map :=
+ match p with
+ | xO p' =>
+ let m := MapPut1 (ad_div_2 a) y (ad_div_2 a') y' p' in
+ match ad_bit_0 a with
+ | false => M2 m M0
+ | true => M2 M0 m
+ end
+ | _ =>
+ match ad_bit_0 a with
+ | false => M2 (M1 (ad_div_2 a) y) (M1 (ad_div_2 a') y')
+ | true => M2 (M1 (ad_div_2 a') y') (M1 (ad_div_2 a) y)
+ end
end.
- Lemma MapGet_if_commute : (b:bool) (m,m':Map) (a:ad)
- (MapGet (if b then m else m') a)=(if b then (MapGet m a) else (MapGet m' a)).
+ Lemma MapGet_if_commute :
+ forall (b:bool) (m m':Map) (a:ad),
+ MapGet (if b then m else m') a = (if b then MapGet m a else MapGet m' a).
Proof.
- Intros. Case b; Trivial.
+ intros. case b; trivial.
Qed.
(*i
@@ -206,581 +229,637 @@ Section MapDefs.
Qed.
i*)
- Lemma MapGet_if_same : (m:Map) (b:bool) (a:ad)
- (MapGet (if b then m else m) a)=(MapGet m a).
+ Lemma MapGet_if_same :
+ forall (m:Map) (b:bool) (a:ad), MapGet (if b then m else m) a = MapGet m a.
Proof.
- Induction b;Trivial.
+ simple induction b; trivial.
Qed.
- Lemma MapGet_M2_bit_0_2 : (m,m',m'':Map)
- (a:ad) (MapGet (if (ad_bit_0 a) then (M2 m m') else (M2 m' m'')) a)=
- (MapGet m' (ad_div_2 a)).
+ Lemma MapGet_M2_bit_0_2 :
+ forall (m m' m'':Map) (a:ad),
+ MapGet (if ad_bit_0 a then M2 m m' else M2 m' m'') a =
+ MapGet m' (ad_div_2 a).
Proof.
- Intros. Rewrite MapGet_if_commute. Apply MapGet_M2_bit_0.
+ intros. rewrite MapGet_if_commute. apply MapGet_M2_bit_0.
Qed.
- Lemma MapPut1_semantics_1 : (p:positive) (a,a':ad) (y,y':A)
- (ad_xor a a')=(ad_x p)
- -> (MapGet (MapPut1 a y a' y' p) a)=(SOME y).
+ Lemma MapPut1_semantics_1 :
+ forall (p:positive) (a a':ad) (y y':A),
+ ad_xor a a' = ad_x p -> MapGet (MapPut1 a y a' y' p) a = SOME y.
Proof.
- Induction p. Intros. Unfold MapPut1. Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_1.
- Intros. Simpl. Rewrite MapGet_M2_bit_0_2. Apply H. Rewrite <- ad_xor_div_2. Rewrite H0.
- Reflexivity.
- Intros. Unfold MapPut1. Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_1.
+ simple induction p. intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
+ intros. simpl in |- *. rewrite MapGet_M2_bit_0_2. apply H. rewrite <- ad_xor_div_2. rewrite H0.
+ reflexivity.
+ intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
Qed.
- Lemma MapPut1_semantics_2 : (p:positive) (a,a':ad) (y,y':A)
- (ad_xor a a')=(ad_x p)
- -> (MapGet (MapPut1 a y a' y' p) a')=(SOME y').
+ Lemma MapPut1_semantics_2 :
+ forall (p:positive) (a a':ad) (y y':A),
+ ad_xor a a' = ad_x p -> MapGet (MapPut1 a y a' y' p) a' = SOME y'.
Proof.
- Induction p. Intros. Unfold MapPut1. Rewrite (ad_neg_bit_0_2 a a' p0 H0).
- Rewrite if_negb. Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_1.
- Intros. Simpl. Rewrite (ad_same_bit_0 a a' p0 H0). Rewrite MapGet_M2_bit_0_2.
- Apply H. Rewrite <- ad_xor_div_2. Rewrite H0. Reflexivity.
- Intros. Unfold MapPut1. Rewrite (ad_neg_bit_0_1 a a' H). Rewrite if_negb.
- Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_1.
+ simple induction p. intros. unfold MapPut1 in |- *. rewrite (ad_neg_bit_0_2 a a' p0 H0).
+ rewrite if_negb. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
+ intros. simpl in |- *. rewrite (ad_same_bit_0 a a' p0 H0). rewrite MapGet_M2_bit_0_2.
+ apply H. rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
+ intros. unfold MapPut1 in |- *. rewrite (ad_neg_bit_0_1 a a' H). rewrite if_negb.
+ rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
Qed.
- Lemma MapGet_M2_both_NONE : (m,m':Map) (a:ad)
- (MapGet m (ad_div_2 a))=NONE -> (MapGet m' (ad_div_2 a))=NONE ->
- (MapGet (M2 m m') a)=NONE.
+ Lemma MapGet_M2_both_NONE :
+ forall (m m':Map) (a:ad),
+ MapGet m (ad_div_2 a) = NONE ->
+ MapGet m' (ad_div_2 a) = NONE -> MapGet (M2 m m') a = NONE.
Proof.
- Intros. Rewrite (Map2_semantics_3 m m' a).
- Case (ad_bit_0 a); Assumption.
+ intros. rewrite (Map2_semantics_3 m m' a).
+ case (ad_bit_0 a); assumption.
Qed.
- Lemma MapPut1_semantics_3 : (p:positive) (a,a',a0:ad) (y,y':A)
- (ad_xor a a')=(ad_x p) -> (ad_eq a a0)=false -> (ad_eq a' a0)=false ->
- (MapGet (MapPut1 a y a' y' p) a0)=NONE.
- Proof.
- Induction p. Intros. Unfold MapPut1. Elim (ad_neq a a0 H1). Intro. Rewrite H3. Rewrite if_negb.
- Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_2. Apply ad_div_bit_neq. Assumption.
- Rewrite (ad_neg_bit_0_2 a a' p0 H0) in H3. Rewrite (negb_intro (ad_bit_0 a')).
- Rewrite (negb_intro (ad_bit_0 a0)). Rewrite H3. Reflexivity.
- Intro. Elim (ad_neq a' a0 H2). Intro. Rewrite (ad_neg_bit_0_2 a a' p0 H0). Rewrite H4.
- Rewrite (negb_elim (ad_bit_0 a0)). Rewrite MapGet_M2_bit_0_2.
- Apply M1_semantics_2; Assumption.
- Intro; Case (ad_bit_0 a); Apply MapGet_M2_both_NONE;
- Apply M1_semantics_2; Assumption.
- Intros. Simpl. Elim (ad_neq a a0 H1). Intro. Rewrite H3. Rewrite if_negb.
- Rewrite MapGet_M2_bit_0_2. Reflexivity.
- Intro. Elim (ad_neq a' a0 H2). Intro. Rewrite (ad_same_bit_0 a a' p0 H0). Rewrite H4.
- Rewrite if_negb. Rewrite MapGet_M2_bit_0_2. Reflexivity.
- Intro. Cut (ad_xor (ad_div_2 a) (ad_div_2 a'))=(ad_x p0). Intro.
- Case (ad_bit_0 a); Apply MapGet_M2_both_NONE; Trivial;
- Apply H; Assumption.
- Rewrite <- ad_xor_div_2. Rewrite H0. Reflexivity.
- Intros. Simpl. Elim (ad_neq a a0 H0). Intro. Rewrite H2. Rewrite if_negb.
- Rewrite MapGet_M2_bit_0_2. Apply M1_semantics_2. Apply ad_div_bit_neq. Assumption.
- Rewrite (ad_neg_bit_0_1 a a' H) in H2. Rewrite (negb_intro (ad_bit_0 a')).
- Rewrite (negb_intro (ad_bit_0 a0)). Rewrite H2. Reflexivity.
- Intro. Elim (ad_neq a' a0 H1). Intro. Rewrite (ad_neg_bit_0_1 a a' H). Rewrite H3.
- Rewrite (negb_elim (ad_bit_0 a0)). Rewrite MapGet_M2_bit_0_2.
- Apply M1_semantics_2; Assumption.
- Intro. Case (ad_bit_0 a); Apply MapGet_M2_both_NONE; Apply M1_semantics_2; Assumption.
- Qed.
-
- Lemma MapPut1_semantics : (p:positive) (a,a':ad) (y,y':A)
- (ad_xor a a')=(ad_x p)
- -> (eqm (MapGet (MapPut1 a y a' y' p))
- [a0:ad] if (ad_eq a a0) then (SOME y)
- else if (ad_eq a' a0) then (SOME y') else NONE).
- Proof.
- Unfold eqm. Intros. Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. Rewrite H0.
- Rewrite <- (ad_eq_complete ? ? H0). Exact (MapPut1_semantics_1 p a a' y y' H).
- Intro H0. Rewrite H0. Elim (sumbool_of_bool (ad_eq a' a0)). Intro H1.
- Rewrite <- (ad_eq_complete ? ? H1). Rewrite (ad_eq_correct a').
- Exact (MapPut1_semantics_2 p a a' y y' H).
- Intro H1. Rewrite H1. Exact (MapPut1_semantics_3 p a a' a0 y y' H H0 H1).
- Qed.
-
- Lemma MapPut1_semantics' : (p:positive) (a,a':ad) (y,y':A)
- (ad_xor a a')=(ad_x p)
- -> (eqm (MapGet (MapPut1 a y a' y' p))
- [a0:ad] if (ad_eq a' a0) then (SOME y')
- else if (ad_eq a a0) then (SOME y) else NONE).
- Proof.
- Unfold eqm. Intros. Rewrite (MapPut1_semantics p a a' y y' H a0).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. Rewrite H0.
- Rewrite <- (ad_eq_complete a a0 H0). Rewrite (ad_eq_comm a' a).
- Rewrite (ad_xor_eq_false a a' p H). Reflexivity.
- Intro H0. Rewrite H0. Reflexivity.
- Qed.
-
- Fixpoint MapPut [m:Map] : ad -> A -> Map :=
- Cases m of
- M0 => M1
- | (M1 a y) => [a':ad; y':A]
- Cases (ad_xor a a') of
- ad_z => (M1 a' y')
- | (ad_x p) => (MapPut1 a y a' y' p)
+ Lemma MapPut1_semantics_3 :
+ forall (p:positive) (a a' a0:ad) (y y':A),
+ ad_xor a a' = ad_x p ->
+ ad_eq a a0 = false ->
+ ad_eq a' a0 = false -> MapGet (MapPut1 a y a' y' p) a0 = NONE.
+ Proof.
+ simple induction p. intros. unfold MapPut1 in |- *. elim (ad_neq a a0 H1). intro. rewrite H3. rewrite if_negb.
+ rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply ad_div_bit_neq. assumption.
+ rewrite (ad_neg_bit_0_2 a a' p0 H0) in H3. rewrite (negb_intro (ad_bit_0 a')).
+ rewrite (negb_intro (ad_bit_0 a0)). rewrite H3. reflexivity.
+ intro. elim (ad_neq a' a0 H2). intro. rewrite (ad_neg_bit_0_2 a a' p0 H0). rewrite H4.
+ rewrite (negb_elim (ad_bit_0 a0)). rewrite MapGet_M2_bit_0_2.
+ apply M1_semantics_2; assumption.
+ intro; case (ad_bit_0 a); apply MapGet_M2_both_NONE; apply M1_semantics_2;
+ assumption.
+ intros. simpl in |- *. elim (ad_neq a a0 H1). intro. rewrite H3. rewrite if_negb.
+ rewrite MapGet_M2_bit_0_2. reflexivity.
+ intro. elim (ad_neq a' a0 H2). intro. rewrite (ad_same_bit_0 a a' p0 H0). rewrite H4.
+ rewrite if_negb. rewrite MapGet_M2_bit_0_2. reflexivity.
+ intro. cut (ad_xor (ad_div_2 a) (ad_div_2 a') = ad_x p0). intro.
+ case (ad_bit_0 a); apply MapGet_M2_both_NONE; trivial; apply H;
+ assumption.
+ rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
+ intros. simpl in |- *. elim (ad_neq a a0 H0). intro. rewrite H2. rewrite if_negb.
+ rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply ad_div_bit_neq. assumption.
+ rewrite (ad_neg_bit_0_1 a a' H) in H2. rewrite (negb_intro (ad_bit_0 a')).
+ rewrite (negb_intro (ad_bit_0 a0)). rewrite H2. reflexivity.
+ intro. elim (ad_neq a' a0 H1). intro. rewrite (ad_neg_bit_0_1 a a' H). rewrite H3.
+ rewrite (negb_elim (ad_bit_0 a0)). rewrite MapGet_M2_bit_0_2.
+ apply M1_semantics_2; assumption.
+ intro. case (ad_bit_0 a); apply MapGet_M2_both_NONE; apply M1_semantics_2;
+ assumption.
+ Qed.
+
+ Lemma MapPut1_semantics :
+ forall (p:positive) (a a':ad) (y y':A),
+ ad_xor a a' = ad_x p ->
+ eqm (MapGet (MapPut1 a y a' y' p))
+ (fun a0:ad =>
+ if ad_eq a a0
+ then SOME y
+ else if ad_eq a' a0 then SOME y' else NONE).
+ Proof.
+ unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0.
+ rewrite <- (ad_eq_complete _ _ H0). exact (MapPut1_semantics_1 p a a' y y' H).
+ intro H0. rewrite H0. elim (sumbool_of_bool (ad_eq a' a0)). intro H1.
+ rewrite <- (ad_eq_complete _ _ H1). rewrite (ad_eq_correct a').
+ exact (MapPut1_semantics_2 p a a' y y' H).
+ intro H1. rewrite H1. exact (MapPut1_semantics_3 p a a' a0 y y' H H0 H1).
+ Qed.
+
+ Lemma MapPut1_semantics' :
+ forall (p:positive) (a a':ad) (y y':A),
+ ad_xor a a' = ad_x p ->
+ eqm (MapGet (MapPut1 a y a' y' p))
+ (fun a0:ad =>
+ if ad_eq a' a0
+ then SOME y'
+ else if ad_eq a a0 then SOME y else NONE).
+ Proof.
+ unfold eqm in |- *. intros. rewrite (MapPut1_semantics p a a' y y' H a0).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0.
+ rewrite <- (ad_eq_complete a a0 H0). rewrite (ad_eq_comm a' a).
+ rewrite (ad_xor_eq_false a a' p H). reflexivity.
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Fixpoint MapPut (m:Map) : ad -> A -> Map :=
+ match m with
+ | M0 => M1
+ | M1 a y =>
+ fun (a':ad) (y':A) =>
+ match ad_xor a a' with
+ | ad_z => M1 a' y'
+ | ad_x p => MapPut1 a y a' y' p
+ end
+ | M2 m1 m2 =>
+ fun (a:ad) (y:A) =>
+ match a with
+ | ad_z => M2 (MapPut m1 ad_z y) m2
+ | ad_x xH => M2 m1 (MapPut m2 ad_z y)
+ | ad_x (xO p) => M2 (MapPut m1 (ad_x p) y) m2
+ | ad_x (xI p) => M2 m1 (MapPut m2 (ad_x p) y)
end
- | (M2 m1 m2) => [a:ad; y:A]
- Cases a of
- ad_z => (M2 (MapPut m1 ad_z y) m2)
- | (ad_x xH) => (M2 m1 (MapPut m2 ad_z y))
- | (ad_x (xO p)) => (M2 (MapPut m1 (ad_x p) y) m2)
- | (ad_x (xI p)) => (M2 m1 (MapPut m2 (ad_x p) y))
- end
end.
- Lemma MapPut_semantics_1 : (a:ad) (y:A) (a0:ad)
- (MapGet (MapPut M0 a y) a0)=(MapGet (M1 a y) a0).
- Proof.
- Trivial.
- Qed.
-
- Lemma MapPut_semantics_2_1 : (a:ad) (y,y':A) (a0:ad)
- (MapGet (MapPut (M1 a y) a y') a0)=(if (ad_eq a a0) then (SOME y') else NONE).
- Proof.
- Simpl. Intros. Rewrite (ad_xor_nilpotent a). Trivial.
- Qed.
-
- Lemma MapPut_semantics_2_2 : (a,a':ad) (y,y':A) (a0:ad) (a'':ad) (ad_xor a a')=a'' ->
- (MapGet (MapPut (M1 a y) a' y') a0)=
- (if (ad_eq a' a0) then (SOME y') else
- if (ad_eq a a0) then (SOME y) else NONE).
- Proof.
- Induction a''. Intro. Rewrite (ad_xor_eq ? ? H). Rewrite MapPut_semantics_2_1.
- Case (ad_eq a' a0); Trivial.
- Intros. Simpl. Rewrite H. Rewrite (MapPut1_semantics p a a' y y' H a0).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. Rewrite H0. Rewrite <- (ad_eq_complete ? ? H0).
- Rewrite (ad_eq_comm a' a). Rewrite (ad_xor_eq_false ? ? ? H). Reflexivity.
- Intro H0. Rewrite H0. Reflexivity.
- Qed.
-
- Lemma MapPut_semantics_2 : (a,a':ad) (y,y':A) (a0:ad)
- (MapGet (MapPut (M1 a y) a' y') a0)=
- (if (ad_eq a' a0) then (SOME y') else
- if (ad_eq a a0) then (SOME y) else NONE).
- Proof.
- Intros. Apply MapPut_semantics_2_2 with a'':=(ad_xor a a'); Trivial.
- Qed.
-
- Lemma MapPut_semantics_3_1 : (m,m':Map) (a:ad) (y:A)
- (MapPut (M2 m m') a y)=(if (ad_bit_0 a) then (M2 m (MapPut m' (ad_div_2 a) y))
- else (M2 (MapPut m (ad_div_2 a) y) m')).
- Proof.
- Induction a. Trivial.
- Induction p; Trivial.
- Qed.
-
- Lemma MapPut_semantics : (m:Map) (a:ad) (y:A)
- (eqm (MapGet (MapPut m a y)) [a':ad] if (ad_eq a a') then (SOME y) else (MapGet m a')).
- Proof.
- Unfold eqm. Induction m. Exact MapPut_semantics_1.
- Intros. Unfold 2 MapGet. Apply MapPut_semantics_2; Assumption.
- Intros. Rewrite MapPut_semantics_3_1. Rewrite (MapGet_M2_bit_0_if m0 m1 a0).
- Elim (sumbool_of_bool (ad_bit_0 a)). Intro H1. Rewrite H1. Rewrite MapGet_M2_bit_0_if.
- Elim (sumbool_of_bool (ad_bit_0 a0)). Intro H2. Rewrite H2.
- Rewrite (H0 (ad_div_2 a) y (ad_div_2 a0)). Elim (sumbool_of_bool (ad_eq a a0)).
- Intro H3. Rewrite H3. Rewrite (ad_div_eq ? ? H3). Reflexivity.
- Intro H3. Rewrite H3. Rewrite <- H2 in H1. Rewrite (ad_div_bit_neq ? ? H3 H1). Reflexivity.
- Intro H2. Rewrite H2. Rewrite (ad_eq_comm a a0). Rewrite (ad_bit_0_neq a0 a H2 H1).
- Reflexivity.
- Intro H1. Rewrite H1. Rewrite MapGet_M2_bit_0_if. Elim (sumbool_of_bool (ad_bit_0 a0)).
- Intro H2. Rewrite H2. Rewrite (ad_bit_0_neq a a0 H1 H2). Reflexivity.
- Intro H2. Rewrite H2. Rewrite (H (ad_div_2 a) y (ad_div_2 a0)).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H3. Rewrite H3.
- Rewrite (ad_div_eq a a0 H3). Reflexivity.
- Intro H3. Rewrite H3. Rewrite <- H2 in H1. Rewrite (ad_div_bit_neq a a0 H3 H1). Reflexivity.
- Qed.
-
- Fixpoint MapPut_behind [m:Map] : ad -> A -> Map :=
- Cases m of
- M0 => M1
- | (M1 a y) => [a':ad; y':A]
- Cases (ad_xor a a') of
- ad_z => m
- | (ad_x p) => (MapPut1 a y a' y' p)
+ Lemma MapPut_semantics_1 :
+ forall (a:ad) (y:A) (a0:ad),
+ MapGet (MapPut M0 a y) a0 = MapGet (M1 a y) a0.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapPut_semantics_2_1 :
+ forall (a:ad) (y y':A) (a0:ad),
+ MapGet (MapPut (M1 a y) a y') a0 =
+ (if ad_eq a a0 then SOME y' else NONE).
+ Proof.
+ simpl in |- *. intros. rewrite (ad_xor_nilpotent a). trivial.
+ Qed.
+
+ Lemma MapPut_semantics_2_2 :
+ forall (a a':ad) (y y':A) (a0 a'':ad),
+ ad_xor a a' = a'' ->
+ MapGet (MapPut (M1 a y) a' y') a0 =
+ (if ad_eq a' a0 then SOME y' else if ad_eq a a0 then SOME y else NONE).
+ Proof.
+ simple induction a''. intro. rewrite (ad_xor_eq _ _ H). rewrite MapPut_semantics_2_1.
+ case (ad_eq a' a0); trivial.
+ intros. simpl in |- *. rewrite H. rewrite (MapPut1_semantics p a a' y y' H a0).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0. rewrite <- (ad_eq_complete _ _ H0).
+ rewrite (ad_eq_comm a' a). rewrite (ad_xor_eq_false _ _ _ H). reflexivity.
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapPut_semantics_2 :
+ forall (a a':ad) (y y':A) (a0:ad),
+ MapGet (MapPut (M1 a y) a' y') a0 =
+ (if ad_eq a' a0 then SOME y' else if ad_eq a a0 then SOME y else NONE).
+ Proof.
+ intros. apply MapPut_semantics_2_2 with (a'' := ad_xor a a'); trivial.
+ Qed.
+
+ Lemma MapPut_semantics_3_1 :
+ forall (m m':Map) (a:ad) (y:A),
+ MapPut (M2 m m') a y =
+ (if ad_bit_0 a
+ then M2 m (MapPut m' (ad_div_2 a) y)
+ else M2 (MapPut m (ad_div_2 a) y) m').
+ Proof.
+ simple induction a. trivial.
+ simple induction p; trivial.
+ Qed.
+
+ Lemma MapPut_semantics :
+ forall (m:Map) (a:ad) (y:A),
+ eqm (MapGet (MapPut m a y))
+ (fun a':ad => if ad_eq a a' then SOME y else MapGet m a').
+ Proof.
+ unfold eqm in |- *. simple induction m. exact MapPut_semantics_1.
+ intros. unfold MapGet at 2 in |- *. apply MapPut_semantics_2; assumption.
+ intros. rewrite MapPut_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a0).
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if.
+ elim (sumbool_of_bool (ad_bit_0 a0)). intro H2. rewrite H2.
+ rewrite (H0 (ad_div_2 a) y (ad_div_2 a0)). elim (sumbool_of_bool (ad_eq a a0)).
+ intro H3. rewrite H3. rewrite (ad_div_eq _ _ H3). reflexivity.
+ intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1). reflexivity.
+ intro H2. rewrite H2. rewrite (ad_eq_comm a a0). rewrite (ad_bit_0_neq a0 a H2 H1).
+ reflexivity.
+ intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a0)).
+ intro H2. rewrite H2. rewrite (ad_bit_0_neq a a0 H1 H2). reflexivity.
+ intro H2. rewrite H2. rewrite (H (ad_div_2 a) y (ad_div_2 a0)).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H3. rewrite H3.
+ rewrite (ad_div_eq a a0 H3). reflexivity.
+ intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq a a0 H3 H1). reflexivity.
+ Qed.
+
+ Fixpoint MapPut_behind (m:Map) : ad -> A -> Map :=
+ match m with
+ | M0 => M1
+ | M1 a y =>
+ fun (a':ad) (y':A) =>
+ match ad_xor a a' with
+ | ad_z => m
+ | ad_x p => MapPut1 a y a' y' p
+ end
+ | M2 m1 m2 =>
+ fun (a:ad) (y:A) =>
+ match a with
+ | ad_z => M2 (MapPut_behind m1 ad_z y) m2
+ | ad_x xH => M2 m1 (MapPut_behind m2 ad_z y)
+ | ad_x (xO p) => M2 (MapPut_behind m1 (ad_x p) y) m2
+ | ad_x (xI p) => M2 m1 (MapPut_behind m2 (ad_x p) y)
end
- | (M2 m1 m2) => [a:ad; y:A]
- Cases a of
- ad_z => (M2 (MapPut_behind m1 ad_z y) m2)
- | (ad_x xH) => (M2 m1 (MapPut_behind m2 ad_z y))
- | (ad_x (xO p)) => (M2 (MapPut_behind m1 (ad_x p) y) m2)
- | (ad_x (xI p)) => (M2 m1 (MapPut_behind m2 (ad_x p) y))
- end
end.
- Lemma MapPut_behind_semantics_3_1 : (m,m':Map) (a:ad) (y:A)
- (MapPut_behind (M2 m m') a y)=
- (if (ad_bit_0 a) then (M2 m (MapPut_behind m' (ad_div_2 a) y))
- else (M2 (MapPut_behind m (ad_div_2 a) y) m')).
- Proof.
- Induction a. Trivial.
- Induction p; Trivial.
- Qed.
-
- Lemma MapPut_behind_as_before_1 : (a,a',a0:ad) (ad_eq a' a0)=false ->
- (y,y':A) (MapGet (MapPut (M1 a y) a' y') a0)
- =(MapGet (MapPut_behind (M1 a y) a' y') a0).
- Proof.
- Intros a a' a0. Simpl. Intros H y y'. Elim (ad_sum (ad_xor a a')). Intro H0. Elim H0.
- Intros p H1. Rewrite H1. Reflexivity.
- Intro H0. Rewrite H0. Rewrite (ad_xor_eq ? ? H0). Rewrite (M1_semantics_2 a' a0 y H).
- Exact (M1_semantics_2 a' a0 y' H).
- Qed.
-
- Lemma MapPut_behind_as_before : (m:Map) (a:ad) (y:A)
- (a0:ad) (ad_eq a a0)=false ->
- (MapGet (MapPut m a y) a0)=(MapGet (MapPut_behind m a y) a0).
- Proof.
- Induction m. Trivial.
- Intros a y a' y' a0 H. Exact (MapPut_behind_as_before_1 a a' a0 H y y').
- Intros. Rewrite MapPut_semantics_3_1. Rewrite MapPut_behind_semantics_3_1.
- Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2. Rewrite H2. Rewrite MapGet_M2_bit_0_if.
- Rewrite MapGet_M2_bit_0_if. Elim (sumbool_of_bool (ad_bit_0 a0)). Intro H3.
- Rewrite H3. Apply H0. Rewrite <- H3 in H2. Exact (ad_div_bit_neq a a0 H1 H2).
- Intro H3. Rewrite H3. Reflexivity.
- Intro H2. Rewrite H2. Rewrite MapGet_M2_bit_0_if. Rewrite MapGet_M2_bit_0_if.
- Elim (sumbool_of_bool (ad_bit_0 a0)). Intro H3. Rewrite H3. Reflexivity.
- Intro H3. Rewrite H3. Apply H. Rewrite <- H3 in H2. Exact (ad_div_bit_neq a a0 H1 H2).
- Qed.
-
- Lemma MapPut_behind_new : (m:Map) (a:ad) (y:A)
- (MapGet (MapPut_behind m a y) a)=(Cases (MapGet m a) of
- (SOME y') => (SOME y')
- | _ => (SOME y)
- end).
- Proof.
- Induction m. Simpl. Intros. Rewrite (ad_eq_correct a). Reflexivity.
- Intros. Elim (ad_sum (ad_xor a a1)). Intro H. Elim H. Intros p H0. Simpl.
- Rewrite H0. Rewrite (ad_xor_eq_false a a1 p). Exact (MapPut1_semantics_2 p a a1 a0 y H0).
- Assumption.
- Intro H. Simpl. Rewrite H. Rewrite <- (ad_xor_eq ? ? H). Rewrite (ad_eq_correct a).
- Exact (M1_semantics_1 a a0).
- Intros. Rewrite MapPut_behind_semantics_3_1. Rewrite (MapGet_M2_bit_0_if m0 m1 a).
- Elim (sumbool_of_bool (ad_bit_0 a)). Intro H1. Rewrite H1. Rewrite (MapGet_M2_bit_0_1 a H1).
- Exact (H0 (ad_div_2 a) y).
- Intro H1. Rewrite H1. Rewrite (MapGet_M2_bit_0_0 a H1). Exact (H (ad_div_2 a) y).
- Qed.
-
- Lemma MapPut_behind_semantics : (m:Map) (a:ad) (y:A)
- (eqm (MapGet (MapPut_behind m a y))
- [a':ad] Cases (MapGet m a') of
- (SOME y') => (SOME y')
- | _ => if (ad_eq a a') then (SOME y) else NONE
- end).
- Proof.
- Unfold eqm. Intros. Elim (sumbool_of_bool (ad_eq a a0)). Intro H. Rewrite H.
- Rewrite (ad_eq_complete ? ? H). Apply MapPut_behind_new.
- Intro H. Rewrite H. Rewrite <- (MapPut_behind_as_before m a y a0 H).
- Rewrite (MapPut_semantics m a y a0). Rewrite H. Case (MapGet m a0); Trivial.
- Qed.
-
- Definition makeM2 := [m,m':Map] Cases m m' of
- M0 M0 => M0
- | M0 (M1 a y) => (M1 (ad_double_plus_un a) y)
- | (M1 a y) M0 => (M1 (ad_double a) y)
- | _ _ => (M2 m m')
- end.
-
- Lemma makeM2_M2 : (m,m':Map) (eqm (MapGet (makeM2 m m')) (MapGet (M2 m m'))).
- Proof.
- Unfold eqm. Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H.
- Rewrite (MapGet_M2_bit_0_1 a H m m'). Case m'. Case m. Reflexivity.
- Intros a0 y. Simpl. Rewrite (ad_bit_0_1_not_double a H a0). Reflexivity.
- Intros m1 m2. Unfold makeM2. Rewrite MapGet_M2_bit_0_1. Reflexivity.
- Assumption.
- Case m. Intros a0 y. Simpl. Elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))).
- Intro H0. Rewrite H0. Rewrite (ad_eq_complete ? ? H0). Rewrite (ad_div_2_double_plus_un a H).
- Rewrite (ad_eq_correct a). Reflexivity.
- Intro H0. Rewrite H0. Rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0.
- Rewrite (ad_not_div_2_not_double_plus_un a a0 H0). Reflexivity.
- Intros a0 y0 a1 y1. Unfold makeM2. Rewrite MapGet_M2_bit_0_1. Reflexivity.
- Assumption.
- Intros m1 m2 a0 y. Unfold makeM2. Rewrite MapGet_M2_bit_0_1. Reflexivity.
- Assumption.
- Intros m1 m2. Unfold makeM2.
- Cut (MapGet (M2 m (M2 m1 m2)) a)=(MapGet (M2 m1 m2) (ad_div_2 a)).
- Case m; Trivial.
- Exact (MapGet_M2_bit_0_1 a H m (M2 m1 m2)).
- Intro H. Rewrite (MapGet_M2_bit_0_0 a H m m'). Case m. Case m'. Reflexivity.
- Intros a0 y. Simpl. Rewrite (ad_bit_0_0_not_double_plus_un a H a0). Reflexivity.
- Intros m1 m2. Unfold makeM2. Rewrite MapGet_M2_bit_0_0. Reflexivity.
- Assumption.
- Case m'. Intros a0 y. Simpl. Elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))). Intro H0.
- Rewrite H0. Rewrite (ad_eq_complete ? ? H0). Rewrite (ad_div_2_double a H).
- Rewrite (ad_eq_correct a). Reflexivity.
- Intro H0. Rewrite H0. Rewrite (ad_eq_comm (ad_double a0) a).
- Rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0. Rewrite (ad_not_div_2_not_double a a0 H0).
- Reflexivity.
- Intros a0 y0 a1 y1. Unfold makeM2. Rewrite MapGet_M2_bit_0_0. Reflexivity.
- Assumption.
- Intros m1 m2 a0 y. Unfold makeM2. Rewrite MapGet_M2_bit_0_0. Reflexivity.
- Assumption.
- Intros m1 m2. Unfold makeM2. Exact (MapGet_M2_bit_0_0 a H (M2 m1 m2) m').
- Qed.
-
- Fixpoint MapRemove [m:Map] : ad -> Map :=
- Cases m of
- M0 => [_:ad] M0
- | (M1 a y) => [a':ad]
- Cases (ad_eq a a') of
- true => M0
- | false => m
- end
- | (M2 m1 m2) => [a:ad]
- if (ad_bit_0 a)
- then (makeM2 m1 (MapRemove m2 (ad_div_2 a)))
- else (makeM2 (MapRemove m1 (ad_div_2 a)) m2)
+ Lemma MapPut_behind_semantics_3_1 :
+ forall (m m':Map) (a:ad) (y:A),
+ MapPut_behind (M2 m m') a y =
+ (if ad_bit_0 a
+ then M2 m (MapPut_behind m' (ad_div_2 a) y)
+ else M2 (MapPut_behind m (ad_div_2 a) y) m').
+ Proof.
+ simple induction a. trivial.
+ simple induction p; trivial.
+ Qed.
+
+ Lemma MapPut_behind_as_before_1 :
+ forall a a' a0:ad,
+ ad_eq a' a0 = false ->
+ forall y y':A,
+ MapGet (MapPut (M1 a y) a' y') a0 =
+ MapGet (MapPut_behind (M1 a y) a' y') a0.
+ Proof.
+ intros a a' a0. simpl in |- *. intros H y y'. elim (ad_sum (ad_xor a a')). intro H0. elim H0.
+ intros p H1. rewrite H1. reflexivity.
+ intro H0. rewrite H0. rewrite (ad_xor_eq _ _ H0). rewrite (M1_semantics_2 a' a0 y H).
+ exact (M1_semantics_2 a' a0 y' H).
+ Qed.
+
+ Lemma MapPut_behind_as_before :
+ forall (m:Map) (a:ad) (y:A) (a0:ad),
+ ad_eq a a0 = false ->
+ MapGet (MapPut m a y) a0 = MapGet (MapPut_behind m a y) a0.
+ Proof.
+ simple induction m. trivial.
+ intros a y a' y' a0 H. exact (MapPut_behind_as_before_1 a a' a0 H y y').
+ intros. rewrite MapPut_semantics_3_1. rewrite MapPut_behind_semantics_3_1.
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if.
+ rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a0)). intro H3.
+ rewrite H3. apply H0. rewrite <- H3 in H2. exact (ad_div_bit_neq a a0 H1 H2).
+ intro H3. rewrite H3. reflexivity.
+ intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if.
+ elim (sumbool_of_bool (ad_bit_0 a0)). intro H3. rewrite H3. reflexivity.
+ intro H3. rewrite H3. apply H. rewrite <- H3 in H2. exact (ad_div_bit_neq a a0 H1 H2).
+ Qed.
+
+ Lemma MapPut_behind_new :
+ forall (m:Map) (a:ad) (y:A),
+ MapGet (MapPut_behind m a y) a =
+ match MapGet m a with
+ | SOME y' => SOME y'
+ | _ => SOME y
+ end.
+ Proof.
+ simple induction m. simpl in |- *. intros. rewrite (ad_eq_correct a). reflexivity.
+ intros. elim (ad_sum (ad_xor a a1)). intro H. elim H. intros p H0. simpl in |- *.
+ rewrite H0. rewrite (ad_xor_eq_false a a1 p). exact (MapPut1_semantics_2 p a a1 a0 y H0).
+ assumption.
+ intro H. simpl in |- *. rewrite H. rewrite <- (ad_xor_eq _ _ H). rewrite (ad_eq_correct a).
+ exact (M1_semantics_1 a a0).
+ intros. rewrite MapPut_behind_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a).
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_1 a H1).
+ exact (H0 (ad_div_2 a) y).
+ intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_0 a H1). exact (H (ad_div_2 a) y).
+ Qed.
+
+ Lemma MapPut_behind_semantics :
+ forall (m:Map) (a:ad) (y:A),
+ eqm (MapGet (MapPut_behind m a y))
+ (fun a':ad =>
+ match MapGet m a' with
+ | SOME y' => SOME y'
+ | _ => if ad_eq a a' then SOME y else NONE
+ end).
+ Proof.
+ unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H.
+ rewrite (ad_eq_complete _ _ H). apply MapPut_behind_new.
+ intro H. rewrite H. rewrite <- (MapPut_behind_as_before m a y a0 H).
+ rewrite (MapPut_semantics m a y a0). rewrite H. case (MapGet m a0); trivial.
+ Qed.
+
+ Definition makeM2 (m m':Map) :=
+ match m, m' with
+ | M0, M0 => M0
+ | M0, M1 a y => M1 (ad_double_plus_un a) y
+ | M1 a y, M0 => M1 (ad_double a) y
+ | _, _ => M2 m m'
end.
- Lemma MapRemove_semantics : (m:Map) (a:ad)
- (eqm (MapGet (MapRemove m a)) [a':ad] if (ad_eq a a') then NONE else (MapGet m a')).
- Proof.
- Unfold eqm. Induction m. Simpl. Intros. Case (ad_eq a a0); Trivial.
- Intros. Simpl. Elim (sumbool_of_bool (ad_eq a1 a2)). Intro H. Rewrite H.
- Elim (sumbool_of_bool (ad_eq a a1)). Intro H0. Rewrite H0. Reflexivity.
- Intro H0. Rewrite H0. Rewrite (ad_eq_complete ? ? H) in H0. Exact (M1_semantics_2 a a2 a0 H0).
- Intro H. Elim (sumbool_of_bool (ad_eq a a1)). Intro H0. Rewrite H0. Rewrite H.
- Rewrite <- (ad_eq_complete ? ? H0) in H. Rewrite H. Reflexivity.
- Intro H0. Rewrite H0. Rewrite H. Reflexivity.
- Intros. Change (MapGet (if (ad_bit_0 a)
- then (makeM2 m0 (MapRemove m1 (ad_div_2 a)))
- else (makeM2 (MapRemove m0 (ad_div_2 a)) m1))
- a0)
- =(if (ad_eq a a0) then NONE else (MapGet (M2 m0 m1) a0)).
- Elim (sumbool_of_bool (ad_bit_0 a)). Intro H1. Rewrite H1.
- Rewrite (makeM2_M2 m0 (MapRemove m1 (ad_div_2 a)) a0). Elim (sumbool_of_bool (ad_bit_0 a0)).
- Intro H2. Rewrite MapGet_M2_bit_0_1. Rewrite (H0 (ad_div_2 a) (ad_div_2 a0)).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H3. Rewrite H3. Rewrite (ad_div_eq ? ? H3).
- Reflexivity.
- Intro H3. Rewrite H3. Rewrite <- H2 in H1. Rewrite (ad_div_bit_neq ? ? H3 H1).
- Rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). Reflexivity.
- Assumption.
- Intro H2. Rewrite (MapGet_M2_bit_0_0 a0 H2 m0 (MapRemove m1 (ad_div_2 a))).
- Rewrite (ad_eq_comm a a0). Rewrite (ad_bit_0_neq ? ? H2 H1).
- Rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). Reflexivity.
- Intro H1. Rewrite H1. Rewrite (makeM2_M2 (MapRemove m0 (ad_div_2 a)) m1 a0).
- Elim (sumbool_of_bool (ad_bit_0 a0)). Intro H2. Rewrite MapGet_M2_bit_0_1.
- Rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). Rewrite (ad_bit_0_neq a a0 H1 H2). Reflexivity.
- Assumption.
- Intro H2. Rewrite MapGet_M2_bit_0_0. Rewrite (H (ad_div_2 a) (ad_div_2 a0)).
- Rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). Elim (sumbool_of_bool (ad_eq a a0)). Intro H3.
- Rewrite H3. Rewrite (ad_div_eq ? ? H3). Reflexivity.
- Intro H3. Rewrite H3. Rewrite <- H2 in H1. Rewrite (ad_div_bit_neq ? ? H3 H1). Reflexivity.
- Assumption.
- Qed.
-
- Fixpoint MapCard [m:Map] : nat :=
- Cases m of
- M0 => O
- | (M1 _ _) => (S O)
- | (M2 m m') => (plus (MapCard m) (MapCard m'))
+ Lemma makeM2_M2 :
+ forall m m':Map, eqm (MapGet (makeM2 m m')) (MapGet (M2 m m')).
+ Proof.
+ unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H.
+ rewrite (MapGet_M2_bit_0_1 a H m m'). case m'. case m. reflexivity.
+ intros a0 y. simpl in |- *. rewrite (ad_bit_0_1_not_double a H a0). reflexivity.
+ intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
+ assumption.
+ case m. intros a0 y. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))).
+ intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0). rewrite (ad_div_2_double_plus_un a H).
+ rewrite (ad_eq_correct a). reflexivity.
+ intro H0. rewrite H0. rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0.
+ rewrite (ad_not_div_2_not_double_plus_un a a0 H0). reflexivity.
+ intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
+ assumption.
+ intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
+ assumption.
+ intros m1 m2. unfold makeM2 in |- *.
+ cut (MapGet (M2 m (M2 m1 m2)) a = MapGet (M2 m1 m2) (ad_div_2 a)).
+ case m; trivial.
+ exact (MapGet_M2_bit_0_1 a H m (M2 m1 m2)).
+ intro H. rewrite (MapGet_M2_bit_0_0 a H m m'). case m. case m'. reflexivity.
+ intros a0 y. simpl in |- *. rewrite (ad_bit_0_0_not_double_plus_un a H a0). reflexivity.
+ intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
+ assumption.
+ case m'. intros a0 y. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))). intro H0.
+ rewrite H0. rewrite (ad_eq_complete _ _ H0). rewrite (ad_div_2_double a H).
+ rewrite (ad_eq_correct a). reflexivity.
+ intro H0. rewrite H0. rewrite (ad_eq_comm (ad_double a0) a).
+ rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0. rewrite (ad_not_div_2_not_double a a0 H0).
+ reflexivity.
+ intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
+ assumption.
+ intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
+ assumption.
+ intros m1 m2. unfold makeM2 in |- *. exact (MapGet_M2_bit_0_0 a H (M2 m1 m2) m').
+ Qed.
+
+ Fixpoint MapRemove (m:Map) : ad -> Map :=
+ match m with
+ | M0 => fun _:ad => M0
+ | M1 a y =>
+ fun a':ad => match ad_eq a a' with
+ | true => M0
+ | false => m
+ end
+ | M2 m1 m2 =>
+ fun a:ad =>
+ if ad_bit_0 a
+ then makeM2 m1 (MapRemove m2 (ad_div_2 a))
+ else makeM2 (MapRemove m1 (ad_div_2 a)) m2
end.
- Fixpoint MapMerge [m:Map] : Map -> Map :=
- Cases m of
- M0 => [m':Map] m'
- | (M1 a y) => [m':Map] (MapPut_behind m' a y)
- | (M2 m1 m2) => [m':Map] Cases m' of
- M0 => m
- | (M1 a' y') => (MapPut m a' y')
- | (M2 m'1 m'2) => (M2 (MapMerge m1 m'1)
- (MapMerge m2 m'2))
- end
+ Lemma MapRemove_semantics :
+ forall (m:Map) (a:ad),
+ eqm (MapGet (MapRemove m a))
+ (fun a':ad => if ad_eq a a' then NONE else MapGet m a').
+ Proof.
+ unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (ad_eq a a0); trivial.
+ intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a1 a2)). intro H. rewrite H.
+ elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0. reflexivity.
+ intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H) in H0. exact (M1_semantics_2 a a2 a0 H0).
+ intro H. elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0. rewrite H.
+ rewrite <- (ad_eq_complete _ _ H0) in H. rewrite H. reflexivity.
+ intro H0. rewrite H0. rewrite H. reflexivity.
+ intros. change
+ (MapGet
+ (if ad_bit_0 a
+ then makeM2 m0 (MapRemove m1 (ad_div_2 a))
+ else makeM2 (MapRemove m0 (ad_div_2 a)) m1) a0 =
+ (if ad_eq a a0 then NONE else MapGet (M2 m0 m1) a0))
+ in |- *.
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1.
+ rewrite (makeM2_M2 m0 (MapRemove m1 (ad_div_2 a)) a0). elim (sumbool_of_bool (ad_bit_0 a0)).
+ intro H2. rewrite MapGet_M2_bit_0_1. rewrite (H0 (ad_div_2 a) (ad_div_2 a0)).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H3. rewrite H3. rewrite (ad_div_eq _ _ H3).
+ reflexivity.
+ intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1).
+ rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). reflexivity.
+ assumption.
+ intro H2. rewrite (MapGet_M2_bit_0_0 a0 H2 m0 (MapRemove m1 (ad_div_2 a))).
+ rewrite (ad_eq_comm a a0). rewrite (ad_bit_0_neq _ _ H2 H1).
+ rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). reflexivity.
+ intro H1. rewrite H1. rewrite (makeM2_M2 (MapRemove m0 (ad_div_2 a)) m1 a0).
+ elim (sumbool_of_bool (ad_bit_0 a0)). intro H2. rewrite MapGet_M2_bit_0_1.
+ rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). rewrite (ad_bit_0_neq a a0 H1 H2). reflexivity.
+ assumption.
+ intro H2. rewrite MapGet_M2_bit_0_0. rewrite (H (ad_div_2 a) (ad_div_2 a0)).
+ rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). elim (sumbool_of_bool (ad_eq a a0)). intro H3.
+ rewrite H3. rewrite (ad_div_eq _ _ H3). reflexivity.
+ intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1). reflexivity.
+ assumption.
+ Qed.
+
+ Fixpoint MapCard (m:Map) : nat :=
+ match m with
+ | M0 => 0
+ | M1 _ _ => 1
+ | M2 m m' => MapCard m + MapCard m'
+ end.
+
+ Fixpoint MapMerge (m:Map) : Map -> Map :=
+ match m with
+ | M0 => fun m':Map => m'
+ | M1 a y => fun m':Map => MapPut_behind m' a y
+ | M2 m1 m2 =>
+ fun m':Map =>
+ match m' with
+ | M0 => m
+ | M1 a' y' => MapPut m a' y'
+ | M2 m'1 m'2 => M2 (MapMerge m1 m'1) (MapMerge m2 m'2)
+ end
end.
- Lemma MapMerge_semantics : (m,m':Map)
- (eqm (MapGet (MapMerge m m'))
- [a0:ad] Cases (MapGet m' a0) of
- (SOME y') => (SOME y')
- | NONE => (MapGet m a0)
- end).
- Proof.
- Unfold eqm. Induction m. Intros. Simpl. Case (MapGet m' a); Trivial.
- Intros. Simpl. Rewrite (MapPut_behind_semantics m' a a0 a1). Reflexivity.
- Induction m'. Trivial.
- Intros. Unfold MapMerge. Rewrite (MapPut_semantics (M2 m0 m1) a a0 a1).
- Elim (sumbool_of_bool (ad_eq a a1)). Intro H1. Rewrite H1. Rewrite (ad_eq_complete ? ? H1).
- Rewrite (M1_semantics_1 a1 a0). Reflexivity.
- Intro H1. Rewrite H1. Rewrite (M1_semantics_2 a a1 a0 H1). Reflexivity.
- Intros. Cut (MapMerge (M2 m0 m1) (M2 m2 m3))=(M2 (MapMerge m0 m2) (MapMerge m1 m3)).
- Intro. Rewrite H3. Rewrite MapGet_M2_bit_0_if. Rewrite (H0 m3 (ad_div_2 a)).
- Rewrite (H m2 (ad_div_2 a)). Rewrite (MapGet_M2_bit_0_if m2 m3 a).
- Rewrite (MapGet_M2_bit_0_if m0 m1 a). Case (ad_bit_0 a); Trivial.
- Reflexivity.
+ Lemma MapMerge_semantics :
+ forall m m':Map,
+ eqm (MapGet (MapMerge m m'))
+ (fun a0:ad =>
+ match MapGet m' a0 with
+ | SOME y' => SOME y'
+ | NONE => MapGet m a0
+ end).
+ Proof.
+ unfold eqm in |- *. simple induction m. intros. simpl in |- *. case (MapGet m' a); trivial.
+ intros. simpl in |- *. rewrite (MapPut_behind_semantics m' a a0 a1). reflexivity.
+ simple induction m'. trivial.
+ intros. unfold MapMerge in |- *. rewrite (MapPut_semantics (M2 m0 m1) a a0 a1).
+ elim (sumbool_of_bool (ad_eq a a1)). intro H1. rewrite H1. rewrite (ad_eq_complete _ _ H1).
+ rewrite (M1_semantics_1 a1 a0). reflexivity.
+ intro H1. rewrite H1. rewrite (M1_semantics_2 a a1 a0 H1). reflexivity.
+ intros. cut (MapMerge (M2 m0 m1) (M2 m2 m3) = M2 (MapMerge m0 m2) (MapMerge m1 m3)).
+ intro. rewrite H3. rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (ad_div_2 a)).
+ rewrite (H m2 (ad_div_2 a)). rewrite (MapGet_M2_bit_0_if m2 m3 a).
+ rewrite (MapGet_M2_bit_0_if m0 m1 a). case (ad_bit_0 a); trivial.
+ reflexivity.
Qed.
(** [MapInter], [MapRngRestrTo], [MapRngRestrBy], [MapInverse]
not implemented: need a decidable equality on [A]. *)
- Fixpoint MapDelta [m:Map] : Map -> Map :=
- Cases m of
- M0 => [m':Map] m'
- | (M1 a y) => [m':Map] Cases (MapGet m' a) of
- NONE => (MapPut m' a y)
- | _ => (MapRemove m' a)
- end
- | (M2 m1 m2) => [m':Map] Cases m' of
- M0 => m
- | (M1 a' y') => Cases (MapGet m a') of
- NONE => (MapPut m a' y')
- | _ => (MapRemove m a')
- end
- | (M2 m'1 m'2) => (makeM2 (MapDelta m1 m'1)
- (MapDelta m2 m'2))
- end
- end.
-
- Lemma MapDelta_semantics_comm : (m,m':Map)
- (eqm (MapGet (MapDelta m m')) (MapGet (MapDelta m' m))).
- Proof.
- Unfold eqm. Induction m. Induction m'; Reflexivity.
- Induction m'. Reflexivity.
- Unfold MapDelta. Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H.
- Rewrite <- (ad_eq_complete ? ? H). Rewrite (M1_semantics_1 a a2).
- Rewrite (M1_semantics_1 a a0). Simpl. Rewrite (ad_eq_correct a). Reflexivity.
- Intro H. Rewrite (M1_semantics_2 a a1 a0 H). Rewrite (ad_eq_comm a a1) in H.
- Rewrite (M1_semantics_2 a1 a a2 H). Rewrite (MapPut_semantics (M1 a a0) a1 a2 a3).
- Rewrite (MapPut_semantics (M1 a1 a2) a a0 a3). Elim (sumbool_of_bool (ad_eq a a3)).
- Intro H0. Rewrite H0. Rewrite (ad_eq_complete ? ? H0) in H. Rewrite H.
- Rewrite (ad_eq_complete ? ? H0). Rewrite (M1_semantics_1 a3 a0). Reflexivity.
- Intro H0. Rewrite H0. Rewrite (M1_semantics_2 a a3 a0 H0).
- Elim (sumbool_of_bool (ad_eq a1 a3)). Intro H1. Rewrite H1.
- Rewrite (ad_eq_complete ? ? H1). Exact (M1_semantics_1 a3 a2).
- Intro H1. Rewrite H1. Exact (M1_semantics_2 a1 a3 a2 H1).
- Intros. Reflexivity.
- Induction m'. Reflexivity.
- Reflexivity.
- Intros. Simpl. Rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- Rewrite (makeM2_M2 (MapDelta m2 m0) (MapDelta m3 m1) a).
- Rewrite (MapGet_M2_bit_0_if (MapDelta m0 m2) (MapDelta m1 m3) a).
- Rewrite (MapGet_M2_bit_0_if (MapDelta m2 m0) (MapDelta m3 m1) a).
- Rewrite (H0 m3 (ad_div_2 a)). Rewrite (H m2 (ad_div_2 a)). Reflexivity.
- Qed.
-
- Lemma MapDelta_semantics_1_1 : (a:ad) (y:A) (m':Map) (a0:ad)
- (MapGet (M1 a y) a0)=NONE -> (MapGet m' a0)=NONE ->
- (MapGet (MapDelta (M1 a y) m') a0)=NONE.
- Proof.
- Intros. Unfold MapDelta. Elim (sumbool_of_bool (ad_eq a a0)). Intro H1.
- Rewrite (ad_eq_complete ? ? H1) in H. Rewrite (M1_semantics_1 a0 y) in H. Discriminate H.
- Intro H1. Case (MapGet m' a). Rewrite (MapPut_semantics m' a y a0). Rewrite H1. Assumption.
- Rewrite (MapRemove_semantics m' a a0). Rewrite H1. Trivial.
- Qed.
-
- Lemma MapDelta_semantics_1 : (m,m':Map) (a:ad)
- (MapGet m a)=NONE -> (MapGet m' a)=NONE ->
- (MapGet (MapDelta m m') a)=NONE.
- Proof.
- Induction m. Trivial.
- Exact MapDelta_semantics_1_1.
- Induction m'. Trivial.
- Intros. Rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- Apply MapDelta_semantics_1_1; Trivial.
- Intros. Simpl. Rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- Rewrite MapGet_M2_bit_0_if. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H5. Rewrite H5.
- Apply H0. Rewrite (MapGet_M2_bit_0_1 a H5 m0 m1) in H3. Exact H3.
- Rewrite (MapGet_M2_bit_0_1 a H5 m2 m3) in H4. Exact H4.
- Intro H5. Rewrite H5. Apply H. Rewrite (MapGet_M2_bit_0_0 a H5 m0 m1) in H3. Exact H3.
- Rewrite (MapGet_M2_bit_0_0 a H5 m2 m3) in H4. Exact H4.
- Qed.
-
- Lemma MapDelta_semantics_2_1 : (a:ad) (y:A) (m':Map) (a0:ad) (y0:A)
- (MapGet (M1 a y) a0)=NONE -> (MapGet m' a0)=(SOME y0) ->
- (MapGet (MapDelta (M1 a y) m') a0)=(SOME y0).
- Proof.
- Intros. Unfold MapDelta. Elim (sumbool_of_bool (ad_eq a a0)). Intro H1.
- Rewrite (ad_eq_complete ? ? H1) in H. Rewrite (M1_semantics_1 a0 y) in H. Discriminate H.
- Intro H1. Case (MapGet m' a). Rewrite (MapPut_semantics m' a y a0). Rewrite H1. Assumption.
- Rewrite (MapRemove_semantics m' a a0). Rewrite H1. Trivial.
- Qed.
-
- Lemma MapDelta_semantics_2_2 : (a:ad) (y:A) (m':Map) (a0:ad) (y0:A)
- (MapGet (M1 a y) a0)=(SOME y0) -> (MapGet m' a0)=NONE ->
- (MapGet (MapDelta (M1 a y) m') a0)=(SOME y0).
- Proof.
- Intros. Unfold MapDelta. Elim (sumbool_of_bool (ad_eq a a0)). Intro H1.
- Rewrite (ad_eq_complete ? ? H1) in H. Rewrite (ad_eq_complete ? ? H1).
- Rewrite H0. Rewrite (MapPut_semantics m' a0 y a0). Rewrite (ad_eq_correct a0).
- Rewrite (M1_semantics_1 a0 y) in H. Simple Inversion H. Assumption.
- Intro H1. Rewrite (M1_semantics_2 a a0 y H1) in H. Discriminate H.
- Qed.
-
- Lemma MapDelta_semantics_2 : (m,m':Map) (a:ad) (y:A)
- (MapGet m a)=NONE -> (MapGet m' a)=(SOME y) ->
- (MapGet (MapDelta m m') a)=(SOME y).
- Proof.
- Induction m. Trivial.
- Exact MapDelta_semantics_2_1.
- Induction m'. Intros. Discriminate H2.
- Intros. Rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- Apply MapDelta_semantics_2_2; Assumption.
- Intros. Simpl. Rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- Rewrite MapGet_M2_bit_0_if. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H5. Rewrite H5.
- Apply H0. Rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). Assumption.
- Rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). Assumption.
- Intro H5. Rewrite H5. Apply H. Rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). Assumption.
- Rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). Assumption.
- Qed.
-
- Lemma MapDelta_semantics_3_1 : (a0:ad) (y0:A) (m':Map) (a:ad) (y,y':A)
- (MapGet (M1 a0 y0) a)=(SOME y) -> (MapGet m' a)=(SOME y') ->
- (MapGet (MapDelta (M1 a0 y0) m') a)=NONE.
- Proof.
- Intros. Unfold MapDelta. Elim (sumbool_of_bool (ad_eq a0 a)). Intro H1.
- Rewrite (ad_eq_complete a0 a H1). Rewrite H0. Rewrite (MapRemove_semantics m' a a).
- Rewrite (ad_eq_correct a). Reflexivity.
- Intro H1. Rewrite (M1_semantics_2 a0 a y0 H1) in H. Discriminate H.
- Qed.
-
- Lemma MapDelta_semantics_3 : (m,m':Map) (a:ad) (y,y':A)
- (MapGet m a)=(SOME y) -> (MapGet m' a)=(SOME y') ->
- (MapGet (MapDelta m m') a)=NONE.
- Proof.
- Induction m. Intros. Discriminate H.
- Exact MapDelta_semantics_3_1.
- Induction m'. Intros. Discriminate H2.
- Intros. Rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- Exact (MapDelta_semantics_3_1 a a0 (M2 m0 m1) a1 y' y H2 H1).
- Intros. Simpl. Rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- Rewrite MapGet_M2_bit_0_if. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H5. Rewrite H5.
- Apply (H0 m3 (ad_div_2 a) y y'). Rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). Assumption.
- Rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). Assumption.
- Intro H5. Rewrite H5. Apply (H m2 (ad_div_2 a) y y').
- Rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). Assumption.
- Rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). Assumption.
- Qed.
-
- Lemma MapDelta_semantics : (m,m':Map)
- (eqm (MapGet (MapDelta m m'))
- [a0:ad] Cases (MapGet m a0) (MapGet m' a0) of
- NONE (SOME y') => (SOME y')
- | (SOME y) NONE => (SOME y)
- | _ _ => NONE
- end).
- Proof.
- Unfold eqm. Intros. Elim (option_sum (MapGet m' a)). Intro H. Elim H. Intros a0 H0.
- Rewrite H0. Elim (option_sum (MapGet m a)). Intro H1. Elim H1. Intros a1 H2. Rewrite H2.
- Exact (MapDelta_semantics_3 m m' a a1 a0 H2 H0).
- Intro H1. Rewrite H1. Exact (MapDelta_semantics_2 m m' a a0 H1 H0).
- Intro H. Rewrite H. Elim (option_sum (MapGet m a)). Intro H0. Elim H0. Intros a0 H1.
- Rewrite H1. Rewrite (MapDelta_semantics_comm m m' a).
- Exact (MapDelta_semantics_2 m' m a a0 H H1).
- Intro H0. Rewrite H0. Exact (MapDelta_semantics_1 m m' a H0 H).
- Qed.
-
- Definition MapEmptyp := [m:Map]
- Cases m of
- M0 => true
- | _ => false
+ Fixpoint MapDelta (m:Map) : Map -> Map :=
+ match m with
+ | M0 => fun m':Map => m'
+ | M1 a y =>
+ fun m':Map =>
+ match MapGet m' a with
+ | NONE => MapPut m' a y
+ | _ => MapRemove m' a
+ end
+ | M2 m1 m2 =>
+ fun m':Map =>
+ match m' with
+ | M0 => m
+ | M1 a' y' =>
+ match MapGet m a' with
+ | NONE => MapPut m a' y'
+ | _ => MapRemove m a'
+ end
+ | M2 m'1 m'2 => makeM2 (MapDelta m1 m'1) (MapDelta m2 m'2)
+ end
end.
- Lemma MapEmptyp_correct : (MapEmptyp M0)=true.
- Proof.
- Reflexivity.
- Qed.
-
- Lemma MapEmptyp_complete : (m:Map) (MapEmptyp m)=true -> m=M0.
+ Lemma MapDelta_semantics_comm :
+ forall m m':Map, eqm (MapGet (MapDelta m m')) (MapGet (MapDelta m' m)).
+ Proof.
+ unfold eqm in |- *. simple induction m. simple induction m'; reflexivity.
+ simple induction m'. reflexivity.
+ unfold MapDelta in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H.
+ rewrite <- (ad_eq_complete _ _ H). rewrite (M1_semantics_1 a a2).
+ rewrite (M1_semantics_1 a a0). simpl in |- *. rewrite (ad_eq_correct a). reflexivity.
+ intro H. rewrite (M1_semantics_2 a a1 a0 H). rewrite (ad_eq_comm a a1) in H.
+ rewrite (M1_semantics_2 a1 a a2 H). rewrite (MapPut_semantics (M1 a a0) a1 a2 a3).
+ rewrite (MapPut_semantics (M1 a1 a2) a a0 a3). elim (sumbool_of_bool (ad_eq a a3)).
+ intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0) in H. rewrite H.
+ rewrite (ad_eq_complete _ _ H0). rewrite (M1_semantics_1 a3 a0). reflexivity.
+ intro H0. rewrite H0. rewrite (M1_semantics_2 a a3 a0 H0).
+ elim (sumbool_of_bool (ad_eq a1 a3)). intro H1. rewrite H1.
+ rewrite (ad_eq_complete _ _ H1). exact (M1_semantics_1 a3 a2).
+ intro H1. rewrite H1. exact (M1_semantics_2 a1 a3 a2 H1).
+ intros. reflexivity.
+ simple induction m'. reflexivity.
+ reflexivity.
+ intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
+ rewrite (makeM2_M2 (MapDelta m2 m0) (MapDelta m3 m1) a).
+ rewrite (MapGet_M2_bit_0_if (MapDelta m0 m2) (MapDelta m1 m3) a).
+ rewrite (MapGet_M2_bit_0_if (MapDelta m2 m0) (MapDelta m3 m1) a).
+ rewrite (H0 m3 (ad_div_2 a)). rewrite (H m2 (ad_div_2 a)). reflexivity.
+ Qed.
+
+ Lemma MapDelta_semantics_1_1 :
+ forall (a:ad) (y:A) (m':Map) (a0:ad),
+ MapGet (M1 a y) a0 = NONE ->
+ MapGet m' a0 = NONE -> MapGet (MapDelta (M1 a y) m') a0 = NONE.
+ Proof.
+ intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H.
+ intro H1. case (MapGet m' a). rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption.
+ rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial.
+ Qed.
+
+ Lemma MapDelta_semantics_1 :
+ forall (m m':Map) (a:ad),
+ MapGet m a = NONE ->
+ MapGet m' a = NONE -> MapGet (MapDelta m m') a = NONE.
+ Proof.
+ simple induction m. trivial.
+ exact MapDelta_semantics_1_1.
+ simple induction m'. trivial.
+ intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
+ apply MapDelta_semantics_1_1; trivial.
+ intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
+ rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5.
+ apply H0. rewrite (MapGet_M2_bit_0_1 a H5 m0 m1) in H3. exact H3.
+ rewrite (MapGet_M2_bit_0_1 a H5 m2 m3) in H4. exact H4.
+ intro H5. rewrite H5. apply H. rewrite (MapGet_M2_bit_0_0 a H5 m0 m1) in H3. exact H3.
+ rewrite (MapGet_M2_bit_0_0 a H5 m2 m3) in H4. exact H4.
+ Qed.
+
+ Lemma MapDelta_semantics_2_1 :
+ forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A),
+ MapGet (M1 a y) a0 = NONE ->
+ MapGet m' a0 = SOME y0 -> MapGet (MapDelta (M1 a y) m') a0 = SOME y0.
+ Proof.
+ intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H.
+ intro H1. case (MapGet m' a). rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption.
+ rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial.
+ Qed.
+
+ Lemma MapDelta_semantics_2_2 :
+ forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A),
+ MapGet (M1 a y) a0 = SOME y0 ->
+ MapGet m' a0 = NONE -> MapGet (MapDelta (M1 a y) m') a0 = SOME y0.
+ Proof.
+ intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (ad_eq_complete _ _ H1).
+ rewrite H0. rewrite (MapPut_semantics m' a0 y a0). rewrite (ad_eq_correct a0).
+ rewrite (M1_semantics_1 a0 y) in H. simple inversion H. assumption.
+ intro H1. rewrite (M1_semantics_2 a a0 y H1) in H. discriminate H.
+ Qed.
+
+ Lemma MapDelta_semantics_2 :
+ forall (m m':Map) (a:ad) (y:A),
+ MapGet m a = NONE ->
+ MapGet m' a = SOME y -> MapGet (MapDelta m m') a = SOME y.
+ Proof.
+ simple induction m. trivial.
+ exact MapDelta_semantics_2_1.
+ simple induction m'. intros. discriminate H2.
+ intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
+ apply MapDelta_semantics_2_2; assumption.
+ intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
+ rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5.
+ apply H0. rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption.
+ rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption.
+ intro H5. rewrite H5. apply H. rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption.
+ rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption.
+ Qed.
+
+ Lemma MapDelta_semantics_3_1 :
+ forall (a0:ad) (y0:A) (m':Map) (a:ad) (y y':A),
+ MapGet (M1 a0 y0) a = SOME y ->
+ MapGet m' a = SOME y' -> MapGet (MapDelta (M1 a0 y0) m') a = NONE.
+ Proof.
+ intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a0 a)). intro H1.
+ rewrite (ad_eq_complete a0 a H1). rewrite H0. rewrite (MapRemove_semantics m' a a).
+ rewrite (ad_eq_correct a). reflexivity.
+ intro H1. rewrite (M1_semantics_2 a0 a y0 H1) in H. discriminate H.
+ Qed.
+
+ Lemma MapDelta_semantics_3 :
+ forall (m m':Map) (a:ad) (y y':A),
+ MapGet m a = SOME y ->
+ MapGet m' a = SOME y' -> MapGet (MapDelta m m') a = NONE.
+ Proof.
+ simple induction m. intros. discriminate H.
+ exact MapDelta_semantics_3_1.
+ simple induction m'. intros. discriminate H2.
+ intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
+ exact (MapDelta_semantics_3_1 a a0 (M2 m0 m1) a1 y' y H2 H1).
+ intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
+ rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5.
+ apply (H0 m3 (ad_div_2 a) y y'). rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption.
+ rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption.
+ intro H5. rewrite H5. apply (H m2 (ad_div_2 a) y y').
+ rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption.
+ rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption.
+ Qed.
+
+ Lemma MapDelta_semantics :
+ forall m m':Map,
+ eqm (MapGet (MapDelta m m'))
+ (fun a0:ad =>
+ match MapGet m a0, MapGet m' a0 with
+ | NONE, SOME y' => SOME y'
+ | SOME y, NONE => SOME y
+ | _, _ => NONE
+ end).
+ Proof.
+ unfold eqm in |- *. intros. elim (option_sum (MapGet m' a)). intro H. elim H. intros a0 H0.
+ rewrite H0. elim (option_sum (MapGet m a)). intro H1. elim H1. intros a1 H2. rewrite H2.
+ exact (MapDelta_semantics_3 m m' a a1 a0 H2 H0).
+ intro H1. rewrite H1. exact (MapDelta_semantics_2 m m' a a0 H1 H0).
+ intro H. rewrite H. elim (option_sum (MapGet m a)). intro H0. elim H0. intros a0 H1.
+ rewrite H1. rewrite (MapDelta_semantics_comm m m' a).
+ exact (MapDelta_semantics_2 m' m a a0 H H1).
+ intro H0. rewrite H0. exact (MapDelta_semantics_1 m m' a H0 H).
+ Qed.
+
+ Definition MapEmptyp (m:Map) := match m with
+ | M0 => true
+ | _ => false
+ end.
+
+ Lemma MapEmptyp_correct : MapEmptyp M0 = true.
Proof.
- Induction m; Trivial. Intros. Discriminate H.
- Intros. Discriminate H1.
+ reflexivity.
+ Qed.
+
+ Lemma MapEmptyp_complete : forall m:Map, MapEmptyp m = true -> m = M0.
+ Proof.
+ simple induction m; trivial. intros. discriminate H.
+ intros. discriminate H1.
Qed.
(** [MapSplit] not implemented: not the preferred way of recursing over Maps
(use [MapSweep], [MapCollect], or [MapFold] in Mapiter.v. *)
-End MapDefs.
+End MapDefs. \ No newline at end of file
diff --git a/theories/IntMap/Mapaxioms.v b/theories/IntMap/Mapaxioms.v
index 7ab131c77b..874a4b9ef3 100644
--- a/theories/IntMap/Mapaxioms.v
+++ b/theories/IntMap/Mapaxioms.v
@@ -7,664 +7,757 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Bool.
-Require Sumbool.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
-Require Fset.
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Fset.
Section MapAxioms.
- Variable A, B, C : Set.
+ Variables A B C : Set.
- Lemma eqm_sym : (f,f':ad->(option A)) (eqm A f f') -> (eqm A f' f).
+ Lemma eqm_sym : forall f f':ad -> option A, eqm A f f' -> eqm A f' f.
Proof.
- Unfold eqm. Intros. Rewrite H. Reflexivity.
+ unfold eqm in |- *. intros. rewrite H. reflexivity.
Qed.
- Lemma eqm_refl : (f:ad->(option A)) (eqm A f f).
+ Lemma eqm_refl : forall f:ad -> option A, eqm A f f.
Proof.
- Unfold eqm. Trivial.
+ unfold eqm in |- *. trivial.
Qed.
- Lemma eqm_trans : (f,f',f'':ad->(option A)) (eqm A f f') -> (eqm A f' f'') -> (eqm A f f'').
+ Lemma eqm_trans :
+ forall f f' f'':ad -> option A, eqm A f f' -> eqm A f' f'' -> eqm A f f''.
Proof.
- Unfold eqm. Intros. Rewrite H. Exact (H0 a).
+ unfold eqm in |- *. intros. rewrite H. exact (H0 a).
Qed.
- Definition eqmap := [m,m':(Map A)] (eqm A (MapGet A m) (MapGet A m')).
+ Definition eqmap (m m':Map A) := eqm A (MapGet A m) (MapGet A m').
- Lemma eqmap_sym : (m,m':(Map A)) (eqmap m m') -> (eqmap m' m).
+ Lemma eqmap_sym : forall m m':Map A, eqmap m m' -> eqmap m' m.
Proof.
- Intros. Unfold eqmap. Apply eqm_sym. Assumption.
+ intros. unfold eqmap in |- *. apply eqm_sym. assumption.
Qed.
- Lemma eqmap_refl : (m:(Map A)) (eqmap m m).
+ Lemma eqmap_refl : forall m:Map A, eqmap m m.
Proof.
- Intros. Unfold eqmap. Apply eqm_refl.
+ intros. unfold eqmap in |- *. apply eqm_refl.
Qed.
- Lemma eqmap_trans : (m,m',m'':(Map A)) (eqmap m m') -> (eqmap m' m'') -> (eqmap m m'').
+ Lemma eqmap_trans :
+ forall m m' m'':Map A, eqmap m m' -> eqmap m' m'' -> eqmap m m''.
Proof.
- Intros. Exact (eqm_trans (MapGet A m) (MapGet A m') (MapGet A m'') H H0).
+ intros. exact (eqm_trans (MapGet A m) (MapGet A m') (MapGet A m'') H H0).
Qed.
- Lemma MapPut_as_Merge : (m:(Map A)) (a:ad) (y:A)
- (eqmap (MapPut A m a y) (MapMerge A m (M1 A a y))).
+ Lemma MapPut_as_Merge :
+ forall (m:Map A) (a:ad) (y:A),
+ eqmap (MapPut A m a y) (MapMerge A m (M1 A a y)).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapPut_semantics A m a y a0).
- Rewrite (MapMerge_semantics A m (M1 A a y) a0). Unfold 2 MapGet.
- Elim (sumbool_of_bool (ad_eq a a0)); Intro H; Rewrite H; Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapPut_semantics A m a y a0).
+ rewrite (MapMerge_semantics A m (M1 A a y) a0). unfold MapGet at 2 in |- *.
+ elim (sumbool_of_bool (ad_eq a a0)); intro H; rewrite H; reflexivity.
Qed.
- Lemma MapPut_ext : (m,m':(Map A)) (eqmap m m') ->
- (a:ad) (y:A) (eqmap (MapPut A m a y) (MapPut A m' a y)).
+ Lemma MapPut_ext :
+ forall m m':Map A,
+ eqmap m m' ->
+ forall (a:ad) (y:A), eqmap (MapPut A m a y) (MapPut A m' a y).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapPut_semantics A m' a y a0).
- Rewrite (MapPut_semantics A m a y a0).
- Case (ad_eq a a0); [ Reflexivity | Apply H ].
+ unfold eqmap, eqm in |- *. intros. rewrite (MapPut_semantics A m' a y a0).
+ rewrite (MapPut_semantics A m a y a0).
+ case (ad_eq a a0); [ reflexivity | apply H ].
Qed.
- Lemma MapPut_behind_as_Merge : (m:(Map A)) (a:ad) (y:A)
- (eqmap (MapPut_behind A m a y) (MapMerge A (M1 A a y) m)).
+ Lemma MapPut_behind_as_Merge :
+ forall (m:Map A) (a:ad) (y:A),
+ eqmap (MapPut_behind A m a y) (MapMerge A (M1 A a y) m).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapPut_behind_semantics A m a y a0).
- Rewrite (MapMerge_semantics A (M1 A a y) m a0). Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapPut_behind_semantics A m a y a0).
+ rewrite (MapMerge_semantics A (M1 A a y) m a0). reflexivity.
Qed.
- Lemma MapPut_behind_ext : (m,m':(Map A)) (eqmap m m') ->
- (a:ad) (y:A) (eqmap (MapPut_behind A m a y) (MapPut_behind A m' a y)).
+ Lemma MapPut_behind_ext :
+ forall m m':Map A,
+ eqmap m m' ->
+ forall (a:ad) (y:A),
+ eqmap (MapPut_behind A m a y) (MapPut_behind A m' a y).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapPut_behind_semantics A m' a y a0).
- Rewrite (MapPut_behind_semantics A m a y a0). Rewrite (H a0). Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapPut_behind_semantics A m' a y a0).
+ rewrite (MapPut_behind_semantics A m a y a0). rewrite (H a0). reflexivity.
Qed.
- Lemma MapMerge_empty_m_1 : (m:(Map A)) (MapMerge A (M0 A) m)=m.
+ Lemma MapMerge_empty_m_1 : forall m:Map A, MapMerge A (M0 A) m = m.
Proof.
- Trivial.
+ trivial.
Qed.
- Lemma MapMerge_empty_m : (m:(Map A)) (eqmap (MapMerge A (M0 A) m) m).
+ Lemma MapMerge_empty_m : forall m:Map A, eqmap (MapMerge A (M0 A) m) m.
Proof.
- Unfold eqmap eqm. Trivial.
+ unfold eqmap, eqm in |- *. trivial.
Qed.
- Lemma MapMerge_m_empty_1 : (m:(Map A)) (MapMerge A m (M0 A))=m.
+ Lemma MapMerge_m_empty_1 : forall m:Map A, MapMerge A m (M0 A) = m.
Proof.
- Induction m;Trivial.
+ simple induction m; trivial.
Qed.
- Lemma MapMerge_m_empty : (m:(Map A)) (eqmap (MapMerge A m (M0 A)) m).
+ Lemma MapMerge_m_empty : forall m:Map A, eqmap (MapMerge A m (M0 A)) m.
Proof.
- Unfold eqmap eqm. Intros. Rewrite MapMerge_m_empty_1. Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite MapMerge_m_empty_1. reflexivity.
Qed.
- Lemma MapMerge_empty_l : (m,m':(Map A)) (eqmap (MapMerge A m m') (M0 A)) ->
- (eqmap m (M0 A)).
+ Lemma MapMerge_empty_l :
+ forall m m':Map A, eqmap (MapMerge A m m') (M0 A) -> eqmap m (M0 A).
Proof.
- Unfold eqmap eqm. Intros. Cut (MapGet A (MapMerge A m m') a)=(MapGet A (M0 A) a).
- Rewrite (MapMerge_semantics A m m' a). Case (MapGet A m' a). Trivial.
- Intros. Discriminate H0.
- Exact (H a).
+ unfold eqmap, eqm in |- *. intros. cut (MapGet A (MapMerge A m m') a = MapGet A (M0 A) a).
+ rewrite (MapMerge_semantics A m m' a). case (MapGet A m' a). trivial.
+ intros. discriminate H0.
+ exact (H a).
Qed.
- Lemma MapMerge_empty_r : (m,m':(Map A)) (eqmap (MapMerge A m m') (M0 A)) ->
- (eqmap m' (M0 A)).
+ Lemma MapMerge_empty_r :
+ forall m m':Map A, eqmap (MapMerge A m m') (M0 A) -> eqmap m' (M0 A).
Proof.
- Unfold eqmap eqm. Intros. Cut (MapGet A (MapMerge A m m') a)=(MapGet A (M0 A) a).
- Rewrite (MapMerge_semantics A m m' a). Case (MapGet A m' a). Trivial.
- Intros. Discriminate H0.
- Exact (H a).
+ unfold eqmap, eqm in |- *. intros. cut (MapGet A (MapMerge A m m') a = MapGet A (M0 A) a).
+ rewrite (MapMerge_semantics A m m' a). case (MapGet A m' a). trivial.
+ intros. discriminate H0.
+ exact (H a).
Qed.
- Lemma MapMerge_assoc : (m,m',m'':(Map A)) (eqmap
- (MapMerge A (MapMerge A m m') m'')
- (MapMerge A m (MapMerge A m' m''))).
+ Lemma MapMerge_assoc :
+ forall m m' m'':Map A,
+ eqmap (MapMerge A (MapMerge A m m') m'')
+ (MapMerge A m (MapMerge A m' m'')).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A (MapMerge A m m') m'' a).
- Rewrite (MapMerge_semantics A m (MapMerge A m' m'') a). Rewrite (MapMerge_semantics A m m' a).
- Rewrite (MapMerge_semantics A m' m'' a).
- Case (MapGet A m'' a); Case (MapGet A m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapMerge A m m') m'' a).
+ rewrite (MapMerge_semantics A m (MapMerge A m' m'') a). rewrite (MapMerge_semantics A m m' a).
+ rewrite (MapMerge_semantics A m' m'' a).
+ case (MapGet A m'' a); case (MapGet A m' a); trivial.
Qed.
- Lemma MapMerge_idempotent : (m:(Map A)) (eqmap (MapMerge A m m) m).
+ Lemma MapMerge_idempotent : forall m:Map A, eqmap (MapMerge A m m) m.
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A m m a).
- Case (MapGet A m a); Trivial.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A m m a).
+ case (MapGet A m a); trivial.
Qed.
- Lemma MapMerge_ext : (m1,m2,m'1,m'2:(Map A))
- (eqmap m1 m'1) -> (eqmap m2 m'2) ->
- (eqmap (MapMerge A m1 m2) (MapMerge A m'1 m'2)).
+ Lemma MapMerge_ext :
+ forall m1 m2 m'1 m'2:Map A,
+ eqmap m1 m'1 ->
+ eqmap m2 m'2 -> eqmap (MapMerge A m1 m2) (MapMerge A m'1 m'2).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A m1 m2 a).
- Rewrite (MapMerge_semantics A m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A m1 m2 a).
+ rewrite (MapMerge_semantics A m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
Qed.
- Lemma MapMerge_ext_l : (m1,m'1,m2:(Map A))
- (eqmap m1 m'1) -> (eqmap (MapMerge A m1 m2) (MapMerge A m'1 m2)).
+ Lemma MapMerge_ext_l :
+ forall m1 m'1 m2:Map A,
+ eqmap m1 m'1 -> eqmap (MapMerge A m1 m2) (MapMerge A m'1 m2).
Proof.
- Intros. Apply MapMerge_ext. Assumption.
- Apply eqmap_refl.
+ intros. apply MapMerge_ext. assumption.
+ apply eqmap_refl.
Qed.
- Lemma MapMerge_ext_r : (m1,m2,m'2:(Map A))
- (eqmap m2 m'2) -> (eqmap (MapMerge A m1 m2) (MapMerge A m1 m'2)).
+ Lemma MapMerge_ext_r :
+ forall m1 m2 m'2:Map A,
+ eqmap m2 m'2 -> eqmap (MapMerge A m1 m2) (MapMerge A m1 m'2).
Proof.
- Intros. Apply MapMerge_ext. Apply eqmap_refl.
- Assumption.
+ intros. apply MapMerge_ext. apply eqmap_refl.
+ assumption.
Qed.
- Lemma MapMerge_RestrTo_l : (m,m',m'':(Map A))
- (eqmap (MapMerge A (MapDomRestrTo A A m m') m'')
- (MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m''))).
+ Lemma MapMerge_RestrTo_l :
+ forall m m' m'':Map A,
+ eqmap (MapMerge A (MapDomRestrTo A A m m') m'')
+ (MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m'')).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A (MapDomRestrTo A A m m') m'' a).
- Rewrite (MapDomRestrTo_semantics A A m m' a).
- Rewrite (MapDomRestrTo_semantics A A (MapMerge A m m'') (MapMerge A m' m'') a).
- Rewrite (MapMerge_semantics A m' m'' a). Rewrite (MapMerge_semantics A m m'' a).
- Case (MapGet A m'' a); Case (MapGet A m' a); Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapDomRestrTo A A m m') m'' a).
+ rewrite (MapDomRestrTo_semantics A A m m' a).
+ rewrite
+ (MapDomRestrTo_semantics A A (MapMerge A m m'') (MapMerge A m' m'') a)
+ .
+ rewrite (MapMerge_semantics A m' m'' a). rewrite (MapMerge_semantics A m m'' a).
+ case (MapGet A m'' a); case (MapGet A m' a); reflexivity.
Qed.
- Lemma MapRemove_as_RestrBy : (m:(Map A)) (a:ad) (y:B)
- (eqmap (MapRemove A m a) (MapDomRestrBy A B m (M1 B a y))).
+ Lemma MapRemove_as_RestrBy :
+ forall (m:Map A) (a:ad) (y:B),
+ eqmap (MapRemove A m a) (MapDomRestrBy A B m (M1 B a y)).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapRemove_semantics A m a a0).
- Rewrite (MapDomRestrBy_semantics A B m (M1 B a y) a0). Elim (sumbool_of_bool (ad_eq a a0)).
- Intro H. Rewrite H. Rewrite (ad_eq_complete a a0 H). Rewrite (M1_semantics_1 B a0 y).
- Reflexivity.
- Intro H. Rewrite H. Rewrite (M1_semantics_2 B a a0 y H). Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapRemove_semantics A m a a0).
+ rewrite (MapDomRestrBy_semantics A B m (M1 B a y) a0). elim (sumbool_of_bool (ad_eq a a0)).
+ intro H. rewrite H. rewrite (ad_eq_complete a a0 H). rewrite (M1_semantics_1 B a0 y).
+ reflexivity.
+ intro H. rewrite H. rewrite (M1_semantics_2 B a a0 y H). reflexivity.
Qed.
- Lemma MapRemove_ext : (m,m':(Map A)) (eqmap m m') ->
- (a:ad) (eqmap (MapRemove A m a) (MapRemove A m' a)).
+ Lemma MapRemove_ext :
+ forall m m':Map A,
+ eqmap m m' -> forall a:ad, eqmap (MapRemove A m a) (MapRemove A m' a).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapRemove_semantics A m' a a0).
- Rewrite (MapRemove_semantics A m a a0).
- Case (ad_eq a a0); [ Reflexivity | Apply H ].
+ unfold eqmap, eqm in |- *. intros. rewrite (MapRemove_semantics A m' a a0).
+ rewrite (MapRemove_semantics A m a a0).
+ case (ad_eq a a0); [ reflexivity | apply H ].
Qed.
- Lemma MapDomRestrTo_empty_m_1 :
- (m:(Map B)) (MapDomRestrTo A B (M0 A) m)=(M0 A).
+ Lemma MapDomRestrTo_empty_m_1 :
+ forall m:Map B, MapDomRestrTo A B (M0 A) m = M0 A.
Proof.
- Trivial.
+ trivial.
Qed.
- Lemma MapDomRestrTo_empty_m :
- (m:(Map B)) (eqmap (MapDomRestrTo A B (M0 A) m) (M0 A)).
+ Lemma MapDomRestrTo_empty_m :
+ forall m:Map B, eqmap (MapDomRestrTo A B (M0 A) m) (M0 A).
Proof.
- Unfold eqmap eqm. Trivial.
+ unfold eqmap, eqm in |- *. trivial.
Qed.
- Lemma MapDomRestrTo_m_empty_1 :
- (m:(Map A)) (MapDomRestrTo A B m (M0 B))=(M0 A).
+ Lemma MapDomRestrTo_m_empty_1 :
+ forall m:Map A, MapDomRestrTo A B m (M0 B) = M0 A.
Proof.
- Induction m;Trivial.
+ simple induction m; trivial.
Qed.
- Lemma MapDomRestrTo_m_empty :
- (m:(Map A)) (eqmap (MapDomRestrTo A B m (M0 B)) (M0 A)).
+ Lemma MapDomRestrTo_m_empty :
+ forall m:Map A, eqmap (MapDomRestrTo A B m (M0 B)) (M0 A).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_m_empty_1 m). Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_m_empty_1 m). reflexivity.
Qed.
- Lemma MapDomRestrTo_assoc : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')
- (MapDomRestrTo A B m (MapDomRestrTo B C m' m''))).
+ Lemma MapDomRestrTo_assoc :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')
+ (MapDomRestrTo A B m (MapDomRestrTo B C m' m'')).
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a).
- Rewrite (MapDomRestrTo_semantics A B m m' a).
- Rewrite (MapDomRestrTo_semantics A B m (MapDomRestrTo B C m' m'') a).
- Rewrite (MapDomRestrTo_semantics B C m' m'' a).
- Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B m (MapDomRestrTo B C m' m'') a).
+ rewrite (MapDomRestrTo_semantics B C m' m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
Qed.
- Lemma MapDomRestrTo_idempotent : (m:(Map A)) (eqmap (MapDomRestrTo A A m m) m).
+ Lemma MapDomRestrTo_idempotent :
+ forall m:Map A, eqmap (MapDomRestrTo A A m m) m.
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_semantics A A m m a).
- Case (MapGet A m a); Trivial.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A A m m a).
+ case (MapGet A m a); trivial.
Qed.
- Lemma MapDomRestrTo_Dom : (m:(Map A)) (m':(Map B))
- (eqmap (MapDomRestrTo A B m m') (MapDomRestrTo A unit m (MapDom B m'))).
+ Lemma MapDomRestrTo_Dom :
+ forall (m:Map A) (m':Map B),
+ eqmap (MapDomRestrTo A B m m') (MapDomRestrTo A unit m (MapDom B m')).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_semantics A B m m' a).
- Rewrite (MapDomRestrTo_semantics A unit m (MapDom B m') a).
- Elim (sumbool_of_bool (in_FSet a (MapDom B m'))). Intro H.
- Elim (MapDom_semantics_2 B m' a H). Intros y H0. Rewrite H0. Unfold in_FSet in_dom in H.
- Generalize H. Case (MapGet unit (MapDom B m') a); Trivial. Intro H1. Discriminate H1.
- Intro H. Rewrite (MapDom_semantics_4 B m' a H). Unfold in_FSet in_dom in H.
- Generalize H. Case (MapGet unit (MapDom B m') a). Trivial.
- Intros H0 H1. Discriminate H1.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A unit m (MapDom B m') a).
+ elim (sumbool_of_bool (in_FSet a (MapDom B m'))). intro H.
+ elim (MapDom_semantics_2 B m' a H). intros y H0. rewrite H0. unfold in_FSet, in_dom in H.
+ generalize H. case (MapGet unit (MapDom B m') a); trivial. intro H1. discriminate H1.
+ intro H. rewrite (MapDom_semantics_4 B m' a H). unfold in_FSet, in_dom in H.
+ generalize H. case (MapGet unit (MapDom B m') a). trivial.
+ intros H0 H1. discriminate H1.
Qed.
- Lemma MapDomRestrBy_empty_m_1 :
- (m:(Map B)) (MapDomRestrBy A B (M0 A) m)=(M0 A).
+ Lemma MapDomRestrBy_empty_m_1 :
+ forall m:Map B, MapDomRestrBy A B (M0 A) m = M0 A.
Proof.
- Trivial.
+ trivial.
Qed.
- Lemma MapDomRestrBy_empty_m :
- (m:(Map B)) (eqmap (MapDomRestrBy A B (M0 A) m) (M0 A)).
+ Lemma MapDomRestrBy_empty_m :
+ forall m:Map B, eqmap (MapDomRestrBy A B (M0 A) m) (M0 A).
Proof.
- Unfold eqmap eqm. Trivial.
+ unfold eqmap, eqm in |- *. trivial.
Qed.
- Lemma MapDomRestrBy_m_empty_1 : (m:(Map A)) (MapDomRestrBy A B m (M0 B))=m.
+ Lemma MapDomRestrBy_m_empty_1 :
+ forall m:Map A, MapDomRestrBy A B m (M0 B) = m.
Proof.
- Induction m;Trivial.
+ simple induction m; trivial.
Qed.
- Lemma MapDomRestrBy_m_empty : (m:(Map A)) (eqmap (MapDomRestrBy A B m (M0 B)) m).
+ Lemma MapDomRestrBy_m_empty :
+ forall m:Map A, eqmap (MapDomRestrBy A B m (M0 B)) m.
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_m_empty_1 m). Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_m_empty_1 m). reflexivity.
Qed.
- Lemma MapDomRestrBy_Dom : (m:(Map A)) (m':(Map B))
- (eqmap (MapDomRestrBy A B m m') (MapDomRestrBy A unit m (MapDom B m'))).
+ Lemma MapDomRestrBy_Dom :
+ forall (m:Map A) (m':Map B),
+ eqmap (MapDomRestrBy A B m m') (MapDomRestrBy A unit m (MapDom B m')).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_semantics A B m m' a).
- Rewrite (MapDomRestrBy_semantics A unit m (MapDom B m') a).
- Elim (sumbool_of_bool (in_FSet a (MapDom B m'))). Intro H.
- Elim (MapDom_semantics_2 B m' a H). Intros y H0. Rewrite H0.
- Unfold in_FSet in_dom in H. Generalize H. Case (MapGet unit (MapDom B m') a); Trivial.
- Intro H1. Discriminate H1.
- Intro H. Rewrite (MapDom_semantics_4 B m' a H). Unfold in_FSet in_dom in H.
- Generalize H. Case (MapGet unit (MapDom B m') a). Trivial.
- Intros H0 H1. Discriminate H1.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrBy_semantics A unit m (MapDom B m') a).
+ elim (sumbool_of_bool (in_FSet a (MapDom B m'))). intro H.
+ elim (MapDom_semantics_2 B m' a H). intros y H0. rewrite H0.
+ unfold in_FSet, in_dom in H. generalize H. case (MapGet unit (MapDom B m') a); trivial.
+ intro H1. discriminate H1.
+ intro H. rewrite (MapDom_semantics_4 B m' a H). unfold in_FSet, in_dom in H.
+ generalize H. case (MapGet unit (MapDom B m') a). trivial.
+ intros H0 H1. discriminate H1.
Qed.
- Lemma MapDomRestrBy_m_m_1 : (m:(Map A)) (eqmap (MapDomRestrBy A A m m) (M0 A)).
+ Lemma MapDomRestrBy_m_m_1 :
+ forall m:Map A, eqmap (MapDomRestrBy A A m m) (M0 A).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_semantics A A m m a).
- Case (MapGet A m a); Trivial.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A A m m a).
+ case (MapGet A m a); trivial.
Qed.
- Lemma MapDomRestrBy_By : (m:(Map A)) (m':(Map B)) (m'':(Map B))
- (eqmap (MapDomRestrBy A B (MapDomRestrBy A B m m') m'')
- (MapDomRestrBy A B m (MapMerge B m' m''))).
+ Lemma MapDomRestrBy_By :
+ forall (m:Map A) (m' m'':Map B),
+ eqmap (MapDomRestrBy A B (MapDomRestrBy A B m m') m'')
+ (MapDomRestrBy A B m (MapMerge B m' m'')).
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A B m m') m'' a).
- Rewrite (MapDomRestrBy_semantics A B m m' a).
- Rewrite (MapDomRestrBy_semantics A B m (MapMerge B m' m'') a).
- Rewrite (MapMerge_semantics B m' m'' a).
- Case (MapGet B m'' a); Case (MapGet B m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A B m m') m'' a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrBy_semantics A B m (MapMerge B m' m'') a).
+ rewrite (MapMerge_semantics B m' m'' a).
+ case (MapGet B m'' a); case (MapGet B m' a); trivial.
Qed.
- Lemma MapDomRestrBy_By_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (eqmap (MapDomRestrBy A C (MapDomRestrBy A B m m') m'')
- (MapDomRestrBy A B (MapDomRestrBy A C m m'') m')).
+ Lemma MapDomRestrBy_By_comm :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrBy A C (MapDomRestrBy A B m m') m'')
+ (MapDomRestrBy A B (MapDomRestrBy A C m m'') m').
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrBy_semantics A C (MapDomRestrBy A B m m') m'' a).
- Rewrite (MapDomRestrBy_semantics A B m m' a).
- Rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A C m m'') m' a).
- Rewrite (MapDomRestrBy_semantics A C m m'' a).
- Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrBy_semantics A C (MapDomRestrBy A B m m') m'' a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A C m m'') m' a).
+ rewrite (MapDomRestrBy_semantics A C m m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
Qed.
- Lemma MapDomRestrBy_To : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')
- (MapDomRestrTo A B m (MapDomRestrBy B C m' m''))).
+ Lemma MapDomRestrBy_To :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')
+ (MapDomRestrTo A B m (MapDomRestrBy B C m' m'')).
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a).
- Rewrite (MapDomRestrTo_semantics A B m m' a).
- Rewrite (MapDomRestrTo_semantics A B m (MapDomRestrBy B C m' m'') a).
- Rewrite (MapDomRestrBy_semantics B C m' m'' a).
- Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B m (MapDomRestrBy B C m' m'') a).
+ rewrite (MapDomRestrBy_semantics B C m' m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
Qed.
- Lemma MapDomRestrBy_To_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')
- (MapDomRestrTo A B (MapDomRestrBy A C m m'') m')).
+ Lemma MapDomRestrBy_To_comm :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')
+ (MapDomRestrTo A B (MapDomRestrBy A C m m'') m').
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a).
- Rewrite (MapDomRestrTo_semantics A B m m' a).
- Rewrite (MapDomRestrTo_semantics A B (MapDomRestrBy A C m m'') m' a).
- Rewrite (MapDomRestrBy_semantics A C m m'' a).
- Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B (MapDomRestrBy A C m m'') m' a).
+ rewrite (MapDomRestrBy_semantics A C m m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
Qed.
- Lemma MapDomRestrTo_By : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')
- (MapDomRestrTo A C m (MapDomRestrBy C B m'' m'))).
+ Lemma MapDomRestrTo_By :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')
+ (MapDomRestrTo A C m (MapDomRestrBy C B m'' m')).
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a).
- Rewrite (MapDomRestrBy_semantics A B m m' a).
- Rewrite (MapDomRestrTo_semantics A C m (MapDomRestrBy C B m'' m') a).
- Rewrite (MapDomRestrBy_semantics C B m'' m' a).
- Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A C m (MapDomRestrBy C B m'' m') a).
+ rewrite (MapDomRestrBy_semantics C B m'' m' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
Qed.
- Lemma MapDomRestrTo_By_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')
- (MapDomRestrBy A B (MapDomRestrTo A C m m'') m')).
+ Lemma MapDomRestrTo_By_comm :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')
+ (MapDomRestrBy A B (MapDomRestrTo A C m m'') m').
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a).
- Rewrite (MapDomRestrBy_semantics A B m m' a).
- Rewrite (MapDomRestrBy_semantics A B (MapDomRestrTo A C m m'') m' a).
- Rewrite (MapDomRestrTo_semantics A C m m'' a).
- Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrBy_semantics A B (MapDomRestrTo A C m m'') m' a).
+ rewrite (MapDomRestrTo_semantics A C m m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
Qed.
- Lemma MapDomRestrTo_To_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')
- (MapDomRestrTo A B (MapDomRestrTo A C m m'') m')).
+ Lemma MapDomRestrTo_To_comm :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')
+ (MapDomRestrTo A B (MapDomRestrTo A C m m'') m').
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a).
- Rewrite (MapDomRestrTo_semantics A B m m' a).
- Rewrite (MapDomRestrTo_semantics A B (MapDomRestrTo A C m m'') m' a).
- Rewrite (MapDomRestrTo_semantics A C m m'' a).
- Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B (MapDomRestrTo A C m m'') m' a).
+ rewrite (MapDomRestrTo_semantics A C m m'' a).
+ case (MapGet C m'' a); case (MapGet B m' a); trivial.
Qed.
- Lemma MapMerge_DomRestrTo : (m,m':(Map A)) (m'':(Map B))
- (eqmap (MapDomRestrTo A B (MapMerge A m m') m'')
- (MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m''))).
+ Lemma MapMerge_DomRestrTo :
+ forall (m m':Map A) (m'':Map B),
+ eqmap (MapDomRestrTo A B (MapMerge A m m') m'')
+ (MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'')).
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrTo_semantics A B (MapMerge A m m') m'' a).
- Rewrite (MapMerge_semantics A m m' a).
- Rewrite (MapMerge_semantics A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'') a).
- Rewrite (MapDomRestrTo_semantics A B m' m'' a).
- Rewrite (MapDomRestrTo_semantics A B m m'' a).
- Case (MapGet B m'' a); Case (MapGet A m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A B (MapMerge A m m') m'' a).
+ rewrite (MapMerge_semantics A m m' a).
+ rewrite
+ (MapMerge_semantics A (MapDomRestrTo A B m m'')
+ (MapDomRestrTo A B m' m'') a).
+ rewrite (MapDomRestrTo_semantics A B m' m'' a).
+ rewrite (MapDomRestrTo_semantics A B m m'' a).
+ case (MapGet B m'' a); case (MapGet A m' a); trivial.
Qed.
- Lemma MapMerge_DomRestrBy : (m,m':(Map A)) (m'':(Map B))
- (eqmap (MapDomRestrBy A B (MapMerge A m m') m'')
- (MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m''))).
+ Lemma MapMerge_DomRestrBy :
+ forall (m m':Map A) (m'':Map B),
+ eqmap (MapDomRestrBy A B (MapMerge A m m') m'')
+ (MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'')).
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrBy_semantics A B (MapMerge A m m') m'' a).
- Rewrite (MapMerge_semantics A m m' a).
- Rewrite (MapMerge_semantics A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'') a).
- Rewrite (MapDomRestrBy_semantics A B m' m'' a).
- Rewrite (MapDomRestrBy_semantics A B m m'' a).
- Case (MapGet B m'' a); Case (MapGet A m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrBy_semantics A B (MapMerge A m m') m'' a).
+ rewrite (MapMerge_semantics A m m' a).
+ rewrite
+ (MapMerge_semantics A (MapDomRestrBy A B m m'')
+ (MapDomRestrBy A B m' m'') a).
+ rewrite (MapDomRestrBy_semantics A B m' m'' a).
+ rewrite (MapDomRestrBy_semantics A B m m'' a).
+ case (MapGet B m'' a); case (MapGet A m' a); trivial.
Qed.
- Lemma MapDelta_empty_m_1 : (m:(Map A)) (MapDelta A (M0 A) m)=m.
+ Lemma MapDelta_empty_m_1 : forall m:Map A, MapDelta A (M0 A) m = m.
Proof.
- Trivial.
+ trivial.
Qed.
- Lemma MapDelta_empty_m : (m:(Map A)) (eqmap (MapDelta A (M0 A) m) m).
+ Lemma MapDelta_empty_m : forall m:Map A, eqmap (MapDelta A (M0 A) m) m.
Proof.
- Unfold eqmap eqm. Trivial.
+ unfold eqmap, eqm in |- *. trivial.
Qed.
- Lemma MapDelta_m_empty_1 : (m:(Map A)) (MapDelta A m (M0 A))=m.
+ Lemma MapDelta_m_empty_1 : forall m:Map A, MapDelta A m (M0 A) = m.
Proof.
- Induction m;Trivial.
+ simple induction m; trivial.
Qed.
- Lemma MapDelta_m_empty : (m:(Map A)) (eqmap (MapDelta A m (M0 A)) m).
+ Lemma MapDelta_m_empty : forall m:Map A, eqmap (MapDelta A m (M0 A)) m.
Proof.
- Unfold eqmap eqm. Intros. Rewrite MapDelta_m_empty_1. Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite MapDelta_m_empty_1. reflexivity.
Qed.
- Lemma MapDelta_nilpotent : (m:(Map A)) (eqmap (MapDelta A m m) (M0 A)).
+ Lemma MapDelta_nilpotent : forall m:Map A, eqmap (MapDelta A m m) (M0 A).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m a).
- Case (MapGet A m a); Trivial.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m a).
+ case (MapGet A m a); trivial.
Qed.
- Lemma MapDelta_as_Merge : (m,m':(Map A)) (eqmap (MapDelta A m m')
- (MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m))).
+ Lemma MapDelta_as_Merge :
+ forall m m':Map A,
+ eqmap (MapDelta A m m')
+ (MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m)).
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDelta_semantics A m m' a).
- Rewrite (MapMerge_semantics A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m) a).
- Rewrite (MapDomRestrBy_semantics A A m' m a).
- Rewrite (MapDomRestrBy_semantics A A m m' a).
- Case (MapGet A m a); Case (MapGet A m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDelta_semantics A m m' a).
+ rewrite
+ (MapMerge_semantics A (MapDomRestrBy A A m m') (
+ MapDomRestrBy A A m' m) a).
+ rewrite (MapDomRestrBy_semantics A A m' m a).
+ rewrite (MapDomRestrBy_semantics A A m m' a).
+ case (MapGet A m a); case (MapGet A m' a); trivial.
Qed.
- Lemma MapDelta_as_DomRestrBy : (m,m':(Map A)) (eqmap (MapDelta A m m')
- (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m'))).
+ Lemma MapDelta_as_DomRestrBy :
+ forall m m':Map A,
+ eqmap (MapDelta A m m')
+ (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m' a).
- Rewrite (MapDomRestrBy_semantics A A (MapMerge A m m') (MapDomRestrTo A A m m') a).
- Rewrite (MapDomRestrTo_semantics A A m m' a). Rewrite (MapMerge_semantics A m m' a).
- Case (MapGet A m a); Case (MapGet A m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a).
+ rewrite
+ (MapDomRestrBy_semantics A A (MapMerge A m m') (
+ MapDomRestrTo A A m m') a).
+ rewrite (MapDomRestrTo_semantics A A m m' a). rewrite (MapMerge_semantics A m m' a).
+ case (MapGet A m a); case (MapGet A m' a); trivial.
Qed.
- Lemma MapDelta_as_DomRestrBy_2 : (m,m':(Map A)) (eqmap (MapDelta A m m')
- (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m))).
+ Lemma MapDelta_as_DomRestrBy_2 :
+ forall m m':Map A,
+ eqmap (MapDelta A m m')
+ (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m)).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m' a).
- Rewrite (MapDomRestrBy_semantics A A (MapMerge A m m') (MapDomRestrTo A A m' m) a).
- Rewrite (MapDomRestrTo_semantics A A m' m a). Rewrite (MapMerge_semantics A m m' a).
- Case (MapGet A m a); Case (MapGet A m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a).
+ rewrite
+ (MapDomRestrBy_semantics A A (MapMerge A m m') (
+ MapDomRestrTo A A m' m) a).
+ rewrite (MapDomRestrTo_semantics A A m' m a). rewrite (MapMerge_semantics A m m' a).
+ case (MapGet A m a); case (MapGet A m' a); trivial.
Qed.
- Lemma MapDelta_sym : (m,m':(Map A)) (eqmap (MapDelta A m m') (MapDelta A m' m)).
+ Lemma MapDelta_sym :
+ forall m m':Map A, eqmap (MapDelta A m m') (MapDelta A m' m).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m' a).
- Rewrite (MapDelta_semantics A m' m a).
- Case (MapGet A m a); Case (MapGet A m' a); Trivial.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a).
+ rewrite (MapDelta_semantics A m' m a).
+ case (MapGet A m a); case (MapGet A m' a); trivial.
Qed.
- Lemma MapDelta_ext : (m1,m2,m'1,m'2:(Map A))
- (eqmap m1 m'1) -> (eqmap m2 m'2) ->
- (eqmap (MapDelta A m1 m2) (MapDelta A m'1 m'2)).
+ Lemma MapDelta_ext :
+ forall m1 m2 m'1 m'2:Map A,
+ eqmap m1 m'1 ->
+ eqmap m2 m'2 -> eqmap (MapDelta A m1 m2) (MapDelta A m'1 m'2).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m1 m2 a).
- Rewrite (MapDelta_semantics A m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m1 m2 a).
+ rewrite (MapDelta_semantics A m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
Qed.
- Lemma MapDelta_ext_l : (m1,m'1,m2:(Map A))
- (eqmap m1 m'1) -> (eqmap (MapDelta A m1 m2) (MapDelta A m'1 m2)).
+ Lemma MapDelta_ext_l :
+ forall m1 m'1 m2:Map A,
+ eqmap m1 m'1 -> eqmap (MapDelta A m1 m2) (MapDelta A m'1 m2).
Proof.
- Intros. Apply MapDelta_ext. Assumption.
- Apply eqmap_refl.
+ intros. apply MapDelta_ext. assumption.
+ apply eqmap_refl.
Qed.
- Lemma MapDelta_ext_r : (m1,m2,m'2:(Map A))
- (eqmap m2 m'2) -> (eqmap (MapDelta A m1 m2) (MapDelta A m1 m'2)).
+ Lemma MapDelta_ext_r :
+ forall m1 m2 m'2:Map A,
+ eqmap m2 m'2 -> eqmap (MapDelta A m1 m2) (MapDelta A m1 m'2).
Proof.
- Intros. Apply MapDelta_ext. Apply eqmap_refl.
- Assumption.
+ intros. apply MapDelta_ext. apply eqmap_refl.
+ assumption.
Qed.
- Lemma MapDom_Split_1 : (m:(Map A)) (m':(Map B))
- (eqmap m (MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m'))).
+ Lemma MapDom_Split_1 :
+ forall (m:Map A) (m':Map B),
+ eqmap m (MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m')).
Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapMerge_semantics A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') a).
- Rewrite (MapDomRestrBy_semantics A B m m' a).
- Rewrite (MapDomRestrTo_semantics A B m m' a).
- Case (MapGet B m' a); Case (MapGet A m a); Trivial.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite
+ (MapMerge_semantics A (MapDomRestrTo A B m m') (
+ MapDomRestrBy A B m m') a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ case (MapGet B m' a); case (MapGet A m a); trivial.
Qed.
- Lemma MapDom_Split_2 : (m:(Map A)) (m':(Map B))
- (eqmap m (MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m'))).
- Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapMerge_semantics A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m') a).
- Rewrite (MapDomRestrBy_semantics A B m m' a).
- Rewrite (MapDomRestrTo_semantics A B m m' a).
- Case (MapGet B m' a); Case (MapGet A m a); Trivial.
- Qed.
-
- Lemma MapDom_Split_3 : (m:(Map A)) (m':(Map B))
- (eqmap (MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m'))
- (M0 A)).
- Proof.
- Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrTo_semantics A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') a).
- Rewrite (MapDomRestrBy_semantics A B m m' a).
- Rewrite (MapDomRestrTo_semantics A B m m' a).
- Case (MapGet B m' a); Case (MapGet A m a); Trivial.
+ Lemma MapDom_Split_2 :
+ forall (m:Map A) (m':Map B),
+ eqmap m (MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m')).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite
+ (MapMerge_semantics A (MapDomRestrBy A B m m') (
+ MapDomRestrTo A B m m') a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ case (MapGet B m' a); case (MapGet A m a); trivial.
+ Qed.
+
+ Lemma MapDom_Split_3 :
+ forall (m:Map A) (m':Map B),
+ eqmap
+ (MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m'))
+ (M0 A).
+ Proof.
+ unfold eqmap, eqm in |- *. intros.
+ rewrite
+ (MapDomRestrTo_semantics A A (MapDomRestrTo A B m m')
+ (MapDomRestrBy A B m m') a).
+ rewrite (MapDomRestrBy_semantics A B m m' a).
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ case (MapGet B m' a); case (MapGet A m a); trivial.
Qed.
End MapAxioms.
-Lemma MapDomRestrTo_ext : (A,B:Set)
- (m1:(Map A)) (m2:(Map B)) (m'1:(Map A)) (m'2:(Map B))
- (eqmap A m1 m'1) -> (eqmap B m2 m'2) ->
- (eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m'2)).
+Lemma MapDomRestrTo_ext :
+ forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A)
+ (m'2:Map B),
+ eqmap A m1 m'1 ->
+ eqmap B m2 m'2 ->
+ eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m'2).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_semantics A B m1 m2 a).
- Rewrite (MapDomRestrTo_semantics A B m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B m1 m2 a).
+ rewrite (MapDomRestrTo_semantics A B m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
Qed.
-Lemma MapDomRestrTo_ext_l : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'1:(Map A))
- (eqmap A m1 m'1) ->
- (eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m2)).
+Lemma MapDomRestrTo_ext_l :
+ forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A),
+ eqmap A m1 m'1 ->
+ eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m2).
Proof.
- Intros. Apply MapDomRestrTo_ext; [ Assumption | Apply eqmap_refl ].
+ intros. apply MapDomRestrTo_ext; [ assumption | apply eqmap_refl ].
Qed.
-Lemma MapDomRestrTo_ext_r : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'2:(Map B))
- (eqmap B m2 m'2) ->
- (eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m1 m'2)).
+Lemma MapDomRestrTo_ext_r :
+ forall (A B:Set) (m1:Map A) (m2 m'2:Map B),
+ eqmap B m2 m'2 ->
+ eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m1 m'2).
Proof.
- Intros. Apply MapDomRestrTo_ext; [ Apply eqmap_refl | Assumption ].
+ intros. apply MapDomRestrTo_ext; [ apply eqmap_refl | assumption ].
Qed.
-Lemma MapDomRestrBy_ext : (A,B:Set)
- (m1:(Map A)) (m2:(Map B)) (m'1:(Map A)) (m'2:(Map B))
- (eqmap A m1 m'1) -> (eqmap B m2 m'2) ->
- (eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m'2)).
+Lemma MapDomRestrBy_ext :
+ forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A)
+ (m'2:Map B),
+ eqmap A m1 m'1 ->
+ eqmap B m2 m'2 ->
+ eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m'2).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_semantics A B m1 m2 a).
- Rewrite (MapDomRestrBy_semantics A B m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B m1 m2 a).
+ rewrite (MapDomRestrBy_semantics A B m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
Qed.
-Lemma MapDomRestrBy_ext_l : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'1:(Map A))
- (eqmap A m1 m'1) ->
- (eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m2)).
+Lemma MapDomRestrBy_ext_l :
+ forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A),
+ eqmap A m1 m'1 ->
+ eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m2).
Proof.
- Intros. Apply MapDomRestrBy_ext; [ Assumption | Apply eqmap_refl ].
+ intros. apply MapDomRestrBy_ext; [ assumption | apply eqmap_refl ].
Qed.
-Lemma MapDomRestrBy_ext_r : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'2:(Map B))
- (eqmap B m2 m'2) ->
- (eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m1 m'2)).
+Lemma MapDomRestrBy_ext_r :
+ forall (A B:Set) (m1:Map A) (m2 m'2:Map B),
+ eqmap B m2 m'2 ->
+ eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m1 m'2).
Proof.
- Intros. Apply MapDomRestrBy_ext; [ Apply eqmap_refl | Assumption ].
+ intros. apply MapDomRestrBy_ext; [ apply eqmap_refl | assumption ].
Qed.
-Lemma MapDomRestrBy_m_m : (A:Set) (m:(Map A))
- (eqmap A (MapDomRestrBy A unit m (MapDom A m)) (M0 A)).
+Lemma MapDomRestrBy_m_m :
+ forall (A:Set) (m:Map A),
+ eqmap A (MapDomRestrBy A unit m (MapDom A m)) (M0 A).
Proof.
- Intros. Apply eqmap_trans with m':=(MapDomRestrBy A A m m). Apply eqmap_sym.
- Apply MapDomRestrBy_Dom.
- Apply MapDomRestrBy_m_m_1.
+ intros. apply eqmap_trans with (m' := MapDomRestrBy A A m m). apply eqmap_sym.
+ apply MapDomRestrBy_Dom.
+ apply MapDomRestrBy_m_m_1.
Qed.
-Lemma FSetDelta_assoc : (s,s',s'':FSet)
- (eqmap unit (MapDelta ? (MapDelta ? s s') s'') (MapDelta ? s (MapDelta ? s' s''))).
+Lemma FSetDelta_assoc :
+ forall s s' s'':FSet,
+ eqmap unit (MapDelta _ (MapDelta _ s s') s'')
+ (MapDelta _ s (MapDelta _ s' s'')).
Proof.
- Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics unit (MapDelta unit s s') s'' a).
- Rewrite (MapDelta_semantics unit s s' a).
- Rewrite (MapDelta_semantics unit s (MapDelta unit s' s'') a).
- Rewrite (MapDelta_semantics unit s' s'' a).
- Case (MapGet ? s a); Case (MapGet ? s' a); Case (MapGet ? s'' a); Trivial.
- Intros. Elim u. Elim u1. Reflexivity.
+ unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics unit (MapDelta unit s s') s'' a).
+ rewrite (MapDelta_semantics unit s s' a).
+ rewrite (MapDelta_semantics unit s (MapDelta unit s' s'') a).
+ rewrite (MapDelta_semantics unit s' s'' a).
+ case (MapGet _ s a); case (MapGet _ s' a); case (MapGet _ s'' a); trivial.
+ intros. elim u. elim u1. reflexivity.
Qed.
-Lemma FSet_ext : (s,s':FSet) ((a:ad) (in_FSet a s)=(in_FSet a s')) -> (eqmap unit s s').
+Lemma FSet_ext :
+ forall s s':FSet,
+ (forall a:ad, in_FSet a s = in_FSet a s') -> eqmap unit s s'.
Proof.
- Unfold in_FSet eqmap eqm. Intros. Elim (sumbool_of_bool (in_dom ? a s)). Intro H0.
- Elim (in_dom_some ? s a H0). Intros y H1. Rewrite (H a) in H0. Elim (in_dom_some ? s' a H0).
- Intros y' H2. Rewrite H1. Rewrite H2. Elim y. Elim y'. Reflexivity.
- Intro H0. Rewrite (in_dom_none ? s a H0). Rewrite (H a) in H0. Rewrite (in_dom_none ? s' a H0).
- Reflexivity.
+ unfold in_FSet, eqmap, eqm in |- *. intros. elim (sumbool_of_bool (in_dom _ a s)). intro H0.
+ elim (in_dom_some _ s a H0). intros y H1. rewrite (H a) in H0. elim (in_dom_some _ s' a H0).
+ intros y' H2. rewrite H1. rewrite H2. elim y. elim y'. reflexivity.
+ intro H0. rewrite (in_dom_none _ s a H0). rewrite (H a) in H0. rewrite (in_dom_none _ s' a H0).
+ reflexivity.
Qed.
-Lemma FSetUnion_comm : (s,s':FSet) (eqmap unit (FSetUnion s s') (FSetUnion s' s)).
+Lemma FSetUnion_comm :
+ forall s s':FSet, eqmap unit (FSetUnion s s') (FSetUnion s' s).
Proof.
- Intros. Apply FSet_ext. Intro. Rewrite in_FSet_union. Rewrite in_FSet_union. Apply orb_sym.
+ intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_union. apply orb_comm.
Qed.
-Lemma FSetUnion_assoc : (s,s',s'':FSet) (eqmap unit
- (FSetUnion (FSetUnion s s') s'') (FSetUnion s (FSetUnion s' s''))).
+Lemma FSetUnion_assoc :
+ forall s s' s'':FSet,
+ eqmap unit (FSetUnion (FSetUnion s s') s'')
+ (FSetUnion s (FSetUnion s' s'')).
Proof.
- Exact (MapMerge_assoc unit).
+ exact (MapMerge_assoc unit).
Qed.
-Lemma FSetUnion_M0_s : (s:FSet) (eqmap unit (FSetUnion (M0 unit) s) s).
+Lemma FSetUnion_M0_s : forall s:FSet, eqmap unit (FSetUnion (M0 unit) s) s.
Proof.
- Exact (MapMerge_empty_m unit).
+ exact (MapMerge_empty_m unit).
Qed.
-Lemma FSetUnion_s_M0 : (s:FSet) (eqmap unit (FSetUnion s (M0 unit)) s).
+Lemma FSetUnion_s_M0 : forall s:FSet, eqmap unit (FSetUnion s (M0 unit)) s.
Proof.
- Exact (MapMerge_m_empty unit).
+ exact (MapMerge_m_empty unit).
Qed.
-Lemma FSetUnion_idempotent : (s:FSet) (eqmap unit (FSetUnion s s) s).
+Lemma FSetUnion_idempotent : forall s:FSet, eqmap unit (FSetUnion s s) s.
Proof.
- Exact (MapMerge_idempotent unit).
+ exact (MapMerge_idempotent unit).
Qed.
-Lemma FSetInter_comm : (s,s':FSet) (eqmap unit (FSetInter s s') (FSetInter s' s)).
+Lemma FSetInter_comm :
+ forall s s':FSet, eqmap unit (FSetInter s s') (FSetInter s' s).
Proof.
- Intros. Apply FSet_ext. Intro. Rewrite in_FSet_inter. Rewrite in_FSet_inter. Apply andb_sym.
+ intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_inter. apply andb_comm.
Qed.
-Lemma FSetInter_assoc : (s,s',s'':FSet) (eqmap unit
- (FSetInter (FSetInter s s') s'') (FSetInter s (FSetInter s' s''))).
+Lemma FSetInter_assoc :
+ forall s s' s'':FSet,
+ eqmap unit (FSetInter (FSetInter s s') s'')
+ (FSetInter s (FSetInter s' s'')).
Proof.
- Exact (MapDomRestrTo_assoc unit unit unit).
+ exact (MapDomRestrTo_assoc unit unit unit).
Qed.
-Lemma FSetInter_M0_s : (s:FSet) (eqmap unit (FSetInter (M0 unit) s) (M0 unit)).
+Lemma FSetInter_M0_s :
+ forall s:FSet, eqmap unit (FSetInter (M0 unit) s) (M0 unit).
Proof.
- Exact (MapDomRestrTo_empty_m unit unit).
+ exact (MapDomRestrTo_empty_m unit unit).
Qed.
-Lemma FSetInter_s_M0 : (s:FSet) (eqmap unit (FSetInter s (M0 unit)) (M0 unit)).
+Lemma FSetInter_s_M0 :
+ forall s:FSet, eqmap unit (FSetInter s (M0 unit)) (M0 unit).
Proof.
- Exact (MapDomRestrTo_m_empty unit unit).
+ exact (MapDomRestrTo_m_empty unit unit).
Qed.
-Lemma FSetInter_idempotent : (s:FSet) (eqmap unit (FSetInter s s) s).
+Lemma FSetInter_idempotent : forall s:FSet, eqmap unit (FSetInter s s) s.
Proof.
- Exact (MapDomRestrTo_idempotent unit).
+ exact (MapDomRestrTo_idempotent unit).
Qed.
-Lemma FSetUnion_Inter_l : (s,s',s'':FSet) (eqmap unit
- (FSetUnion (FSetInter s s') s'') (FSetInter (FSetUnion s s'') (FSetUnion s' s''))).
+Lemma FSetUnion_Inter_l :
+ forall s s' s'':FSet,
+ eqmap unit (FSetUnion (FSetInter s s') s'')
+ (FSetInter (FSetUnion s s'') (FSetUnion s' s'')).
Proof.
- Intros. Apply FSet_ext. Intro. Rewrite in_FSet_union. Rewrite in_FSet_inter.
- Rewrite in_FSet_inter. Rewrite in_FSet_union. Rewrite in_FSet_union.
- Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity.
+ intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_inter.
+ rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union.
+ case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
Qed.
-Lemma FSetUnion_Inter_r : (s,s',s'':FSet) (eqmap unit
- (FSetUnion s (FSetInter s' s'')) (FSetInter (FSetUnion s s') (FSetUnion s s''))).
+Lemma FSetUnion_Inter_r :
+ forall s s' s'':FSet,
+ eqmap unit (FSetUnion s (FSetInter s' s''))
+ (FSetInter (FSetUnion s s') (FSetUnion s s'')).
Proof.
- Intros. Apply FSet_ext. Intro. Rewrite in_FSet_union. Rewrite in_FSet_inter.
- Rewrite in_FSet_inter. Rewrite in_FSet_union. Rewrite in_FSet_union.
- Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity.
+ intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_inter.
+ rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union.
+ case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
Qed.
-Lemma FSetInter_Union_l : (s,s',s'':FSet) (eqmap unit
- (FSetInter (FSetUnion s s') s'') (FSetUnion (FSetInter s s'') (FSetInter s' s''))).
+Lemma FSetInter_Union_l :
+ forall s s' s'':FSet,
+ eqmap unit (FSetInter (FSetUnion s s') s'')
+ (FSetUnion (FSetInter s s'') (FSetInter s' s'')).
Proof.
- Intros. Apply FSet_ext. Intro. Rewrite in_FSet_inter. Rewrite in_FSet_union.
- Rewrite in_FSet_union. Rewrite in_FSet_inter. Rewrite in_FSet_inter.
- Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity.
+ intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_union.
+ rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter.
+ case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
Qed.
-Lemma FSetInter_Union_r : (s,s',s'':FSet) (eqmap unit
- (FSetInter s (FSetUnion s' s'')) (FSetUnion (FSetInter s s') (FSetInter s s''))).
+Lemma FSetInter_Union_r :
+ forall s s' s'':FSet,
+ eqmap unit (FSetInter s (FSetUnion s' s''))
+ (FSetUnion (FSetInter s s') (FSetInter s s'')).
Proof.
- Intros. Apply FSet_ext. Intro. Rewrite in_FSet_inter. Rewrite in_FSet_union.
- Rewrite in_FSet_union. Rewrite in_FSet_inter. Rewrite in_FSet_inter.
- Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity.
-Qed.
+ intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_union.
+ rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter.
+ case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Mapc.v b/theories/IntMap/Mapc.v
index b7cede9440..8420ba381a 100644
--- a/theories/IntMap/Mapc.v
+++ b/theories/IntMap/Mapc.v
@@ -7,451 +7,536 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Bool.
-Require Sumbool.
-Require Arith.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
-Require Mapaxioms.
-Require Fset.
-Require Mapiter.
-Require Mapsubset.
-Require PolyList.
-Require Lsort.
-Require Mapcard.
-Require Mapcanon.
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Mapaxioms.
+Require Import Fset.
+Require Import Mapiter.
+Require Import Mapsubset.
+Require Import List.
+Require Import Lsort.
+Require Import Mapcard.
+Require Import Mapcanon.
Section MapC.
- Variable A, B, C : Set.
+ Variables A B C : Set.
- Lemma MapPut_as_Merge_c : (m:(Map A)) (mapcanon A m) ->
- (a:ad) (y:A) (MapPut A m a y)=(MapMerge A m (M1 A a y)).
+ Lemma MapPut_as_Merge_c :
+ forall m:Map A,
+ mapcanon A m ->
+ forall (a:ad) (y:A), MapPut A m a y = MapMerge A m (M1 A a y).
Proof.
- Intros. Apply mapcanon_unique. Exact (MapPut_canon A m H a y).
- Apply MapMerge_canon. Assumption.
- Apply M1_canon.
- Apply MapPut_as_Merge.
+ intros. apply mapcanon_unique. exact (MapPut_canon A m H a y).
+ apply MapMerge_canon. assumption.
+ apply M1_canon.
+ apply MapPut_as_Merge.
Qed.
- Lemma MapPut_behind_as_Merge_c : (m:(Map A)) (mapcanon A m) ->
- (a:ad) (y:A) (MapPut_behind A m a y)=(MapMerge A (M1 A a y) m).
+ Lemma MapPut_behind_as_Merge_c :
+ forall m:Map A,
+ mapcanon A m ->
+ forall (a:ad) (y:A), MapPut_behind A m a y = MapMerge A (M1 A a y) m.
Proof.
- Intros. Apply mapcanon_unique. Exact (MapPut_behind_canon A m H a y).
- Apply MapMerge_canon. Apply M1_canon.
- Assumption.
- Apply MapPut_behind_as_Merge.
+ intros. apply mapcanon_unique. exact (MapPut_behind_canon A m H a y).
+ apply MapMerge_canon. apply M1_canon.
+ assumption.
+ apply MapPut_behind_as_Merge.
Qed.
- Lemma MapMerge_empty_m_c : (m:(Map A)) (MapMerge A (M0 A) m)=m.
+ Lemma MapMerge_empty_m_c : forall m:Map A, MapMerge A (M0 A) m = m.
Proof.
- Trivial.
+ trivial.
Qed.
- Lemma MapMerge_assoc_c : (m,m',m'':(Map A))
- (mapcanon A m) -> (mapcanon A m') -> (mapcanon A m'') ->
- (MapMerge A (MapMerge A m m') m'')=(MapMerge A m (MapMerge A m' m'')).
+ Lemma MapMerge_assoc_c :
+ forall m m' m'':Map A,
+ mapcanon A m ->
+ mapcanon A m' ->
+ mapcanon A m'' ->
+ MapMerge A (MapMerge A m m') m'' = MapMerge A m (MapMerge A m' m'').
Proof.
- Intros. Apply mapcanon_unique.
- (Apply MapMerge_canon; Try Assumption). (Apply MapMerge_canon; Try Assumption).
- (Apply MapMerge_canon; Try Assumption). (Apply MapMerge_canon; Try Assumption).
- Apply MapMerge_assoc.
+ intros. apply mapcanon_unique.
+ apply MapMerge_canon; try assumption. apply MapMerge_canon; try assumption.
+ apply MapMerge_canon; try assumption. apply MapMerge_canon; try assumption.
+ apply MapMerge_assoc.
Qed.
- Lemma MapMerge_idempotent_c : (m:(Map A)) (mapcanon A m) -> (MapMerge A m m)=m.
+ Lemma MapMerge_idempotent_c :
+ forall m:Map A, mapcanon A m -> MapMerge A m m = m.
Proof.
- Intros. Apply mapcanon_unique. (Apply MapMerge_canon; Assumption).
- Assumption.
- Apply MapMerge_idempotent.
+ intros. apply mapcanon_unique. apply MapMerge_canon; assumption.
+ assumption.
+ apply MapMerge_idempotent.
Qed.
- Lemma MapMerge_RestrTo_l_c : (m,m',m'':(Map A))
- (mapcanon A m) -> (mapcanon A m'') ->
- (MapMerge A (MapDomRestrTo A A m m') m'')=
- (MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m'')).
+ Lemma MapMerge_RestrTo_l_c :
+ forall m m' m'':Map A,
+ mapcanon A m ->
+ mapcanon A m'' ->
+ MapMerge A (MapDomRestrTo A A m m') m'' =
+ MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m'').
Proof.
- Intros. Apply mapcanon_unique. Apply MapMerge_canon. Apply MapDomRestrTo_canon; Assumption.
- Assumption.
- Apply MapDomRestrTo_canon; Apply MapMerge_canon; Assumption.
- Apply MapMerge_RestrTo_l.
+ intros. apply mapcanon_unique. apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
+ assumption.
+ apply MapDomRestrTo_canon; apply MapMerge_canon; assumption.
+ apply MapMerge_RestrTo_l.
Qed.
- Lemma MapRemove_as_RestrBy_c : (m:(Map A)) (mapcanon A m) ->
- (a:ad) (y:B) (MapRemove A m a)=(MapDomRestrBy A B m (M1 B a y)).
+ Lemma MapRemove_as_RestrBy_c :
+ forall m:Map A,
+ mapcanon A m ->
+ forall (a:ad) (y:B), MapRemove A m a = MapDomRestrBy A B m (M1 B a y).
Proof.
- Intros. Apply mapcanon_unique. (Apply MapRemove_canon; Assumption).
- (Apply MapDomRestrBy_canon; Assumption).
- Apply MapRemove_as_RestrBy.
+ intros. apply mapcanon_unique. apply MapRemove_canon; assumption.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapRemove_as_RestrBy.
Qed.
- Lemma MapDomRestrTo_assoc_c : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (mapcanon A m) ->
- (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')=
- (MapDomRestrTo A B m (MapDomRestrTo B C m' m'')).
+ Lemma MapDomRestrTo_assoc_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrTo A C (MapDomRestrTo A B m m') m'' =
+ MapDomRestrTo A B m (MapDomRestrTo B C m' m'').
Proof.
- Intros. Apply mapcanon_unique. (Apply MapDomRestrTo_canon; Try Assumption).
- (Apply MapDomRestrTo_canon; Try Assumption).
- (Apply MapDomRestrTo_canon; Try Assumption).
- Apply MapDomRestrTo_assoc.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon; try assumption.
+ apply MapDomRestrTo_canon; try assumption.
+ apply MapDomRestrTo_canon; try assumption.
+ apply MapDomRestrTo_assoc.
Qed.
- Lemma MapDomRestrTo_idempotent_c : (m:(Map A)) (mapcanon A m) ->
- (MapDomRestrTo A A m m)=m.
+ Lemma MapDomRestrTo_idempotent_c :
+ forall m:Map A, mapcanon A m -> MapDomRestrTo A A m m = m.
Proof.
- Intros. Apply mapcanon_unique. (Apply MapDomRestrTo_canon; Assumption).
- Assumption.
- Apply MapDomRestrTo_idempotent.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon; assumption.
+ assumption.
+ apply MapDomRestrTo_idempotent.
Qed.
- Lemma MapDomRestrTo_Dom_c : (m:(Map A)) (m':(Map B)) (mapcanon A m) ->
- (MapDomRestrTo A B m m')=(MapDomRestrTo A unit m (MapDom B m')).
+ Lemma MapDomRestrTo_Dom_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ MapDomRestrTo A B m m' = MapDomRestrTo A unit m (MapDom B m').
Proof.
- Intros. Apply mapcanon_unique. (Apply MapDomRestrTo_canon; Assumption).
- (Apply MapDomRestrTo_canon; Assumption).
- Apply MapDomRestrTo_Dom.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_Dom.
Qed.
- Lemma MapDomRestrBy_Dom_c : (m:(Map A)) (m':(Map B)) (mapcanon A m) ->
- (MapDomRestrBy A B m m')=(MapDomRestrBy A unit m (MapDom B m')).
+ Lemma MapDomRestrBy_Dom_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ MapDomRestrBy A B m m' = MapDomRestrBy A unit m (MapDom B m').
Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon; Assumption.
- Apply MapDomRestrBy_canon; Assumption.
- Apply MapDomRestrBy_Dom.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_Dom.
Qed.
- Lemma MapDomRestrBy_By_c : (m:(Map A)) (m':(Map B)) (m'':(Map B))
- (mapcanon A m) ->
- (MapDomRestrBy A B (MapDomRestrBy A B m m') m'')=
- (MapDomRestrBy A B m (MapMerge B m' m'')).
+ Lemma MapDomRestrBy_By_c :
+ forall (m:Map A) (m' m'':Map B),
+ mapcanon A m ->
+ MapDomRestrBy A B (MapDomRestrBy A B m m') m'' =
+ MapDomRestrBy A B m (MapMerge B m' m'').
Proof.
- Intros. Apply mapcanon_unique. (Apply MapDomRestrBy_canon; Try Assumption).
- (Apply MapDomRestrBy_canon; Try Assumption).
- (Apply MapDomRestrBy_canon; Try Assumption).
- Apply MapDomRestrBy_By.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon; try assumption.
+ apply MapDomRestrBy_canon; try assumption.
+ apply MapDomRestrBy_canon; try assumption.
+ apply MapDomRestrBy_By.
Qed.
- Lemma MapDomRestrBy_By_comm_c : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (mapcanon A m) ->
- (MapDomRestrBy A C (MapDomRestrBy A B m m') m'')=
- (MapDomRestrBy A B (MapDomRestrBy A C m m'') m').
+ Lemma MapDomRestrBy_By_comm_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrBy A C (MapDomRestrBy A B m m') m'' =
+ MapDomRestrBy A B (MapDomRestrBy A C m m'') m'.
Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon.
- (Apply MapDomRestrBy_canon; Assumption).
- Apply MapDomRestrBy_canon. (Apply MapDomRestrBy_canon; Assumption).
- Apply MapDomRestrBy_By_comm.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_canon. apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_By_comm.
Qed.
- Lemma MapDomRestrBy_To_c : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (mapcanon A m) ->
- (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')=
- (MapDomRestrTo A B m (MapDomRestrBy B C m' m'')).
+ Lemma MapDomRestrBy_To_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrBy A C (MapDomRestrTo A B m m') m'' =
+ MapDomRestrTo A B m (MapDomRestrBy B C m' m'').
Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon.
- (Apply MapDomRestrTo_canon; Assumption).
- (Apply MapDomRestrTo_canon; Assumption).
- Apply MapDomRestrBy_To.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrBy_To.
Qed.
- Lemma MapDomRestrBy_To_comm_c : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (mapcanon A m) ->
- (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')=
- (MapDomRestrTo A B (MapDomRestrBy A C m m'') m').
+ Lemma MapDomRestrBy_To_comm_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrBy A C (MapDomRestrTo A B m m') m'' =
+ MapDomRestrTo A B (MapDomRestrBy A C m m'') m'.
Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon.
- Apply MapDomRestrTo_canon; Assumption.
- Apply MapDomRestrTo_canon. Apply MapDomRestrBy_canon; Assumption.
- Apply MapDomRestrBy_To_comm.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_canon. apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_To_comm.
Qed.
- Lemma MapDomRestrTo_By_c : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (mapcanon A m) ->
- (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')=
- (MapDomRestrTo A C m (MapDomRestrBy C B m'' m')).
+ Lemma MapDomRestrTo_By_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrTo A C (MapDomRestrBy A B m m') m'' =
+ MapDomRestrTo A C m (MapDomRestrBy C B m'' m').
Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrTo_canon.
- Apply MapDomRestrBy_canon; Assumption.
- Apply MapDomRestrTo_canon; Assumption.
- Apply MapDomRestrTo_By.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_By.
Qed.
- Lemma MapDomRestrTo_By_comm_c : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (mapcanon A m) ->
- (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')=
- (MapDomRestrBy A B (MapDomRestrTo A C m m'') m').
+ Lemma MapDomRestrTo_By_comm_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrTo A C (MapDomRestrBy A B m m') m'' =
+ MapDomRestrBy A B (MapDomRestrTo A C m m'') m'.
Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrTo_canon.
- (Apply MapDomRestrBy_canon; Assumption).
- Apply MapDomRestrBy_canon. (Apply MapDomRestrTo_canon; Assumption).
- Apply MapDomRestrTo_By_comm.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_canon. apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_By_comm.
Qed.
- Lemma MapDomRestrTo_To_comm_c : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (mapcanon A m) ->
- (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')=
- (MapDomRestrTo A B (MapDomRestrTo A C m m'') m').
+ Lemma MapDomRestrTo_To_comm_c :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ mapcanon A m ->
+ MapDomRestrTo A C (MapDomRestrTo A B m m') m'' =
+ MapDomRestrTo A B (MapDomRestrTo A C m m'') m'.
Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrTo_canon.
- Apply MapDomRestrTo_canon; Assumption.
- Apply MapDomRestrTo_canon. Apply MapDomRestrTo_canon; Assumption.
- Apply MapDomRestrTo_To_comm.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_canon. apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_To_comm.
Qed.
- Lemma MapMerge_DomRestrTo_c : (m,m':(Map A)) (m'':(Map B))
- (mapcanon A m) -> (mapcanon A m') ->
- (MapDomRestrTo A B (MapMerge A m m') m'')=
- (MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'')).
+ Lemma MapMerge_DomRestrTo_c :
+ forall (m m':Map A) (m'':Map B),
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDomRestrTo A B (MapMerge A m m') m'' =
+ MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'').
Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrTo_canon.
- (Apply MapMerge_canon; Assumption).
- Apply MapMerge_canon. (Apply MapDomRestrTo_canon; Assumption).
- (Apply MapDomRestrTo_canon; Assumption).
- Apply MapMerge_DomRestrTo.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
+ apply MapMerge_canon; assumption.
+ apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapMerge_DomRestrTo.
Qed.
- Lemma MapMerge_DomRestrBy_c : (m,m':(Map A)) (m'':(Map B))
- (mapcanon A m) -> (mapcanon A m') ->
- (MapDomRestrBy A B (MapMerge A m m') m'')=
- (MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'')).
+ Lemma MapMerge_DomRestrBy_c :
+ forall (m m':Map A) (m'':Map B),
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDomRestrBy A B (MapMerge A m m') m'' =
+ MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'').
Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon. Apply MapMerge_canon; Assumption.
- Apply MapMerge_canon. Apply MapDomRestrBy_canon; Assumption.
- Apply MapDomRestrBy_canon; Assumption.
- Apply MapMerge_DomRestrBy.
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
+ apply MapMerge_canon. apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapMerge_DomRestrBy.
Qed.
- Lemma MapDelta_nilpotent_c : (m:(Map A)) (mapcanon A m) ->
- (MapDelta A m m)=(M0 A).
+ Lemma MapDelta_nilpotent_c :
+ forall m:Map A, mapcanon A m -> MapDelta A m m = M0 A.
Proof.
- Intros. Apply mapcanon_unique. (Apply MapDelta_canon; Assumption).
- Apply M0_canon.
- Apply MapDelta_nilpotent.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply M0_canon.
+ apply MapDelta_nilpotent.
Qed.
- Lemma MapDelta_as_Merge_c : (m,m':(Map A))
- (mapcanon A m) -> (mapcanon A m') ->
- (MapDelta A m m')=
- (MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m)).
+ Lemma MapDelta_as_Merge_c :
+ forall m m':Map A,
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDelta A m m' =
+ MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m).
Proof.
- Intros. Apply mapcanon_unique. (Apply MapDelta_canon; Assumption).
- (Apply MapMerge_canon; Apply MapDomRestrBy_canon; Assumption).
- Apply MapDelta_as_Merge.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply MapMerge_canon; apply MapDomRestrBy_canon; assumption.
+ apply MapDelta_as_Merge.
Qed.
- Lemma MapDelta_as_DomRestrBy_c : (m,m':(Map A))
- (mapcanon A m) -> (mapcanon A m') ->
- (MapDelta A m m')=
- (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')).
+ Lemma MapDelta_as_DomRestrBy_c :
+ forall m m':Map A,
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDelta A m m' =
+ MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m').
Proof.
- Intros. Apply mapcanon_unique. Apply MapDelta_canon; Assumption.
- Apply MapDomRestrBy_canon. (Apply MapMerge_canon; Assumption).
- Apply MapDelta_as_DomRestrBy.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
+ apply MapDelta_as_DomRestrBy.
Qed.
- Lemma MapDelta_as_DomRestrBy_2_c : (m,m':(Map A))
- (mapcanon A m) -> (mapcanon A m') ->
- (MapDelta A m m')=
- (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m)).
+ Lemma MapDelta_as_DomRestrBy_2_c :
+ forall m m':Map A,
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDelta A m m' =
+ MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m).
Proof.
- Intros. Apply mapcanon_unique. (Apply MapDelta_canon; Assumption).
- Apply MapDomRestrBy_canon. Apply MapMerge_canon; Assumption.
- Apply MapDelta_as_DomRestrBy_2.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
+ apply MapDelta_as_DomRestrBy_2.
Qed.
- Lemma MapDelta_sym_c : (m,m':(Map A))
- (mapcanon A m) -> (mapcanon A m') -> (MapDelta A m m')=(MapDelta A m' m).
+ Lemma MapDelta_sym_c :
+ forall m m':Map A,
+ mapcanon A m -> mapcanon A m' -> MapDelta A m m' = MapDelta A m' m.
Proof.
- Intros. Apply mapcanon_unique. (Apply MapDelta_canon; Assumption).
- (Apply MapDelta_canon; Assumption). Apply MapDelta_sym.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply MapDelta_canon; assumption. apply MapDelta_sym.
Qed.
- Lemma MapDom_Split_1_c : (m:(Map A)) (m':(Map B)) (mapcanon A m) ->
- m=(MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m')).
+ Lemma MapDom_Split_1_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ m = MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m').
Proof.
- Intros. Apply mapcanon_unique. Assumption.
- Apply MapMerge_canon. Apply MapDomRestrTo_canon; Assumption.
- Apply MapDomRestrBy_canon; Assumption.
- Apply MapDom_Split_1.
+ intros. apply mapcanon_unique. assumption.
+ apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
+ apply MapDomRestrBy_canon; assumption.
+ apply MapDom_Split_1.
Qed.
- Lemma MapDom_Split_2_c : (m:(Map A)) (m':(Map B)) (mapcanon A m) ->
- m=(MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m')).
+ Lemma MapDom_Split_2_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ m = MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m').
Proof.
- Intros. Apply mapcanon_unique. Assumption.
- Apply MapMerge_canon. (Apply MapDomRestrBy_canon; Assumption).
- (Apply MapDomRestrTo_canon; Assumption).
- Apply MapDom_Split_2.
+ intros. apply mapcanon_unique. assumption.
+ apply MapMerge_canon. apply MapDomRestrBy_canon; assumption.
+ apply MapDomRestrTo_canon; assumption.
+ apply MapDom_Split_2.
Qed.
- Lemma MapDom_Split_3_c : (m:(Map A)) (m':(Map B)) (mapcanon A m) ->
- (MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m'))=
- (M0 A).
+ Lemma MapDom_Split_3_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') =
+ M0 A.
Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrTo_canon.
- Apply MapDomRestrTo_canon; Assumption.
- Apply M0_canon.
- Apply MapDom_Split_3.
+ intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
+ apply MapDomRestrTo_canon; assumption.
+ apply M0_canon.
+ apply MapDom_Split_3.
Qed.
- Lemma Map_of_alist_of_Map_c : (m:(Map A)) (mapcanon A m) ->
- (Map_of_alist A (alist_of_Map A m))=m.
+ Lemma Map_of_alist_of_Map_c :
+ forall m:Map A, mapcanon A m -> Map_of_alist A (alist_of_Map A m) = m.
Proof.
- Intros. (Apply mapcanon_unique; Try Assumption). Apply Map_of_alist_canon.
- Apply Map_of_alist_of_Map.
+ intros. apply mapcanon_unique; try assumption. apply Map_of_alist_canon.
+ apply Map_of_alist_of_Map.
Qed.
- Lemma alist_of_Map_of_alist_c : (l:(alist A)) (alist_sorted_2 A l) ->
- (alist_of_Map A (Map_of_alist A l))=l.
+ Lemma alist_of_Map_of_alist_c :
+ forall l:alist A,
+ alist_sorted_2 A l -> alist_of_Map A (Map_of_alist A l) = l.
Proof.
- Intros. Apply alist_canonical. Apply alist_of_Map_of_alist.
- Apply alist_of_Map_sorts2.
- Assumption.
+ intros. apply alist_canonical. apply alist_of_Map_of_alist.
+ apply alist_of_Map_sorts2.
+ assumption.
Qed.
- Lemma MapSubset_antisym_c : (m:(Map A)) (m':(Map B))
- (mapcanon A m) -> (mapcanon B m') ->
- (MapSubset A B m m') -> (MapSubset B A m' m) -> (MapDom A m)=(MapDom B m').
+ Lemma MapSubset_antisym_c :
+ forall (m:Map A) (m':Map B),
+ mapcanon A m ->
+ mapcanon B m' ->
+ MapSubset A B m m' -> MapSubset B A m' m -> MapDom A m = MapDom B m'.
Proof.
- Intros. Apply (mapcanon_unique unit). (Apply MapDom_canon; Assumption).
- (Apply MapDom_canon; Assumption).
- (Apply MapSubset_antisym; Assumption).
+ intros. apply (mapcanon_unique unit). apply MapDom_canon; assumption.
+ apply MapDom_canon; assumption.
+ apply MapSubset_antisym; assumption.
Qed.
- Lemma FSubset_antisym_c : (s,s':FSet) (mapcanon unit s) -> (mapcanon unit s') ->
- (MapSubset ? ? s s') -> (MapSubset ? ? s' s) -> s=s'.
+ Lemma FSubset_antisym_c :
+ forall s s':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' -> MapSubset _ _ s s' -> MapSubset _ _ s' s -> s = s'.
Proof.
- Intros. Apply (mapcanon_unique unit); Try Assumption. Apply FSubset_antisym; Assumption.
+ intros. apply (mapcanon_unique unit); try assumption. apply FSubset_antisym; assumption.
Qed.
- Lemma MapDisjoint_empty_c : (m:(Map A)) (mapcanon A m) ->
- (MapDisjoint A A m m) -> m=(M0 A).
+ Lemma MapDisjoint_empty_c :
+ forall m:Map A, mapcanon A m -> MapDisjoint A A m m -> m = M0 A.
Proof.
- Intros. Apply mapcanon_unique; Try Assumption; Try Apply M0_canon.
- Apply MapDisjoint_empty; Assumption.
+ intros. apply mapcanon_unique; try assumption; try apply M0_canon.
+ apply MapDisjoint_empty; assumption.
Qed.
- Lemma MapDelta_disjoint_c : (m,m':(Map A)) (mapcanon A m) -> (mapcanon A m') ->
- (MapDisjoint A A m m') -> (MapDelta A m m')=(MapMerge A m m').
+ Lemma MapDelta_disjoint_c :
+ forall m m':Map A,
+ mapcanon A m ->
+ mapcanon A m' ->
+ MapDisjoint A A m m' -> MapDelta A m m' = MapMerge A m m'.
Proof.
- Intros. Apply mapcanon_unique. (Apply MapDelta_canon; Assumption).
- (Apply MapMerge_canon; Assumption). Apply MapDelta_disjoint; Assumption.
+ intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
+ apply MapMerge_canon; assumption. apply MapDelta_disjoint; assumption.
Qed.
End MapC.
-Lemma FSetDelta_assoc_c : (s,s',s'':FSet)
- (mapcanon unit s) -> (mapcanon unit s') -> (mapcanon unit s'') ->
- (MapDelta ? (MapDelta ? s s') s'')=(MapDelta ? s (MapDelta ? s' s'')).
+Lemma FSetDelta_assoc_c :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' ->
+ mapcanon unit s'' ->
+ MapDelta _ (MapDelta _ s s') s'' = MapDelta _ s (MapDelta _ s' s'').
Proof.
- Intros. Apply (mapcanon_unique unit). Apply MapDelta_canon. (Apply MapDelta_canon; Assumption).
- Assumption.
- Apply MapDelta_canon. Assumption.
- (Apply MapDelta_canon; Assumption).
- Apply FSetDelta_assoc; Assumption.
+ intros. apply (mapcanon_unique unit). apply MapDelta_canon. apply MapDelta_canon; assumption.
+ assumption.
+ apply MapDelta_canon. assumption.
+ apply MapDelta_canon; assumption.
+ apply FSetDelta_assoc; assumption.
Qed.
-Lemma FSet_ext_c : (s,s':FSet) (mapcanon unit s) -> (mapcanon unit s') ->
- ((a:ad) (in_FSet a s)=(in_FSet a s')) -> s=s'.
+Lemma FSet_ext_c :
+ forall s s':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' -> (forall a:ad, in_FSet a s = in_FSet a s') -> s = s'.
Proof.
- Intros. (Apply (mapcanon_unique unit); Try Assumption). Apply FSet_ext. Assumption.
+ intros. apply (mapcanon_unique unit); try assumption. apply FSet_ext. assumption.
Qed.
-Lemma FSetUnion_comm_c : (s,s':FSet) (mapcanon unit s) -> (mapcanon unit s') ->
- (FSetUnion s s')=(FSetUnion s' s).
+Lemma FSetUnion_comm_c :
+ forall s s':FSet,
+ mapcanon unit s -> mapcanon unit s' -> FSetUnion s s' = FSetUnion s' s.
Proof.
- Intros.
- Apply (mapcanon_unique unit); Try (Unfold FSetUnion; Apply MapMerge_canon; Assumption).
- Apply FSetUnion_comm.
+ intros.
+ apply (mapcanon_unique unit);
+ try (unfold FSetUnion in |- *; apply MapMerge_canon; assumption).
+ apply FSetUnion_comm.
Qed.
-Lemma FSetUnion_assoc_c : (s,s',s'':FSet)
- (mapcanon unit s) -> (mapcanon unit s') -> (mapcanon unit s'') ->
- (FSetUnion (FSetUnion s s') s'')=(FSetUnion s (FSetUnion s' s'')).
+Lemma FSetUnion_assoc_c :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' ->
+ mapcanon unit s'' ->
+ FSetUnion (FSetUnion s s') s'' = FSetUnion s (FSetUnion s' s'').
Proof.
- Exact (MapMerge_assoc_c unit).
+ exact (MapMerge_assoc_c unit).
Qed.
-Lemma FSetUnion_M0_s_c : (s:FSet) (FSetUnion (M0 unit) s)=s.
+Lemma FSetUnion_M0_s_c : forall s:FSet, FSetUnion (M0 unit) s = s.
Proof.
- Exact (MapMerge_empty_m_c unit).
+ exact (MapMerge_empty_m_c unit).
Qed.
-Lemma FSetUnion_s_M0_c : (s:FSet) (FSetUnion s (M0 unit))=s.
+Lemma FSetUnion_s_M0_c : forall s:FSet, FSetUnion s (M0 unit) = s.
Proof.
- Exact (MapMerge_m_empty_1 unit).
+ exact (MapMerge_m_empty_1 unit).
Qed.
-Lemma FSetUnion_idempotent : (s:FSet) (mapcanon unit s) -> (FSetUnion s s)=s.
+Lemma FSetUnion_idempotent :
+ forall s:FSet, mapcanon unit s -> FSetUnion s s = s.
Proof.
- Exact (MapMerge_idempotent_c unit).
+ exact (MapMerge_idempotent_c unit).
Qed.
-Lemma FSetInter_comm_c : (s,s':FSet) (mapcanon unit s) -> (mapcanon unit s') ->
- (FSetInter s s')=(FSetInter s' s).
+Lemma FSetInter_comm_c :
+ forall s s':FSet,
+ mapcanon unit s -> mapcanon unit s' -> FSetInter s s' = FSetInter s' s.
Proof.
- Intros.
- Apply (mapcanon_unique unit); Try (Unfold FSetInter; Apply MapDomRestrTo_canon; Assumption).
- Apply FSetInter_comm.
+ intros.
+ apply (mapcanon_unique unit);
+ try (unfold FSetInter in |- *; apply MapDomRestrTo_canon; assumption).
+ apply FSetInter_comm.
Qed.
-Lemma FSetInter_assoc_c : (s,s',s'':FSet)
- (mapcanon unit s) ->
- (FSetInter (FSetInter s s') s'')=(FSetInter s (FSetInter s' s'')).
+Lemma FSetInter_assoc_c :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ FSetInter (FSetInter s s') s'' = FSetInter s (FSetInter s' s'').
Proof.
- Exact (MapDomRestrTo_assoc_c unit unit unit).
+ exact (MapDomRestrTo_assoc_c unit unit unit).
Qed.
-Lemma FSetInter_M0_s_c : (s:FSet) (FSetInter (M0 unit) s)=(M0 unit).
+Lemma FSetInter_M0_s_c : forall s:FSet, FSetInter (M0 unit) s = M0 unit.
Proof.
- Trivial.
+ trivial.
Qed.
-Lemma FSetInter_s_M0_c : (s:FSet) (FSetInter s (M0 unit))=(M0 unit).
+Lemma FSetInter_s_M0_c : forall s:FSet, FSetInter s (M0 unit) = M0 unit.
Proof.
- Exact (MapDomRestrTo_m_empty_1 unit unit).
+ exact (MapDomRestrTo_m_empty_1 unit unit).
Qed.
-Lemma FSetInter_idempotent : (s:FSet) (mapcanon unit s) -> (FSetInter s s)=s.
+Lemma FSetInter_idempotent :
+ forall s:FSet, mapcanon unit s -> FSetInter s s = s.
Proof.
- Exact (MapDomRestrTo_idempotent_c unit).
+ exact (MapDomRestrTo_idempotent_c unit).
Qed.
-Lemma FSetUnion_Inter_l_c : (s,s',s'':FSet) (mapcanon unit s) -> (mapcanon unit s'') ->
- (FSetUnion (FSetInter s s') s'')=(FSetInter (FSetUnion s s'') (FSetUnion s' s'')).
+Lemma FSetUnion_Inter_l_c :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s'' ->
+ FSetUnion (FSetInter s s') s'' =
+ FSetInter (FSetUnion s s'') (FSetUnion s' s'').
Proof.
- Intros. Apply (mapcanon_unique unit). Unfold FSetUnion. (Apply MapMerge_canon; Try Assumption).
- Unfold FSetInter. (Apply MapDomRestrTo_canon; Assumption).
- Unfold FSetInter; Unfold FSetUnion; Apply MapDomRestrTo_canon; Apply MapMerge_canon; Assumption.
- Apply FSetUnion_Inter_l.
+ intros. apply (mapcanon_unique unit). unfold FSetUnion in |- *. apply MapMerge_canon; try assumption.
+ unfold FSetInter in |- *. apply MapDomRestrTo_canon; assumption.
+ unfold FSetInter in |- *; unfold FSetUnion in |- *;
+ apply MapDomRestrTo_canon; apply MapMerge_canon;
+ assumption.
+ apply FSetUnion_Inter_l.
Qed.
-Lemma FSetUnion_Inter_r : (s,s',s'':FSet) (mapcanon unit s) -> (mapcanon unit s') ->
- (FSetUnion s (FSetInter s' s''))=(FSetInter (FSetUnion s s') (FSetUnion s s'')).
+Lemma FSetUnion_Inter_r :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' ->
+ FSetUnion s (FSetInter s' s'') =
+ FSetInter (FSetUnion s s') (FSetUnion s s'').
Proof.
- Intros. Apply (mapcanon_unique unit). Unfold FSetUnion. (Apply MapMerge_canon; Try Assumption).
- Unfold FSetInter. (Apply MapDomRestrTo_canon; Assumption).
- Unfold FSetInter; Unfold FSetUnion; Apply MapDomRestrTo_canon; Apply MapMerge_canon; Assumption.
- Apply FSetUnion_Inter_r.
+ intros. apply (mapcanon_unique unit). unfold FSetUnion in |- *. apply MapMerge_canon; try assumption.
+ unfold FSetInter in |- *. apply MapDomRestrTo_canon; assumption.
+ unfold FSetInter in |- *; unfold FSetUnion in |- *;
+ apply MapDomRestrTo_canon; apply MapMerge_canon;
+ assumption.
+ apply FSetUnion_Inter_r.
Qed.
-Lemma FSetInter_Union_l_c : (s,s',s'':FSet) (mapcanon unit s) -> (mapcanon unit s') ->
- (FSetInter (FSetUnion s s') s'')=(FSetUnion (FSetInter s s'') (FSetInter s' s'')).
+Lemma FSetInter_Union_l_c :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' ->
+ FSetInter (FSetUnion s s') s'' =
+ FSetUnion (FSetInter s s'') (FSetInter s' s'').
Proof.
- Intros. Apply (mapcanon_unique unit). Unfold FSetInter.
- Apply MapDomRestrTo_canon; Try Assumption. Unfold FSetUnion.
- Apply MapMerge_canon; Assumption.
- Unfold FSetUnion; Unfold FSetInter; Apply MapMerge_canon; Apply MapDomRestrTo_canon;
- Assumption.
- Apply FSetInter_Union_l.
+ intros. apply (mapcanon_unique unit). unfold FSetInter in |- *.
+ apply MapDomRestrTo_canon; try assumption. unfold FSetUnion in |- *.
+ apply MapMerge_canon; assumption.
+ unfold FSetUnion in |- *; unfold FSetInter in |- *; apply MapMerge_canon;
+ apply MapDomRestrTo_canon; assumption.
+ apply FSetInter_Union_l.
Qed.
-Lemma FSetInter_Union_r : (s,s',s'':FSet) (mapcanon unit s) -> (mapcanon unit s') ->
- (FSetInter s (FSetUnion s' s''))=(FSetUnion (FSetInter s s') (FSetInter s s'')).
+Lemma FSetInter_Union_r :
+ forall s s' s'':FSet,
+ mapcanon unit s ->
+ mapcanon unit s' ->
+ FSetInter s (FSetUnion s' s'') =
+ FSetUnion (FSetInter s s') (FSetInter s s'').
Proof.
- Intros. Apply (mapcanon_unique unit). Unfold FSetInter.
- Apply MapDomRestrTo_canon; Try Assumption.
- Unfold FSetUnion. Apply MapMerge_canon; Unfold FSetInter; Apply MapDomRestrTo_canon; Assumption.
- Apply FSetInter_Union_r.
-Qed.
+ intros. apply (mapcanon_unique unit). unfold FSetInter in |- *.
+ apply MapDomRestrTo_canon; try assumption.
+ unfold FSetUnion in |- *. apply MapMerge_canon; unfold FSetInter in |- *; apply MapDomRestrTo_canon;
+ assumption.
+ apply FSetInter_Union_r.
+Qed. \ No newline at end of file
diff --git a/theories/IntMap/Mapcanon.v b/theories/IntMap/Mapcanon.v
index b98e9b233a..70966c60db 100644
--- a/theories/IntMap/Mapcanon.v
+++ b/theories/IntMap/Mapcanon.v
@@ -7,316 +7,328 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Bool.
-Require Sumbool.
-Require Arith.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
-Require Mapaxioms.
-Require Mapiter.
-Require Fset.
-Require PolyList.
-Require Lsort.
-Require Mapsubset.
-Require Mapcard.
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Mapaxioms.
+Require Import Mapiter.
+Require Import Fset.
+Require Import List.
+Require Import Lsort.
+Require Import Mapsubset.
+Require Import Mapcard.
Section MapCanon.
Variable A : Set.
- Inductive mapcanon : (Map A) -> Prop :=
- M0_canon : (mapcanon (M0 A))
- | M1_canon : (a:ad) (y:A) (mapcanon (M1 A a y))
- | M2_canon : (m1,m2:(Map A)) (mapcanon m1) -> (mapcanon m2) ->
- (le (2) (MapCard A (M2 A m1 m2))) -> (mapcanon (M2 A m1 m2)).
+ Inductive mapcanon : Map A -> Prop :=
+ | M0_canon : mapcanon (M0 A)
+ | M1_canon : forall (a:ad) (y:A), mapcanon (M1 A a y)
+ | M2_canon :
+ forall m1 m2:Map A,
+ mapcanon m1 ->
+ mapcanon m2 -> 2 <= MapCard A (M2 A m1 m2) -> mapcanon (M2 A m1 m2).
- Lemma mapcanon_M2 :
- (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (le (2) (MapCard A (M2 A m1 m2))).
+ Lemma mapcanon_M2 :
+ forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> 2 <= MapCard A (M2 A m1 m2).
Proof.
- Intros. Inversion H. Assumption.
+ intros. inversion H. assumption.
Qed.
- Lemma mapcanon_M2_1 : (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (mapcanon m1).
+ Lemma mapcanon_M2_1 :
+ forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m1.
Proof.
- Intros. Inversion H. Assumption.
+ intros. inversion H. assumption.
Qed.
- Lemma mapcanon_M2_2 : (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (mapcanon m2).
+ Lemma mapcanon_M2_2 :
+ forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m2.
Proof.
- Intros. Inversion H. Assumption.
+ intros. inversion H. assumption.
Qed.
- Lemma M2_eqmap_1 : (m0,m1,m2,m3:(Map A))
- (eqmap A (M2 A m0 m1) (M2 A m2 m3)) -> (eqmap A m0 m2).
+ Lemma M2_eqmap_1 :
+ forall m0 m1 m2 m3:Map A,
+ eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m0 m2.
Proof.
- Unfold eqmap eqm. Intros. Rewrite <- (ad_double_div_2 a).
- Rewrite <- (MapGet_M2_bit_0_0 A ? (ad_double_bit_0 a) m0 m1).
- Rewrite <- (MapGet_M2_bit_0_0 A ? (ad_double_bit_0 a) m2 m3).
- Exact (H (ad_double a)).
+ unfold eqmap, eqm in |- *. intros. rewrite <- (ad_double_div_2 a).
+ rewrite <- (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m0 m1).
+ rewrite <- (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m2 m3).
+ exact (H (ad_double a)).
Qed.
- Lemma M2_eqmap_2 : (m0,m1,m2,m3:(Map A))
- (eqmap A (M2 A m0 m1) (M2 A m2 m3)) -> (eqmap A m1 m3).
+ Lemma M2_eqmap_2 :
+ forall m0 m1 m2 m3:Map A,
+ eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m1 m3.
Proof.
- Unfold eqmap eqm. Intros. Rewrite <- (ad_double_plus_un_div_2 a).
- Rewrite <- (MapGet_M2_bit_0_1 A ? (ad_double_plus_un_bit_0 a) m0 m1).
- Rewrite <- (MapGet_M2_bit_0_1 A ? (ad_double_plus_un_bit_0 a) m2 m3).
- Exact (H (ad_double_plus_un a)).
+ unfold eqmap, eqm in |- *. intros. rewrite <- (ad_double_plus_un_div_2 a).
+ rewrite <- (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m0 m1).
+ rewrite <- (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m2 m3).
+ exact (H (ad_double_plus_un a)).
Qed.
- Lemma mapcanon_unique : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') ->
- (eqmap A m m') -> m=m'.
+ Lemma mapcanon_unique :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> eqmap A m m' -> m = m'.
Proof.
- Induction m. Induction m'. Trivial.
- Intros a y H H0 H1. Cut (NONE A)=(MapGet A (M1 A a y) a). Simpl. Rewrite (ad_eq_correct a).
- Intro. Discriminate H2.
- Exact (H1 a).
- Intros. Cut (le (2) (MapCard A (M0 A))). Intro. Elim (le_Sn_O ? H4).
- Rewrite (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H2).
- Intros a y. Induction m'. Intros. Cut (MapGet A (M1 A a y) a)=(NONE A). Simpl.
- Rewrite (ad_eq_correct a). Intro. Discriminate H2.
- Exact (H1 a).
- Intros a0 y0 H H0 H1. Cut (MapGet A (M1 A a y) a)=(MapGet A (M1 A a0 y0) a). Simpl.
- Rewrite (ad_eq_correct a). Intro. Elim (sumbool_of_bool (ad_eq a0 a)). Intro H3.
- Rewrite H3 in H2. Inversion H2. Rewrite (ad_eq_complete ? ? H3). Reflexivity.
- Intro H3. Rewrite H3 in H2. Discriminate H2.
- Exact (H1 a).
- Intros. Cut (le (2) (MapCard A (M1 A a y))). Intro. Elim (le_Sn_O ? (le_S_n ? ? H4)).
- Rewrite (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H2).
- Induction m'. Intros. Cut (le (2) (MapCard A (M0 A))). Intro. Elim (le_Sn_O ? H4).
- Rewrite <- (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H1).
- Intros a y H1 H2 H3. Cut (le (2) (MapCard A (M1 A a y))). Intro.
- Elim (le_Sn_O ? (le_S_n ? ? H4)).
- Rewrite <- (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H1).
- Intros. Rewrite (H m2). Rewrite (H0 m3). Reflexivity.
- Exact (mapcanon_M2_2 ? ? H3).
- Exact (mapcanon_M2_2 ? ? H4).
- Exact (M2_eqmap_2 ? ? ? ? H5).
- Exact (mapcanon_M2_1 ? ? H3).
- Exact (mapcanon_M2_1 ? ? H4).
- Exact (M2_eqmap_1 ? ? ? ? H5).
+ simple induction m. simple induction m'. trivial.
+ intros a y H H0 H1. cut (NONE A = MapGet A (M1 A a y) a). simpl in |- *. rewrite (ad_eq_correct a).
+ intro. discriminate H2.
+ exact (H1 a).
+ intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4).
+ rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2).
+ intros a y. simple induction m'. intros. cut (MapGet A (M1 A a y) a = NONE A). simpl in |- *.
+ rewrite (ad_eq_correct a). intro. discriminate H2.
+ exact (H1 a).
+ intros a0 y0 H H0 H1. cut (MapGet A (M1 A a y) a = MapGet A (M1 A a0 y0) a). simpl in |- *.
+ rewrite (ad_eq_correct a). intro. elim (sumbool_of_bool (ad_eq a0 a)). intro H3.
+ rewrite H3 in H2. inversion H2. rewrite (ad_eq_complete _ _ H3). reflexivity.
+ intro H3. rewrite H3 in H2. discriminate H2.
+ exact (H1 a).
+ intros. cut (2 <= MapCard A (M1 A a y)). intro. elim (le_Sn_O _ (le_S_n _ _ H4)).
+ rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2).
+ simple induction m'. intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4).
+ rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1).
+ intros a y H1 H2 H3. cut (2 <= MapCard A (M1 A a y)). intro.
+ elim (le_Sn_O _ (le_S_n _ _ H4)).
+ rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1).
+ intros. rewrite (H m2). rewrite (H0 m3). reflexivity.
+ exact (mapcanon_M2_2 _ _ H3).
+ exact (mapcanon_M2_2 _ _ H4).
+ exact (M2_eqmap_2 _ _ _ _ H5).
+ exact (mapcanon_M2_1 _ _ H3).
+ exact (mapcanon_M2_1 _ _ H4).
+ exact (M2_eqmap_1 _ _ _ _ H5).
Qed.
- Lemma MapPut1_canon :
- (p:positive) (a,a':ad) (y,y':A) (mapcanon (MapPut1 A a y a' y' p)).
+ Lemma MapPut1_canon :
+ forall (p:positive) (a a':ad) (y y':A), mapcanon (MapPut1 A a y a' y' p).
Proof.
- Induction p. Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M1_canon.
- Apply M1_canon.
- Apply le_n.
- Apply M2_canon. Apply M1_canon.
- Apply M1_canon.
- Apply le_n.
- Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M0_canon.
- Apply H.
- Simpl. Rewrite MapCard_Put1_equals_2. Apply le_n.
- Apply M2_canon. Apply H.
- Apply M0_canon.
- Simpl. Rewrite MapCard_Put1_equals_2. Apply le_n.
- Simpl. Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M1_canon.
- Apply M1_canon.
- Simpl. Apply le_n.
- Apply M2_canon. Apply M1_canon.
- Apply M1_canon.
- Simpl. Apply le_n.
+ simple induction p. simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ apply le_n.
+ apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ apply le_n.
+ simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M0_canon.
+ apply H.
+ simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n.
+ apply M2_canon. apply H.
+ apply M0_canon.
+ simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n.
+ simpl in |- *. simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ simpl in |- *. apply le_n.
+ apply M2_canon. apply M1_canon.
+ apply M1_canon.
+ simpl in |- *. apply le_n.
Qed.
- Lemma MapPut_canon :
- (m:(Map A)) (mapcanon m) -> (a:ad) (y:A) (mapcanon (MapPut A m a y)).
+ Lemma MapPut_canon :
+ forall m:Map A,
+ mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut A m a y).
Proof.
- Induction m. Intros. Simpl. Apply M1_canon.
- Intros a0 y0 H a y. Simpl. Case (ad_xor a0 a). Apply M1_canon.
- Intro. Apply MapPut1_canon.
- Intros. Simpl. Elim a. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1).
- Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 ? ? H1).
- Apply le_plus_plus. Exact (MapCard_Put_lb A m0 ad_z y).
- Apply le_n.
- Intro. Case p. Intro. Apply M2_canon. Exact (mapcanon_M2_1 m0 m1 H1).
- Apply H0. Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_l. Exact (MapCard_Put_lb A m1 (ad_x p0) y).
- Intro. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1).
- Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_r. Exact (MapCard_Put_lb A m0 (ad_x p0) y).
- Apply M2_canon. Apply (mapcanon_M2_1 m0 m1 H1).
- Apply H0. Apply (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_l. Exact (MapCard_Put_lb A m1 ad_z y).
+ simple induction m. intros. simpl in |- *. apply M1_canon.
+ intros a0 y0 H a y. simpl in |- *. case (ad_xor a0 a). apply M1_canon.
+ intro. apply MapPut1_canon.
+ intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1).
+ apply plus_le_compat. exact (MapCard_Put_lb A m0 ad_z y).
+ apply le_n.
+ intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1).
+ apply H0. exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. exact (MapCard_Put_lb A m1 (ad_x p0) y).
+ intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_r. exact (MapCard_Put_lb A m0 (ad_x p0) y).
+ apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1).
+ apply H0. apply (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. exact (MapCard_Put_lb A m1 ad_z y).
Qed.
- Lemma MapPut_behind_canon : (m:(Map A)) (mapcanon m) ->
- (a:ad) (y:A) (mapcanon (MapPut_behind A m a y)).
+ Lemma MapPut_behind_canon :
+ forall m:Map A,
+ mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut_behind A m a y).
Proof.
- Induction m. Intros. Simpl. Apply M1_canon.
- Intros a0 y0 H a y. Simpl. Case (ad_xor a0 a). Apply M1_canon.
- Intro. Apply MapPut1_canon.
- Intros. Simpl. Elim a. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1).
- Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 ? ? H1).
- Apply le_plus_plus. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m0 ad_z y).
- Apply le_n.
- Intro. Case p. Intro. Apply M2_canon. Exact (mapcanon_M2_1 m0 m1 H1).
- Apply H0. Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_l. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m1 (ad_x p0) y).
- Intro. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1).
- Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_r. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m0 (ad_x p0) y).
- Apply M2_canon. Apply (mapcanon_M2_1 m0 m1 H1).
- Apply H0. Apply (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_l. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m1 ad_z y).
+ simple induction m. intros. simpl in |- *. apply M1_canon.
+ intros a0 y0 H a y. simpl in |- *. case (ad_xor a0 a). apply M1_canon.
+ intro. apply MapPut1_canon.
+ intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1).
+ apply plus_le_compat. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 ad_z y).
+ apply le_n.
+ intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1).
+ apply H0. exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 (ad_x p0) y).
+ intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ exact (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_r. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 (ad_x p0) y).
+ apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1).
+ apply H0. apply (mapcanon_M2_2 m0 m1 H1).
+ simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
+ exact (mapcanon_M2 m0 m1 H1).
+ apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 ad_z y).
Qed.
- Lemma makeM2_canon :
- (m,m':(Map A)) (mapcanon m) -> (mapcanon m') -> (mapcanon (makeM2 A m m')).
+ Lemma makeM2_canon :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (makeM2 A m m').
Proof.
- Intro. Case m. Intro. Case m'. Intros. Exact M0_canon.
- Intros a y H H0. Exact (M1_canon (ad_double_plus_un a) y).
- Intros. Simpl. (Apply M2_canon; Try Assumption). Exact (mapcanon_M2 m0 m1 H0).
- Intros a y m'. Case m'. Intros. Exact (M1_canon (ad_double a) y).
- Intros a0 y0 H H0. Simpl. (Apply M2_canon; Try Assumption). Apply le_n.
- Intros. Simpl. (Apply M2_canon; Try Assumption).
- Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H0).
- Exact (le_plus_r (MapCard A (M1 A a y)) (MapCard A (M2 A m0 m1))).
- Simpl. Intros. (Apply M2_canon; Try Assumption).
- Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H).
- Exact (le_plus_l (MapCard A (M2 A m0 m1)) (MapCard A m')).
+ intro. case m. intro. case m'. intros. exact M0_canon.
+ intros a y H H0. exact (M1_canon (ad_double_plus_un a) y).
+ intros. simpl in |- *. apply M2_canon; try assumption. exact (mapcanon_M2 m0 m1 H0).
+ intros a y m'. case m'. intros. exact (M1_canon (ad_double a) y).
+ intros a0 y0 H H0. simpl in |- *. apply M2_canon; try assumption. apply le_n.
+ intros. simpl in |- *. apply M2_canon; try assumption.
+ apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H0).
+ exact (le_plus_r (MapCard A (M1 A a y)) (MapCard A (M2 A m0 m1))).
+ simpl in |- *. intros. apply M2_canon; try assumption.
+ apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H).
+ exact (le_plus_l (MapCard A (M2 A m0 m1)) (MapCard A m')).
Qed.
- Fixpoint MapCanonicalize [m:(Map A)] : (Map A) :=
- Cases m of
- (M2 m0 m1) => (makeM2 A (MapCanonicalize m0) (MapCanonicalize m1))
- | _ => m
- end.
+ Fixpoint MapCanonicalize (m:Map A) : Map A :=
+ match m with
+ | M2 m0 m1 => makeM2 A (MapCanonicalize m0) (MapCanonicalize m1)
+ | _ => m
+ end.
- Lemma mapcanon_exists_1 : (m:(Map A)) (eqmap A m (MapCanonicalize m)).
+ Lemma mapcanon_exists_1 : forall m:Map A, eqmap A m (MapCanonicalize m).
Proof.
- Induction m. Apply eqmap_refl.
- Intros. Apply eqmap_refl.
- Intros. Simpl. Unfold eqmap eqm. Intro.
- Rewrite (makeM2_M2 A (MapCanonicalize m0) (MapCanonicalize m1) a).
- Rewrite MapGet_M2_bit_0_if. Rewrite MapGet_M2_bit_0_if.
- Rewrite <- (H (ad_div_2 a)). Rewrite <- (H0 (ad_div_2 a)). Reflexivity.
+ simple induction m. apply eqmap_refl.
+ intros. apply eqmap_refl.
+ intros. simpl in |- *. unfold eqmap, eqm in |- *. intro.
+ rewrite (makeM2_M2 A (MapCanonicalize m0) (MapCanonicalize m1) a).
+ rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if.
+ rewrite <- (H (ad_div_2 a)). rewrite <- (H0 (ad_div_2 a)). reflexivity.
Qed.
- Lemma mapcanon_exists_2 : (m:(Map A)) (mapcanon (MapCanonicalize m)).
+ Lemma mapcanon_exists_2 : forall m:Map A, mapcanon (MapCanonicalize m).
Proof.
- Induction m. Apply M0_canon.
- Intros. Simpl. Apply M1_canon.
- Intros. Simpl. (Apply makeM2_canon; Assumption).
+ simple induction m. apply M0_canon.
+ intros. simpl in |- *. apply M1_canon.
+ intros. simpl in |- *. apply makeM2_canon; assumption.
Qed.
- Lemma mapcanon_exists :
- (m:(Map A)) {m':(Map A) | (eqmap A m m') /\ (mapcanon m')}.
+ Lemma mapcanon_exists :
+ forall m:Map A, {m' : Map A | eqmap A m m' /\ mapcanon m'}.
Proof.
- Intro. Split with (MapCanonicalize m). Split. Apply mapcanon_exists_1.
- Apply mapcanon_exists_2.
+ intro. split with (MapCanonicalize m). split. apply mapcanon_exists_1.
+ apply mapcanon_exists_2.
Qed.
- Lemma MapRemove_canon :
- (m:(Map A)) (mapcanon m) -> (a:ad) (mapcanon (MapRemove A m a)).
+ Lemma MapRemove_canon :
+ forall m:Map A, mapcanon m -> forall a:ad, mapcanon (MapRemove A m a).
Proof.
- Induction m. Intros. Exact M0_canon.
- Intros a y H a0. Simpl. Case (ad_eq a a0). Exact M0_canon.
- Assumption.
- Intros. Simpl. Case (ad_bit_0 a). Apply makeM2_canon. Exact (mapcanon_M2_1 ? ? H1).
- Apply H0. Exact (mapcanon_M2_2 ? ? H1).
- Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H1).
- Exact (mapcanon_M2_2 ? ? H1).
+ simple induction m. intros. exact M0_canon.
+ intros a y H a0. simpl in |- *. case (ad_eq a a0). exact M0_canon.
+ assumption.
+ intros. simpl in |- *. case (ad_bit_0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1).
+ apply H0. exact (mapcanon_M2_2 _ _ H1).
+ apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1).
+ exact (mapcanon_M2_2 _ _ H1).
Qed.
- Lemma MapMerge_canon : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') ->
- (mapcanon (MapMerge A m m')).
+ Lemma MapMerge_canon :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapMerge A m m').
Proof.
- Induction m. Intros. Exact H0.
- Simpl. Intros a y m' H H0. Exact (MapPut_behind_canon m' H0 a y).
- Induction m'. Intros. Exact H1.
- Intros a y H1 H2. Unfold MapMerge. Exact (MapPut_canon ? H1 a y).
- Intros. Simpl. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H3).
- Exact (mapcanon_M2_1 ? ? H4).
- Apply H0. Exact (mapcanon_M2_2 ? ? H3).
- Exact (mapcanon_M2_2 ? ? H4).
- Change (le (2) (MapCard A (MapMerge A (M2 A m0 m1) (M2 A m2 m3)))).
- Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H3).
- Exact (MapMerge_Card_lb_l A (M2 A m0 m1) (M2 A m2 m3)).
+ simple induction m. intros. exact H0.
+ simpl in |- *. intros a y m' H H0. exact (MapPut_behind_canon m' H0 a y).
+ simple induction m'. intros. exact H1.
+ intros a y H1 H2. unfold MapMerge in |- *. exact (MapPut_canon _ H1 a y).
+ intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 _ _ H3).
+ exact (mapcanon_M2_1 _ _ H4).
+ apply H0. exact (mapcanon_M2_2 _ _ H3).
+ exact (mapcanon_M2_2 _ _ H4).
+ change (2 <= MapCard A (MapMerge A (M2 A m0 m1) (M2 A m2 m3))) in |- *.
+ apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H3).
+ exact (MapMerge_Card_lb_l A (M2 A m0 m1) (M2 A m2 m3)).
Qed.
- Lemma MapDelta_canon : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') ->
- (mapcanon (MapDelta A m m')).
+ Lemma MapDelta_canon :
+ forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapDelta A m m').
Proof.
- Induction m. Intros. Exact H0.
- Simpl. Intros a y m' H H0. Case (MapGet A m' a). Exact (MapPut_canon m' H0 a y).
- Intro. Exact (MapRemove_canon m' H0 a).
- Induction m'. Intros. Exact H1.
- Unfold MapDelta. Intros a y H1 H2. Case (MapGet A (M2 A m0 m1) a).
- Exact (MapPut_canon ? H1 a y).
- Intro. Exact (MapRemove_canon ? H1 a).
- Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H3).
- Exact (mapcanon_M2_1 ? ? H4).
- Apply H0. Exact (mapcanon_M2_2 ? ? H3).
- Exact (mapcanon_M2_2 ? ? H4).
+ simple induction m. intros. exact H0.
+ simpl in |- *. intros a y m' H H0. case (MapGet A m' a). exact (MapPut_canon m' H0 a y).
+ intro. exact (MapRemove_canon m' H0 a).
+ simple induction m'. intros. exact H1.
+ unfold MapDelta in |- *. intros a y H1 H2. case (MapGet A (M2 A m0 m1) a).
+ exact (MapPut_canon _ H1 a y).
+ intro. exact (MapRemove_canon _ H1 a).
+ intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H3).
+ exact (mapcanon_M2_1 _ _ H4).
+ apply H0. exact (mapcanon_M2_2 _ _ H3).
+ exact (mapcanon_M2_2 _ _ H4).
Qed.
Variable B : Set.
- Lemma MapDomRestrTo_canon : (m:(Map A)) (mapcanon m) ->
- (m':(Map B)) (mapcanon (MapDomRestrTo A B m m')).
+ Lemma MapDomRestrTo_canon :
+ forall m:Map A,
+ mapcanon m -> forall m':Map B, mapcanon (MapDomRestrTo A B m m').
Proof.
- Induction m. Intros. Exact M0_canon.
- Simpl. Intros a y H m'. Case (MapGet B m' a). Exact M0_canon.
- Intro. Apply M1_canon.
- Induction m'. Exact M0_canon.
- Unfold MapDomRestrTo. Intros a y. Case (MapGet A (M2 A m0 m1) a). Exact M0_canon.
- Intro. Apply M1_canon.
- Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1).
- Apply H0. Exact (mapcanon_M2_2 m0 m1 H1).
+ simple induction m. intros. exact M0_canon.
+ simpl in |- *. intros a y H m'. case (MapGet B m' a). exact M0_canon.
+ intro. apply M1_canon.
+ simple induction m'. exact M0_canon.
+ unfold MapDomRestrTo in |- *. intros a y. case (MapGet A (M2 A m0 m1) a). exact M0_canon.
+ intro. apply M1_canon.
+ intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
+ apply H0. exact (mapcanon_M2_2 m0 m1 H1).
Qed.
- Lemma MapDomRestrBy_canon : (m:(Map A)) (mapcanon m) ->
- (m':(Map B)) (mapcanon (MapDomRestrBy A B m m')).
+ Lemma MapDomRestrBy_canon :
+ forall m:Map A,
+ mapcanon m -> forall m':Map B, mapcanon (MapDomRestrBy A B m m').
Proof.
- Induction m. Intros. Exact M0_canon.
- Simpl. Intros a y H m'. Case (MapGet B m' a). Assumption.
- Intro. Exact M0_canon.
- Induction m'. Exact H1.
- Intros a y. Simpl. Case (ad_bit_0 a). Apply makeM2_canon. Exact (mapcanon_M2_1 ? ? H1).
- Apply MapRemove_canon. Exact (mapcanon_M2_2 ? ? H1).
- Apply makeM2_canon. Apply MapRemove_canon. Exact (mapcanon_M2_1 ? ? H1).
- Exact (mapcanon_M2_2 ? ? H1).
- Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H1).
- Apply H0. Exact (mapcanon_M2_2 ? ? H1).
+ simple induction m. intros. exact M0_canon.
+ simpl in |- *. intros a y H m'. case (MapGet B m' a). assumption.
+ intro. exact M0_canon.
+ simple induction m'. exact H1.
+ intros a y. simpl in |- *. case (ad_bit_0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1).
+ apply MapRemove_canon. exact (mapcanon_M2_2 _ _ H1).
+ apply makeM2_canon. apply MapRemove_canon. exact (mapcanon_M2_1 _ _ H1).
+ exact (mapcanon_M2_2 _ _ H1).
+ intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1).
+ apply H0. exact (mapcanon_M2_2 _ _ H1).
Qed.
- Lemma Map_of_alist_canon : (l:(alist A)) (mapcanon (Map_of_alist A l)).
+ Lemma Map_of_alist_canon : forall l:alist A, mapcanon (Map_of_alist A l).
Proof.
- Induction l. Exact M0_canon.
- Intro r. Elim r. Intros a y l0 H. Simpl. Apply MapPut_canon. Assumption.
+ simple induction l. exact M0_canon.
+ intro r. elim r. intros a y l0 H. simpl in |- *. apply MapPut_canon. assumption.
Qed.
- Lemma MapSubset_c_1 : (m:(Map A)) (m':(Map B)) (mapcanon m) ->
- (MapSubset A B m m') -> (MapDomRestrBy A B m m')=(M0 A).
+ Lemma MapSubset_c_1 :
+ forall (m:Map A) (m':Map B),
+ mapcanon m -> MapSubset A B m m' -> MapDomRestrBy A B m m' = M0 A.
Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon. Assumption.
- Apply M0_canon.
- Exact (MapSubset_imp_2 ? ? m m' H0).
+ intros. apply mapcanon_unique. apply MapDomRestrBy_canon. assumption.
+ apply M0_canon.
+ exact (MapSubset_imp_2 _ _ m m' H0).
Qed.
- Lemma MapSubset_c_2 : (m:(Map A)) (m':(Map B))
- (MapDomRestrBy A B m m')=(M0 A) -> (MapSubset A B m m').
+ Lemma MapSubset_c_2 :
+ forall (m:Map A) (m':Map B),
+ MapDomRestrBy A B m m' = M0 A -> MapSubset A B m m'.
Proof.
- Intros. Apply MapSubset_2_imp. Unfold MapSubset_2. Rewrite H. Apply eqmap_refl.
+ intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *. rewrite H. apply eqmap_refl.
Qed.
End MapCanon.
@@ -325,52 +337,63 @@ Section FSetCanon.
Variable A : Set.
- Lemma MapDom_canon : (m:(Map A)) (mapcanon A m) -> (mapcanon unit (MapDom A m)).
+ Lemma MapDom_canon :
+ forall m:Map A, mapcanon A m -> mapcanon unit (MapDom A m).
Proof.
- Induction m. Intro. Exact (M0_canon unit).
- Intros a y H. Exact (M1_canon unit a ?).
- Intros. Simpl. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 A ? ? H1).
- Apply H0. Exact (mapcanon_M2_2 A ? ? H1).
- Change (le (2) (MapCard unit (MapDom A (M2 A m0 m1)))). Rewrite <- MapCard_Dom.
- Exact (mapcanon_M2 A ? ? H1).
+ simple induction m. intro. exact (M0_canon unit).
+ intros a y H. exact (M1_canon unit a _).
+ intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 A _ _ H1).
+ apply H0. exact (mapcanon_M2_2 A _ _ H1).
+ change (2 <= MapCard unit (MapDom A (M2 A m0 m1))) in |- *. rewrite <- MapCard_Dom.
+ exact (mapcanon_M2 A _ _ H1).
Qed.
End FSetCanon.
Section MapFoldCanon.
- Variable A, B : Set.
-
- Lemma MapFold_canon_1 : (m0:(Map B)) (mapcanon B m0) ->
- (op : (Map B) -> (Map B) -> (Map B))
- ((m1:(Map B)) (mapcanon B m1) -> (m2:(Map B)) (mapcanon B m2) ->
- (mapcanon B (op m1 m2))) ->
- (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) ->
- (m:(Map A)) (pf : ad->ad) (mapcanon B (MapFold1 A (Map B) m0 op f pf m)).
+ Variables A B : Set.
+
+ Lemma MapFold_canon_1 :
+ forall m0:Map B,
+ mapcanon B m0 ->
+ forall op:Map B -> Map B -> Map B,
+ (forall m1:Map B,
+ mapcanon B m1 ->
+ forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) ->
+ forall f:ad -> A -> Map B,
+ (forall (a:ad) (y:A), mapcanon B (f a y)) ->
+ forall (m:Map A) (pf:ad -> ad),
+ mapcanon B (MapFold1 A (Map B) m0 op f pf m).
Proof.
- Induction m. Intro. Exact H.
- Intros a y pf. Simpl. Apply H1.
- Intros. Simpl. Apply H0. Apply H2.
- Apply H3.
+ simple induction m. intro. exact H.
+ intros a y pf. simpl in |- *. apply H1.
+ intros. simpl in |- *. apply H0. apply H2.
+ apply H3.
Qed.
- Lemma MapFold_canon : (m0:(Map B)) (mapcanon B m0) ->
- (op : (Map B) -> (Map B) -> (Map B))
- ((m1:(Map B)) (mapcanon B m1) -> (m2:(Map B)) (mapcanon B m2) ->
- (mapcanon B (op m1 m2))) ->
- (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) ->
- (m:(Map A)) (mapcanon B (MapFold A (Map B) m0 op f m)).
+ Lemma MapFold_canon :
+ forall m0:Map B,
+ mapcanon B m0 ->
+ forall op:Map B -> Map B -> Map B,
+ (forall m1:Map B,
+ mapcanon B m1 ->
+ forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) ->
+ forall f:ad -> A -> Map B,
+ (forall (a:ad) (y:A), mapcanon B (f a y)) ->
+ forall m:Map A, mapcanon B (MapFold A (Map B) m0 op f m).
Proof.
- Intros. Exact (MapFold_canon_1 m0 H op H0 f H1 m [a:ad]a).
+ intros. exact (MapFold_canon_1 m0 H op H0 f H1 m (fun a:ad => a)).
Qed.
- Lemma MapCollect_canon :
- (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) ->
- (m:(Map A)) (mapcanon B (MapCollect A B f m)).
+ Lemma MapCollect_canon :
+ forall f:ad -> A -> Map B,
+ (forall (a:ad) (y:A), mapcanon B (f a y)) ->
+ forall m:Map A, mapcanon B (MapCollect A B f m).
Proof.
- Intros. Rewrite MapCollect_as_Fold. Apply MapFold_canon. Apply M0_canon.
- Intros. Exact (MapMerge_canon B m1 m2 H0 H1).
- Assumption.
+ intros. rewrite MapCollect_as_Fold. apply MapFold_canon. apply M0_canon.
+ intros. exact (MapMerge_canon B m1 m2 H0 H1).
+ assumption.
Qed.
-End MapFoldCanon.
+End MapFoldCanon. \ No newline at end of file
diff --git a/theories/IntMap/Mapcard.v b/theories/IntMap/Mapcard.v
index e124a11f6b..fe598c4128 100644
--- a/theories/IntMap/Mapcard.v
+++ b/theories/IntMap/Mapcard.v
@@ -7,664 +7,758 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Bool.
-Require Sumbool.
-Require Arith.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
-Require Mapaxioms.
-Require Mapiter.
-Require Fset.
-Require Mapsubset.
-Require PolyList.
-Require Lsort.
-Require Peano_dec.
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Mapaxioms.
+Require Import Mapiter.
+Require Import Fset.
+Require Import Mapsubset.
+Require Import List.
+Require Import Lsort.
+Require Import Peano_dec.
Section MapCard.
- Variable A, B : Set.
+ Variables A B : Set.
+
+ Lemma MapCard_M0 : MapCard A (M0 A) = 0.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapCard_M1 : forall (a:ad) (y:A), MapCard A (M1 A a y) = 1.
+ Proof.
+ trivial.
+ Qed.
+
+ Lemma MapCard_is_O :
+ forall m:Map A, MapCard A m = 0 -> forall a:ad, MapGet A m a = NONE A.
+ Proof.
+ simple induction m. trivial.
+ intros a y H. discriminate H.
+ intros. simpl in H1. elim (plus_is_O _ _ H1). intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a).
+ case (ad_bit_0 a). apply H0. assumption.
+ apply H. assumption.
+ Qed.
- Lemma MapCard_M0 : (MapCard A (M0 A))=O.
+ Lemma MapCard_is_not_O :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = SOME A y -> {n : nat | MapCard A m = S n}.
Proof.
- Trivial.
+ simple induction m. intros. discriminate H.
+ intros a y a0 y0 H. simpl in H. elim (sumbool_of_bool (ad_eq a a0)). intro H0. split with 0.
+ reflexivity.
+ intro H0. rewrite H0 in H. discriminate H.
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H2.
+ rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. elim (H0 (ad_div_2 a) y H1). intros n H3.
+ simpl in |- *. rewrite H3. split with (MapCard A m0 + n).
+ rewrite <- (plus_Snm_nSm (MapCard A m0) n). reflexivity.
+ intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. elim (H (ad_div_2 a) y H1).
+ intros n H3. simpl in |- *. rewrite H3. split with (n + MapCard A m1). reflexivity.
Qed.
- Lemma MapCard_M1 : (a:ad) (y:A) (MapCard A (M1 A a y))=(1).
+ Lemma MapCard_is_one :
+ forall m:Map A,
+ MapCard A m = 1 -> {a : ad & {y : A | MapGet A m a = SOME A y}}.
Proof.
- Trivial.
+ simple induction m. intro. discriminate H.
+ intros a y H. split with a. split with y. apply M1_semantics_1.
+ intros. simpl in H1. elim (plus_is_one (MapCard A m0) (MapCard A m1) H1).
+ intro H2. elim H2. intros. elim (H0 H4). intros a H5. split with (ad_double_plus_un a).
+ rewrite (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m0 m1).
+ rewrite ad_double_plus_un_div_2. exact H5.
+ intro H2. elim H2. intros. elim (H H3). intros a H5. split with (ad_double a).
+ rewrite (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m0 m1).
+ rewrite ad_double_div_2. exact H5.
Qed.
- Lemma MapCard_is_O : (m:(Map A)) (MapCard A m)=O ->
- (a:ad) (MapGet A m a)=(NONE A).
+ Lemma MapCard_is_one_unique :
+ forall m:Map A,
+ MapCard A m = 1 ->
+ forall (a a':ad) (y y':A),
+ MapGet A m a = SOME A y ->
+ MapGet A m a' = SOME A y' -> a = a' /\ y = y'.
Proof.
- Induction m. Trivial.
- Intros a y H. Discriminate H.
- Intros. Simpl in H1. Elim (plus_is_O ? ? H1). Intros. Rewrite (MapGet_M2_bit_0_if A m0 m1 a).
- Case (ad_bit_0 a). Apply H0. Assumption.
- Apply H. Assumption.
+ simple induction m. intro. discriminate H.
+ intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2. rewrite (ad_eq_complete _ _ H2) in H0.
+ rewrite (M1_semantics_1 A a1 a0) in H0. inversion H0. elim (sumbool_of_bool (ad_eq a a')).
+ intro H5. rewrite (ad_eq_complete _ _ H5) in H1. rewrite (M1_semantics_1 A a' a0) in H1.
+ inversion H1. rewrite <- (ad_eq_complete _ _ H2). rewrite <- (ad_eq_complete _ _ H5).
+ rewrite <- H4. rewrite <- H6. split; reflexivity.
+ intro H5. rewrite (M1_semantics_2 A a a' a0 H5) in H1. discriminate H1.
+ intro H2. rewrite (M1_semantics_2 A a a1 a0 H2) in H0. discriminate H0.
+ intros. simpl in H1. elim (plus_is_one _ _ H1). intro H4. elim H4. intros.
+ rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. elim (sumbool_of_bool (ad_bit_0 a)).
+ intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3.
+ elim (sumbool_of_bool (ad_bit_0 a')). intro H8. rewrite H8 in H3. elim (H0 H6 _ _ _ _ H2 H3).
+ intros. split. rewrite <- (ad_div_2_double_plus_un a H7).
+ rewrite <- (ad_div_2_double_plus_un a' H8). rewrite H9. reflexivity.
+ assumption.
+ intro H8. rewrite H8 in H3. rewrite (MapCard_is_O m0 H5 (ad_div_2 a')) in H3.
+ discriminate H3.
+ intro H7. rewrite H7 in H2. rewrite (MapCard_is_O m0 H5 (ad_div_2 a)) in H2.
+ discriminate H2.
+ intro H4. elim H4. intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2.
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H7. rewrite H7 in H2.
+ rewrite (MapCard_is_O m1 H6 (ad_div_2 a)) in H2. discriminate H2.
+ intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3.
+ elim (sumbool_of_bool (ad_bit_0 a')). intro H8. rewrite H8 in H3.
+ rewrite (MapCard_is_O m1 H6 (ad_div_2 a')) in H3. discriminate H3.
+ intro H8. rewrite H8 in H3. elim (H H5 _ _ _ _ H2 H3). intros. split.
+ rewrite <- (ad_div_2_double a H7). rewrite <- (ad_div_2_double a' H8).
+ rewrite H9. reflexivity.
+ assumption.
Qed.
- Lemma MapCard_is_not_O : (m:(Map A)) (a:ad) (y:A) (MapGet A m a)=(SOME A y) ->
- {n:nat | (MapCard A m)=(S n)}.
+ Lemma length_as_fold :
+ forall (C:Set) (l:list C),
+ length l = fold_right (fun (_:C) (n:nat) => S n) 0 l.
Proof.
- Induction m. Intros. Discriminate H.
- Intros a y a0 y0 H. Simpl in H. Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. Split with O.
- Reflexivity.
- Intro H0. Rewrite H0 in H. Discriminate H.
- Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2.
- Rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. Elim (H0 (ad_div_2 a) y H1). Intros n H3.
- Simpl. Rewrite H3. Split with (plus (MapCard A m0) n).
- Rewrite <- (plus_Snm_nSm (MapCard A m0) n). Reflexivity.
- Intro H2. Rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. Elim (H (ad_div_2 a) y H1).
- Intros n H3. Simpl. Rewrite H3. Split with (plus n (MapCard A m1)). Reflexivity.
+ simple induction l. reflexivity.
+ intros. simpl in |- *. rewrite H. reflexivity.
Qed.
- Lemma MapCard_is_one : (m:(Map A)) (MapCard A m)=(1) ->
- {a:ad & {y:A | (MapGet A m a)=(SOME A y)}}.
- Proof.
- Induction m. Intro. Discriminate H.
- Intros a y H. Split with a. Split with y. Apply M1_semantics_1.
- Intros. Simpl in H1. Elim (plus_is_one (MapCard A m0) (MapCard A m1) H1).
- Intro H2. Elim H2. Intros. Elim (H0 H4). Intros a H5. Split with (ad_double_plus_un a).
- Rewrite (MapGet_M2_bit_0_1 A ? (ad_double_plus_un_bit_0 a) m0 m1).
- Rewrite ad_double_plus_un_div_2. Exact H5.
- Intro H2. Elim H2. Intros. Elim (H H3). Intros a H5. Split with (ad_double a).
- Rewrite (MapGet_M2_bit_0_0 A ? (ad_double_bit_0 a) m0 m1).
- Rewrite ad_double_div_2. Exact H5.
- Qed.
-
- Lemma MapCard_is_one_unique : (m:(Map A)) (MapCard A m)=(1) -> (a,a':ad) (y,y':A)
- (MapGet A m a)=(SOME A y) -> (MapGet A m a')=(SOME A y') ->
- a=a' /\ y=y'.
- Proof.
- Induction m. Intro. Discriminate H.
- Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H2. Rewrite (ad_eq_complete ? ? H2) in H0.
- Rewrite (M1_semantics_1 A a1 a0) in H0. Inversion H0. Elim (sumbool_of_bool (ad_eq a a')).
- Intro H5. Rewrite (ad_eq_complete ? ? H5) in H1. Rewrite (M1_semantics_1 A a' a0) in H1.
- Inversion H1. Rewrite <- (ad_eq_complete ? ? H2). Rewrite <- (ad_eq_complete ? ? H5).
- Rewrite <- H4. Rewrite <- H6. (Split; Reflexivity).
- Intro H5. Rewrite (M1_semantics_2 A a a' a0 H5) in H1. Discriminate H1.
- Intro H2. Rewrite (M1_semantics_2 A a a1 a0 H2) in H0. Discriminate H0.
- Intros. Simpl in H1. Elim (plus_is_one ? ? H1). Intro H4. Elim H4. Intros.
- Rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. Elim (sumbool_of_bool (ad_bit_0 a)).
- Intro H7. Rewrite H7 in H2. Rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3.
- Elim (sumbool_of_bool (ad_bit_0 a')). Intro H8. Rewrite H8 in H3. Elim (H0 H6 ? ? ? ? H2 H3).
- Intros. Split. Rewrite <- (ad_div_2_double_plus_un a H7).
- Rewrite <- (ad_div_2_double_plus_un a' H8). Rewrite H9. Reflexivity.
- Assumption.
- Intro H8. Rewrite H8 in H3. Rewrite (MapCard_is_O m0 H5 (ad_div_2 a')) in H3.
- Discriminate H3.
- Intro H7. Rewrite H7 in H2. Rewrite (MapCard_is_O m0 H5 (ad_div_2 a)) in H2.
- Discriminate H2.
- Intro H4. Elim H4. Intros. Rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2.
- Elim (sumbool_of_bool (ad_bit_0 a)). Intro H7. Rewrite H7 in H2.
- Rewrite (MapCard_is_O m1 H6 (ad_div_2 a)) in H2. Discriminate H2.
- Intro H7. Rewrite H7 in H2. Rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3.
- Elim (sumbool_of_bool (ad_bit_0 a')). Intro H8. Rewrite H8 in H3.
- Rewrite (MapCard_is_O m1 H6 (ad_div_2 a')) in H3. Discriminate H3.
- Intro H8. Rewrite H8 in H3. Elim (H H5 ? ? ? ? H2 H3). Intros. Split.
- Rewrite <- (ad_div_2_double a H7). Rewrite <- (ad_div_2_double a' H8).
- Rewrite H9. Reflexivity.
- Assumption.
- Qed.
-
- Lemma length_as_fold : (C:Set) (l:(list C))
- (length l)=(fold_right [_:C][n:nat](S n) O l).
- Proof.
- Induction l. Reflexivity.
- Intros. Simpl. Rewrite H. Reflexivity.
- Qed.
-
- Lemma length_as_fold_2 : (l:(alist A))
- (length l)=(fold_right [r:ad*A][n:nat]let (a,y)=r in (plus (1) n) O l).
- Proof.
- Induction l. Reflexivity.
- Intros. Simpl. Rewrite H. (Elim a; Reflexivity).
- Qed.
-
- Lemma MapCard_as_Fold_1 : (m:(Map A)) (pf:ad->ad)
- (MapCard A m)=(MapFold1 A nat O plus [_:ad][_:A](1) pf m).
- Proof.
- Induction m. Trivial.
- Trivial.
- Intros. Simpl. Rewrite <- (H [a0:ad](pf (ad_double a0))).
- Rewrite <- (H0 [a0:ad](pf (ad_double_plus_un a0))). Reflexivity.
- Qed.
-
- Lemma MapCard_as_Fold :
- (m:(Map A)) (MapCard A m)=(MapFold A nat O plus [_:ad][_:A](1) m).
- Proof.
- Intro. Exact (MapCard_as_Fold_1 m [a0:ad]a0).
+ Lemma length_as_fold_2 :
+ forall l:alist A,
+ length l =
+ fold_right (fun (r:ad * A) (n:nat) => let (a, y) := r in 1 + n) 0 l.
+ Proof.
+ simple induction l. reflexivity.
+ intros. simpl in |- *. rewrite H. elim a; reflexivity.
+ Qed.
+
+ Lemma MapCard_as_Fold_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ MapCard A m = MapFold1 A nat 0 plus (fun (_:ad) (_:A) => 1) pf m.
+ Proof.
+ simple induction m. trivial.
+ trivial.
+ intros. simpl in |- *. rewrite <- (H (fun a0:ad => pf (ad_double a0))).
+ rewrite <- (H0 (fun a0:ad => pf (ad_double_plus_un a0))). reflexivity.
+ Qed.
+
+ Lemma MapCard_as_Fold :
+ forall m:Map A,
+ MapCard A m = MapFold A nat 0 plus (fun (_:ad) (_:A) => 1) m.
+ Proof.
+ intro. exact (MapCard_as_Fold_1 m (fun a0:ad => a0)).
Qed.
- Lemma MapCard_as_length : (m:(Map A)) (MapCard A m)=(length (alist_of_Map A m)).
- Proof.
- Intro. Rewrite MapCard_as_Fold. Rewrite length_as_fold_2.
- Apply MapFold_as_fold with op:=plus neutral:=O f:=[_:ad][_:A](1). Exact plus_assoc_r.
- Trivial.
- Intro. Rewrite <- plus_n_O. Reflexivity.
- Qed.
-
- Lemma MapCard_Put1_equals_2 : (p:positive) (a,a':ad) (y,y':A)
- (MapCard A (MapPut1 A a y a' y' p))=(2).
- Proof.
- Induction p. Intros. Simpl. (Case (ad_bit_0 a); Reflexivity).
- Intros. Simpl. Case (ad_bit_0 a). Exact (H (ad_div_2 a) (ad_div_2 a') y y').
- Simpl. Rewrite <- plus_n_O. Exact (H (ad_div_2 a) (ad_div_2 a') y y').
- Intros. Simpl. (Case (ad_bit_0 a); Reflexivity).
- Qed.
-
- Lemma MapCard_Put_sum : (m,m':(Map A)) (a:ad) (y:A) (n,n':nat)
- m'=(MapPut A m a y) -> n=(MapCard A m) -> n'=(MapCard A m') ->
- {n'=n}+{n'=(S n)}.
- Proof.
- Induction m. Simpl. Intros. Rewrite H in H1. Simpl in H1. Right .
- Rewrite H0. Rewrite H1. Reflexivity.
- Intros a y m' a0 y0 n n' H H0 H1. Simpl in H. Elim (ad_sum (ad_xor a a0)). Intro H2.
- Elim H2. Intros p H3. Rewrite H3 in H. Rewrite H in H1.
- Rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H1. Simpl in H0. Right .
- Rewrite H0. Rewrite H1. Reflexivity.
- Intro H2. Rewrite H2 in H. Rewrite H in H1. Simpl in H1. Simpl in H0. Left .
- Rewrite H0. Rewrite H1. Reflexivity.
- Intros. Simpl in H2. Rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1.
- Elim (sumbool_of_bool (ad_bit_0 a)). Intro H4. Rewrite H4 in H1.
- Elim (H0 (MapPut A m1 (ad_div_2 a) y) (ad_div_2 a) y (MapCard A m1)
- (MapCard A (MapPut A m1 (ad_div_2 a) y)) (refl_equal ? ?)
- (refl_equal ? ?) (refl_equal ? ?)).
- Intro H5. Rewrite H1 in H3. Simpl in H3. Rewrite H5 in H3. Rewrite <- H2 in H3. Left .
- Assumption.
- Intro H5. Rewrite H1 in H3. Simpl in H3. Rewrite H5 in H3.
- Rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)) in H3.
- Simpl in H3. Rewrite <- H2 in H3. Right . Assumption.
- Intro H4. Rewrite H4 in H1.
- Elim (H (MapPut A m0 (ad_div_2 a) y) (ad_div_2 a) y (MapCard A m0)
- (MapCard A (MapPut A m0 (ad_div_2 a) y)) (refl_equal ? ?)
- (refl_equal ? ?) (refl_equal ? ?)).
- Intro H5. Rewrite H1 in H3. Simpl in H3. Rewrite H5 in H3. Rewrite <- H2 in H3.
- Left . Assumption.
- Intro H5. Rewrite H1 in H3. Simpl in H3. Rewrite H5 in H3. Simpl in H3. Rewrite <- H2 in H3.
- Right . Assumption.
- Qed.
-
- Lemma MapCard_Put_lb : (m:(Map A)) (a:ad) (y:A)
- (ge (MapCard A (MapPut A m a y)) (MapCard A m)).
- Proof.
- Unfold ge. Intros.
- Elim (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
- (MapCard A (MapPut A m a y)) (refl_equal ? ?) (refl_equal ? ?)
- (refl_equal ? ?)).
- Intro H. Rewrite H. Apply le_n.
- Intro H. Rewrite H. Apply le_n_Sn.
- Qed.
-
- Lemma MapCard_Put_ub : (m:(Map A)) (a:ad) (y:A)
- (le (MapCard A (MapPut A m a y)) (S (MapCard A m))).
- Proof.
- Intros.
- Elim (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
- (MapCard A (MapPut A m a y)) (refl_equal ? ?) (refl_equal ? ?)
- (refl_equal ? ?)).
- Intro H. Rewrite H. Apply le_n_Sn.
- Intro H. Rewrite H. Apply le_n.
- Qed.
-
- Lemma MapCard_Put_1 : (m:(Map A)) (a:ad) (y:A)
- (MapCard A (MapPut A m a y))=(MapCard A m) ->
- {y:A | (MapGet A m a)=(SOME A y)}.
- Proof.
- Induction m. Intros. Discriminate H.
- Intros a y a0 y0 H. Simpl in H. Elim (ad_sum (ad_xor a a0)). Intro H0. Elim H0.
- Intros p H1. Rewrite H1 in H. Rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H.
- Discriminate H.
- Intro H0. Rewrite H0 in H. Rewrite (ad_xor_eq ? ? H0). Split with y. Apply M1_semantics_1.
- Intros. Rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. Elim (sumbool_of_bool (ad_bit_0 a)).
- Intro H2. Rewrite H2 in H1. Simpl in H1. Elim (H0 (ad_div_2 a) y (simpl_plus_l ? ? ? H1)).
- Intros y0 H3. Split with y0. Rewrite <- H3. Exact (MapGet_M2_bit_0_1 A a H2 m0 m1).
- Intro H2. Rewrite H2 in H1. Simpl in H1.
- Rewrite (plus_sym (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1)) in H1.
- Rewrite (plus_sym (MapCard A m0) (MapCard A m1)) in H1.
- Elim (H (ad_div_2 a) y (simpl_plus_l ? ? ? H1)). Intros y0 H3. Split with y0.
- Rewrite <- H3. Exact (MapGet_M2_bit_0_0 A a H2 m0 m1).
- Qed.
-
- Lemma MapCard_Put_2 : (m:(Map A)) (a:ad) (y:A)
- (MapCard A (MapPut A m a y))=(S (MapCard A m)) -> (MapGet A m a)=(NONE A).
- Proof.
- Induction m. Trivial.
- Intros. Simpl in H. Elim (sumbool_of_bool (ad_eq a a1)). Intro H0.
- Rewrite (ad_eq_complete ? ? H0) in H. Rewrite (ad_xor_nilpotent a1) in H. Discriminate H.
- Intro H0. Exact (M1_semantics_2 A a a1 a0 H0).
- Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2.
- Rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). Apply (H0 (ad_div_2 a) y).
- Apply simpl_plus_l with n:=(MapCard A m0).
- Rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)). Simpl in H1. Simpl. Rewrite <- H1.
- Clear H1.
- NewInduction a. Discriminate H2.
- NewInduction p. Reflexivity.
- Discriminate H2.
- Reflexivity.
- Intro H2. Rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). Apply (H (ad_div_2 a) y).
- Cut (plus (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1))
- =(plus (S (MapCard A m0)) (MapCard A m1)).
- Intro. Rewrite (plus_sym (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1)) in H3.
- Rewrite (plus_sym (S (MapCard A m0)) (MapCard A m1)) in H3. Exact (simpl_plus_l ? ? ? H3).
- Simpl. Simpl in H1. Rewrite <- H1. NewInduction a. Trivial.
- NewInduction p. Discriminate H2.
- Reflexivity.
- Discriminate H2.
- Qed.
-
- Lemma MapCard_Put_1_conv : (m:(Map A)) (a:ad) (y,y':A)
- (MapGet A m a)=(SOME A y) -> (MapCard A (MapPut A m a y'))=(MapCard A m).
- Proof.
- Intros.
- Elim (MapCard_Put_sum m (MapPut A m a y') a y' (MapCard A m)
- (MapCard A (MapPut A m a y')) (refl_equal ? ?) (refl_equal ? ?)
- (refl_equal ? ?)).
- Trivial.
- Intro H0. Rewrite (MapCard_Put_2 m a y' H0) in H. Discriminate H.
- Qed.
-
- Lemma MapCard_Put_2_conv : (m:(Map A)) (a:ad) (y:A)
- (MapGet A m a)=(NONE A) -> (MapCard A (MapPut A m a y))=(S (MapCard A m)).
- Proof.
- Intros.
- Elim (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
- (MapCard A (MapPut A m a y)) (refl_equal ? ?) (refl_equal ? ?)
- (refl_equal ? ?)).
- Intro H0. Elim (MapCard_Put_1 m a y H0). Intros y' H1. Rewrite H1 in H. Discriminate H.
- Trivial.
- Qed.
-
- Lemma MapCard_ext : (m,m':(Map A))
- (eqm A (MapGet A m) (MapGet A m')) -> (MapCard A m)=(MapCard A m').
- Proof.
- Unfold eqm. Intros. Rewrite (MapCard_as_length m). Rewrite (MapCard_as_length m').
- Rewrite (alist_canonical A (alist_of_Map A m) (alist_of_Map A m')). Reflexivity.
- Unfold eqm. Intro. Rewrite (Map_of_alist_semantics A (alist_of_Map A m) a).
- Rewrite (Map_of_alist_semantics A (alist_of_Map A m') a). Rewrite (Map_of_alist_of_Map A m' a).
- Rewrite (Map_of_alist_of_Map A m a). Exact (H a).
- Apply alist_of_Map_sorts2.
- Apply alist_of_Map_sorts2.
- Qed.
-
- Lemma MapCard_Dom : (m:(Map A)) (MapCard A m)=(MapCard unit (MapDom A m)).
- Proof.
- (Induction m; Trivial). Intros. Simpl. Rewrite H. Rewrite H0. Reflexivity.
- Qed.
-
- Lemma MapCard_Dom_Put_behind : (m:(Map A)) (a:ad) (y:A)
- (MapDom A (MapPut_behind A m a y))=(MapDom A (MapPut A m a y)).
- Proof.
- Induction m. Trivial.
- Intros a y a0 y0. Simpl. Elim (ad_sum (ad_xor a a0)). Intro H. Elim H.
- Intros p H0. Rewrite H0. Reflexivity.
- Intro H. Rewrite H. Rewrite (ad_xor_eq ? ? H). Reflexivity.
- Intros. Simpl. Elim (ad_sum a). Intro H1. Elim H1. Intros p H2. Rewrite H2. Case p.
- Intro p0. Simpl. Rewrite H0. Reflexivity.
- Intro p0. Simpl. Rewrite H. Reflexivity.
- Simpl. Rewrite H0. Reflexivity.
- Intro H1. Rewrite H1. Simpl. Rewrite H. Reflexivity.
- Qed.
-
- Lemma MapCard_Put_behind_Put : (m:(Map A)) (a:ad) (y:A)
- (MapCard A (MapPut_behind A m a y))=(MapCard A (MapPut A m a y)).
- Proof.
- Intros. Rewrite MapCard_Dom. Rewrite MapCard_Dom. Rewrite MapCard_Dom_Put_behind.
- Reflexivity.
- Qed.
-
- Lemma MapCard_Put_behind_sum : (m,m':(Map A)) (a:ad) (y:A) (n,n':nat)
- m'=(MapPut_behind A m a y) -> n=(MapCard A m) -> n'=(MapCard A m') ->
- {n'=n}+{n'=(S n)}.
- Proof.
- Intros. (Apply (MapCard_Put_sum m (MapPut A m a y) a y n n'); Trivial).
- Rewrite <- MapCard_Put_behind_Put. Rewrite <- H. Assumption.
- Qed.
+ Lemma MapCard_as_length :
+ forall m:Map A, MapCard A m = length (alist_of_Map A m).
+ Proof.
+ intro. rewrite MapCard_as_Fold. rewrite length_as_fold_2.
+ apply MapFold_as_fold with
+ (op := plus) (neutral := 0) (f := fun (_:ad) (_:A) => 1). exact plus_assoc_reverse.
+ trivial.
+ intro. rewrite <- plus_n_O. reflexivity.
+ Qed.
+
+ Lemma MapCard_Put1_equals_2 :
+ forall (p:positive) (a a':ad) (y y':A),
+ MapCard A (MapPut1 A a y a' y' p) = 2.
+ Proof.
+ simple induction p. intros. simpl in |- *. case (ad_bit_0 a); reflexivity.
+ intros. simpl in |- *. case (ad_bit_0 a). exact (H (ad_div_2 a) (ad_div_2 a') y y').
+ simpl in |- *. rewrite <- plus_n_O. exact (H (ad_div_2 a) (ad_div_2 a') y y').
+ intros. simpl in |- *. case (ad_bit_0 a); reflexivity.
+ Qed.
+
+ Lemma MapCard_Put_sum :
+ forall (m m':Map A) (a:ad) (y:A) (n n':nat),
+ m' = MapPut A m a y ->
+ n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}.
+ Proof.
+ simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. right.
+ rewrite H0. rewrite H1. reflexivity.
+ intros a y m' a0 y0 n n' H H0 H1. simpl in H. elim (ad_sum (ad_xor a a0)). intro H2.
+ elim H2. intros p H3. rewrite H3 in H. rewrite H in H1.
+ rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H1. simpl in H0. right.
+ rewrite H0. rewrite H1. reflexivity.
+ intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. simpl in H0. left.
+ rewrite H0. rewrite H1. reflexivity.
+ intros. simpl in H2. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1.
+ elim (sumbool_of_bool (ad_bit_0 a)). intro H4. rewrite H4 in H1.
+ elim
+ (H0 (MapPut A m1 (ad_div_2 a) y) (ad_div_2 a) y (
+ MapCard A m1) (MapCard A (MapPut A m1 (ad_div_2 a) y)) (
+ refl_equal _) (refl_equal _) (refl_equal _)).
+ intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3. left.
+ assumption.
+ intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3.
+ rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)) in H3.
+ simpl in H3. rewrite <- H2 in H3. right. assumption.
+ intro H4. rewrite H4 in H1.
+ elim
+ (H (MapPut A m0 (ad_div_2 a) y) (ad_div_2 a) y (
+ MapCard A m0) (MapCard A (MapPut A m0 (ad_div_2 a) y)) (
+ refl_equal _) (refl_equal _) (refl_equal _)).
+ intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3.
+ left. assumption.
+ intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. simpl in H3. rewrite <- H2 in H3.
+ right. assumption.
+ Qed.
+
+ Lemma MapCard_Put_lb :
+ forall (m:Map A) (a:ad) (y:A), MapCard A (MapPut A m a y) >= MapCard A m.
+ Proof.
+ unfold ge in |- *. intros.
+ elim
+ (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
+ (MapCard A (MapPut A m a y)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H. rewrite H. apply le_n.
+ intro H. rewrite H. apply le_n_Sn.
+ Qed.
+
+ Lemma MapCard_Put_ub :
+ forall (m:Map A) (a:ad) (y:A),
+ MapCard A (MapPut A m a y) <= S (MapCard A m).
+ Proof.
+ intros.
+ elim
+ (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
+ (MapCard A (MapPut A m a y)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H. rewrite H. apply le_n_Sn.
+ intro H. rewrite H. apply le_n.
+ Qed.
+
+ Lemma MapCard_Put_1 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapCard A (MapPut A m a y) = MapCard A m ->
+ {y : A | MapGet A m a = SOME A y}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ intros a y a0 y0 H. simpl in H. elim (ad_sum (ad_xor a a0)). intro H0. elim H0.
+ intros p H1. rewrite H1 in H. rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H.
+ discriminate H.
+ intro H0. rewrite H0 in H. rewrite (ad_xor_eq _ _ H0). split with y. apply M1_semantics_1.
+ intros. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. elim (sumbool_of_bool (ad_bit_0 a)).
+ intro H2. rewrite H2 in H1. simpl in H1. elim (H0 (ad_div_2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)).
+ intros y0 H3. split with y0. rewrite <- H3. exact (MapGet_M2_bit_0_1 A a H2 m0 m1).
+ intro H2. rewrite H2 in H1. simpl in H1.
+ rewrite
+ (plus_comm (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1))
+ in H1.
+ rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1.
+ elim (H (ad_div_2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)). intros y0 H3. split with y0.
+ rewrite <- H3. exact (MapGet_M2_bit_0_0 A a H2 m0 m1).
+ Qed.
+
+ Lemma MapCard_Put_2 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapCard A (MapPut A m a y) = S (MapCard A m) -> MapGet A m a = NONE A.
+ Proof.
+ simple induction m. trivial.
+ intros. simpl in H. elim (sumbool_of_bool (ad_eq a a1)). intro H0.
+ rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_xor_nilpotent a1) in H. discriminate H.
+ intro H0. exact (M1_semantics_2 A a a1 a0 H0).
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H2.
+ rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply (H0 (ad_div_2 a) y).
+ apply (fun n m p:nat => plus_reg_l m p n) with (n := MapCard A m0).
+ rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)). simpl in H1. simpl in |- *. rewrite <- H1.
+ clear H1.
+ induction a. discriminate H2.
+ induction p. reflexivity.
+ discriminate H2.
+ reflexivity.
+ intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply (H (ad_div_2 a) y).
+ cut
+ (MapCard A (MapPut A m0 (ad_div_2 a) y) + MapCard A m1 =
+ S (MapCard A m0) + MapCard A m1).
+ intro. rewrite (plus_comm (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1))
+ in H3.
+ rewrite (plus_comm (S (MapCard A m0)) (MapCard A m1)) in H3. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H3).
+ simpl in |- *. simpl in H1. rewrite <- H1. induction a. trivial.
+ induction p. discriminate H2.
+ reflexivity.
+ discriminate H2.
+ Qed.
+
+ Lemma MapCard_Put_1_conv :
+ forall (m:Map A) (a:ad) (y y':A),
+ MapGet A m a = SOME A y -> MapCard A (MapPut A m a y') = MapCard A m.
+ Proof.
+ intros.
+ elim
+ (MapCard_Put_sum m (MapPut A m a y') a y' (MapCard A m)
+ (MapCard A (MapPut A m a y')) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ trivial.
+ intro H0. rewrite (MapCard_Put_2 m a y' H0) in H. discriminate H.
+ Qed.
+
+ Lemma MapCard_Put_2_conv :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = NONE A -> MapCard A (MapPut A m a y) = S (MapCard A m).
+ Proof.
+ intros.
+ elim
+ (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
+ (MapCard A (MapPut A m a y)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H0. elim (MapCard_Put_1 m a y H0). intros y' H1. rewrite H1 in H. discriminate H.
+ trivial.
+ Qed.
+
+ Lemma MapCard_ext :
+ forall m m':Map A,
+ eqm A (MapGet A m) (MapGet A m') -> MapCard A m = MapCard A m'.
+ Proof.
+ unfold eqm in |- *. intros. rewrite (MapCard_as_length m). rewrite (MapCard_as_length m').
+ rewrite (alist_canonical A (alist_of_Map A m) (alist_of_Map A m')). reflexivity.
+ unfold eqm in |- *. intro. rewrite (Map_of_alist_semantics A (alist_of_Map A m) a).
+ rewrite (Map_of_alist_semantics A (alist_of_Map A m') a). rewrite (Map_of_alist_of_Map A m' a).
+ rewrite (Map_of_alist_of_Map A m a). exact (H a).
+ apply alist_of_Map_sorts2.
+ apply alist_of_Map_sorts2.
+ Qed.
+
+ Lemma MapCard_Dom : forall m:Map A, MapCard A m = MapCard unit (MapDom A m).
+ Proof.
+ simple induction m; trivial. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapCard_Dom_Put_behind :
+ forall (m:Map A) (a:ad) (y:A),
+ MapDom A (MapPut_behind A m a y) = MapDom A (MapPut A m a y).
+ Proof.
+ simple induction m. trivial.
+ intros a y a0 y0. simpl in |- *. elim (ad_sum (ad_xor a a0)). intro H. elim H.
+ intros p H0. rewrite H0. reflexivity.
+ intro H. rewrite H. rewrite (ad_xor_eq _ _ H). reflexivity.
+ intros. simpl in |- *. elim (ad_sum a). intro H1. elim H1. intros p H2. rewrite H2. case p.
+ intro p0. simpl in |- *. rewrite H0. reflexivity.
+ intro p0. simpl in |- *. rewrite H. reflexivity.
+ simpl in |- *. rewrite H0. reflexivity.
+ intro H1. rewrite H1. simpl in |- *. rewrite H. reflexivity.
+ Qed.
+
+ Lemma MapCard_Put_behind_Put :
+ forall (m:Map A) (a:ad) (y:A),
+ MapCard A (MapPut_behind A m a y) = MapCard A (MapPut A m a y).
+ Proof.
+ intros. rewrite MapCard_Dom. rewrite MapCard_Dom. rewrite MapCard_Dom_Put_behind.
+ reflexivity.
+ Qed.
- Lemma MapCard_makeM2 : (m,m':(Map A))
- (MapCard A (makeM2 A m m'))=(plus (MapCard A m) (MapCard A m')).
+ Lemma MapCard_Put_behind_sum :
+ forall (m m':Map A) (a:ad) (y:A) (n n':nat),
+ m' = MapPut_behind A m a y ->
+ n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}.
+ Proof.
+ intros. apply (MapCard_Put_sum m (MapPut A m a y) a y n n'); trivial.
+ rewrite <- MapCard_Put_behind_Put. rewrite <- H. assumption.
+ Qed.
+
+ Lemma MapCard_makeM2 :
+ forall m m':Map A, MapCard A (makeM2 A m m') = MapCard A m + MapCard A m'.
Proof.
- Intros. Rewrite (MapCard_ext ? ? (makeM2_M2 A m m')). Reflexivity.
+ intros. rewrite (MapCard_ext _ _ (makeM2_M2 A m m')). reflexivity.
Qed.
- Lemma MapCard_Remove_sum : (m,m':(Map A)) (a:ad) (n,n':nat)
- m'=(MapRemove A m a) -> n=(MapCard A m) -> n'=(MapCard A m') ->
- {n=n'}+{n=(S n')}.
- Proof.
- Induction m. Simpl. Intros. Rewrite H in H1. Simpl in H1. Left . Rewrite H1. Assumption.
- Simpl. Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H2. Rewrite H2 in H.
- Rewrite H in H1. Simpl in H1. Right . Rewrite H1. Assumption.
- Intro H2. Rewrite H2 in H. Rewrite H in H1. Simpl in H1. Left . Rewrite H1. Assumption.
- Intros. Simpl in H1. Simpl in H2. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H4.
- Rewrite H4 in H1. Rewrite H1 in H3.
- Rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H3.
- Elim (H0 (MapRemove A m1 (ad_div_2 a)) (ad_div_2 a) (MapCard A m1)
- (MapCard A (MapRemove A m1 (ad_div_2 a))) (refl_equal ? ?)
- (refl_equal ? ?) (refl_equal ? ?)).
- Intro H5. Rewrite H5 in H2. Left . Rewrite H3. Exact H2.
- Intro H5. Rewrite H5 in H2.
- Rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a)))) in H2.
- Right . Rewrite H3. Exact H2.
- Intro H4. Rewrite H4 in H1. Rewrite H1 in H3.
- Rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H3.
- Elim (H (MapRemove A m0 (ad_div_2 a)) (ad_div_2 a) (MapCard A m0)
- (MapCard A (MapRemove A m0 (ad_div_2 a))) (refl_equal ? ?)
- (refl_equal ? ?) (refl_equal ? ?)).
- Intro H5. Rewrite H5 in H2. Left . Rewrite H3. Exact H2.
- Intro H5. Rewrite H5 in H2. Right . Rewrite H3. Exact H2.
- Qed.
-
- Lemma MapCard_Remove_ub : (m:(Map A)) (a:ad)
- (le (MapCard A (MapRemove A m a)) (MapCard A m)).
- Proof.
- Intros.
- Elim (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
- (MapCard A (MapRemove A m a)) (refl_equal ? ?) (refl_equal ? ?)
- (refl_equal ? ?)).
- Intro H. Rewrite H. Apply le_n.
- Intro H. Rewrite H. Apply le_n_Sn.
- Qed.
-
- Lemma MapCard_Remove_lb : (m:(Map A)) (a:ad)
- (ge (S (MapCard A (MapRemove A m a))) (MapCard A m)).
- Proof.
- Unfold ge. Intros.
- Elim (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
- (MapCard A (MapRemove A m a)) (refl_equal ? ?) (refl_equal ? ?)
- (refl_equal ? ?)).
- Intro H. Rewrite H. Apply le_n_Sn.
- Intro H. Rewrite H. Apply le_n.
- Qed.
-
- Lemma MapCard_Remove_1 : (m:(Map A)) (a:ad)
- (MapCard A (MapRemove A m a))=(MapCard A m) -> (MapGet A m a)=(NONE A).
- Proof.
- Induction m. Trivial.
- Simpl. Intros a y a0 H. Elim (sumbool_of_bool (ad_eq a a0)). Intro H0.
- Rewrite H0 in H. Discriminate H.
- Intro H0. Rewrite H0. Reflexivity.
- Intros. Simpl in H1. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2. Rewrite H2 in H1.
- Rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1.
- Rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). Apply H0. Exact (simpl_plus_l ? ? ? H1).
- Intro H2. Rewrite H2 in H1.
- Rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1.
- Rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). Apply H.
- Rewrite (plus_sym (MapCard A (MapRemove A m0 (ad_div_2 a))) (MapCard A m1)) in H1.
- Rewrite (plus_sym (MapCard A m0) (MapCard A m1)) in H1. Exact (simpl_plus_l ? ? ? H1).
- Qed.
-
- Lemma MapCard_Remove_2 : (m:(Map A)) (a:ad)
- (S (MapCard A (MapRemove A m a)))=(MapCard A m) ->
- {y:A | (MapGet A m a)=(SOME A y)}.
- Proof.
- Induction m. Intros. Discriminate H.
- Intros a y a0 H. Simpl in H. Elim (sumbool_of_bool (ad_eq a a0)). Intro H0.
- Rewrite (ad_eq_complete ? ? H0). Split with y. Exact (M1_semantics_1 A a0 y).
- Intro H0. Rewrite H0 in H. Discriminate H.
- Intros. Simpl in H1. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2. Rewrite H2 in H1.
- Rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1.
- Rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). Apply H0.
- Change (plus (S (MapCard A m0)) (MapCard A (MapRemove A m1 (ad_div_2 a))))
- =(plus (MapCard A m0) (MapCard A m1)) in H1.
- Rewrite (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a)))) in H1.
- Exact (simpl_plus_l ? ? ? H1).
- Intro H2. Rewrite H2 in H1. Rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). Apply H.
- Rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1.
- Change (plus (S (MapCard A (MapRemove A m0 (ad_div_2 a)))) (MapCard A m1))
- =(plus (MapCard A m0) (MapCard A m1)) in H1.
- Rewrite (plus_sym (S (MapCard A (MapRemove A m0 (ad_div_2 a)))) (MapCard A m1)) in H1.
- Rewrite (plus_sym (MapCard A m0) (MapCard A m1)) in H1. Exact (simpl_plus_l ? ? ? H1).
- Qed.
-
- Lemma MapCard_Remove_1_conv : (m:(Map A)) (a:ad)
- (MapGet A m a)=(NONE A) -> (MapCard A (MapRemove A m a))=(MapCard A m).
- Proof.
- Intros.
- Elim (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
- (MapCard A (MapRemove A m a)) (refl_equal ? ?) (refl_equal ? ?)
- (refl_equal ? ?)).
- Intro H0. Rewrite H0. Reflexivity.
- Intro H0. Elim (MapCard_Remove_2 m a (sym_eq ? ? ? H0)). Intros y H1. Rewrite H1 in H.
- Discriminate H.
- Qed.
-
- Lemma MapCard_Remove_2_conv : (m:(Map A)) (a:ad) (y:A)
- (MapGet A m a)=(SOME A y) ->
- (S (MapCard A (MapRemove A m a)))=(MapCard A m).
- Proof.
- Intros.
- Elim (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
- (MapCard A (MapRemove A m a)) (refl_equal ? ?) (refl_equal ? ?)
- (refl_equal ? ?)).
- Intro H0. Rewrite (MapCard_Remove_1 m a (sym_eq ? ? ? H0)) in H. Discriminate H.
- Intro H0. Rewrite H0. Reflexivity.
- Qed.
-
- Lemma MapMerge_Restr_Card : (m,m':(Map A))
- (plus (MapCard A m) (MapCard A m'))=
- (plus (MapCard A (MapMerge A m m')) (MapCard A (MapDomRestrTo A A m m'))).
- Proof.
- Induction m. Simpl. Intro. Apply plus_n_O.
- Simpl. Intros a y m'. Elim (option_sum A (MapGet A m' a)). Intro H. Elim H. Intros y0 H0.
- Rewrite H0. Rewrite MapCard_Put_behind_Put. Rewrite (MapCard_Put_1_conv m' a y0 y H0).
- Simpl. Rewrite <- plus_Snm_nSm. Apply plus_n_O.
- Intro H. Rewrite H. Rewrite MapCard_Put_behind_Put. Rewrite (MapCard_Put_2_conv m' a y H).
- Apply plus_n_O.
- Intros.
- Change (plus (plus (MapCard A m0) (MapCard A m1)) (MapCard A m'))
- =(plus (MapCard A (MapMerge A (M2 A m0 m1) m'))
- (MapCard A (MapDomRestrTo A A (M2 A m0 m1) m'))).
- Elim m'. Reflexivity.
- Intros a y. Unfold MapMerge. Unfold MapDomRestrTo.
- Elim (option_sum A (MapGet A (M2 A m0 m1) a)). Intro H1. Elim H1. Intros y0 H2. Rewrite H2.
- Rewrite (MapCard_Put_1_conv (M2 A m0 m1) a y0 y H2). Reflexivity.
- Intro H1. Rewrite H1. Rewrite (MapCard_Put_2_conv (M2 A m0 m1) a y H1). Simpl.
- Rewrite <- (plus_Snm_nSm (plus (MapCard A m0) (MapCard A m1)) O). Reflexivity.
- Intros. Simpl.
- Rewrite (plus_permute_2_in_4 (MapCard A m0) (MapCard A m1) (MapCard A m2) (MapCard A m3)).
- Rewrite (H m2). Rewrite (H0 m3).
- Rewrite (MapCard_makeM2 (MapDomRestrTo A A m0 m2) (MapDomRestrTo A A m1 m3)).
- Apply plus_permute_2_in_4.
- Qed.
-
- Lemma MapMerge_disjoint_Card : (m,m':(Map A)) (MapDisjoint A A m m') ->
- (MapCard A (MapMerge A m m'))=(plus (MapCard A m) (MapCard A m')).
- Proof.
- Intros. Rewrite (MapMerge_Restr_Card m m').
- Rewrite (MapCard_ext ? ? (MapDisjoint_imp_2 ? ? ? ? H)). Apply plus_n_O.
- Qed.
-
- Lemma MapSplit_Card : (m:(Map A)) (m':(Map B))
- (MapCard A m)=(plus (MapCard A (MapDomRestrTo A B m m'))
- (MapCard A (MapDomRestrBy A B m m'))).
- Proof.
- Intros. Rewrite (MapCard_ext ? ? (MapDom_Split_1 A B m m')). Apply MapMerge_disjoint_Card.
- Apply MapDisjoint_2_imp. Unfold MapDisjoint_2. Apply MapDom_Split_3.
- Qed.
-
- Lemma MapMerge_Card_ub : (m,m':(Map A))
- (le (MapCard A (MapMerge A m m')) (plus (MapCard A m) (MapCard A m'))).
- Proof.
- Intros. Rewrite MapMerge_Restr_Card. Apply le_plus_l.
- Qed.
-
- Lemma MapDomRestrTo_Card_ub_l : (m:(Map A)) (m':(Map B))
- (le (MapCard A (MapDomRestrTo A B m m')) (MapCard A m)).
- Proof.
- Intros. Rewrite (MapSplit_Card m m'). Apply le_plus_l.
- Qed.
-
- Lemma MapDomRestrBy_Card_ub_l : (m:(Map A)) (m':(Map B))
- (le (MapCard A (MapDomRestrBy A B m m')) (MapCard A m)).
- Proof.
- Intros. Rewrite (MapSplit_Card m m'). Apply le_plus_r.
- Qed.
-
- Lemma MapMerge_Card_disjoint : (m,m':(Map A))
- (MapCard A (MapMerge A m m'))=(plus (MapCard A m) (MapCard A m')) ->
- (MapDisjoint A A m m').
- Proof.
- Induction m. Intros. Apply Map_M0_disjoint.
- Simpl. Intros. Rewrite (MapCard_Put_behind_Put m' a a0) in H. Unfold MapDisjoint in_dom.
- Simpl. Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H2.
- Rewrite (ad_eq_complete ? ? H2) in H. Rewrite (MapCard_Put_2 m' a1 a0 H) in H1.
- Discriminate H1.
- Intro H2. Rewrite H2 in H0. Discriminate H0.
- Induction m'. Intros. Apply Map_disjoint_M0.
- Intros a y H1. Rewrite <- (MapCard_ext ? ? (MapPut_as_Merge A (M2 A m0 m1) a y)) in H1.
- Unfold 3 MapCard in H1. Rewrite <- (plus_Snm_nSm (MapCard A (M2 A m0 m1)) O) in H1.
- Rewrite <- (plus_n_O (S (MapCard A (M2 A m0 m1)))) in H1. Unfold MapDisjoint in_dom.
- Unfold 2 MapGet. Intros. Elim (sumbool_of_bool (ad_eq a a0)). Intro H4.
- Rewrite <- (ad_eq_complete ? ? H4) in H2. Rewrite (MapCard_Put_2 ? ? ? H1) in H2.
- Discriminate H2.
- Intro H4. Rewrite H4 in H3. Discriminate H3.
- Intros. Unfold MapDisjoint. Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H6.
- Unfold MapDisjoint in H0. Apply H0 with m':=m3 a:=(ad_div_2 a). Apply le_antisym.
- Apply MapMerge_Card_ub.
- Apply simpl_le_plus_l with p:=(plus (MapCard A m0) (MapCard A m2)).
- Rewrite (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) (MapCard A m1) (MapCard A m3)).
- Change (MapCard A (M2 A (MapMerge A m0 m2) (MapMerge A m1 m3)))
- =(plus (plus (MapCard A m0) (MapCard A m1)) (plus (MapCard A m2) (MapCard A m3))) in H3.
- Rewrite <- H3. Simpl. Apply le_reg_r. Apply MapMerge_Card_ub.
- Elim (in_dom_some ? ? ? H4). Intros y H7. Rewrite (MapGet_M2_bit_0_1 ? a H6 m0 m1) in H7.
- Unfold in_dom. Rewrite H7. Reflexivity.
- Elim (in_dom_some ? ? ? H5). Intros y H7. Rewrite (MapGet_M2_bit_0_1 ? a H6 m2 m3) in H7.
- Unfold in_dom. Rewrite H7. Reflexivity.
- Intro H6. Unfold MapDisjoint in H. Apply H with m':=m2 a:=(ad_div_2 a). Apply le_antisym.
- Apply MapMerge_Card_ub.
- Apply simpl_le_plus_l with p:=(plus (MapCard A m1) (MapCard A m3)).
- Rewrite (plus_sym (plus (MapCard A m1) (MapCard A m3)) (plus (MapCard A m0) (MapCard A m2))).
- Rewrite (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) (MapCard A m1) (MapCard A m3)).
- Rewrite (plus_sym (plus (MapCard A m1) (MapCard A m3)) (MapCard A (MapMerge A m0 m2))).
- Change (plus (MapCard A (MapMerge A m0 m2)) (MapCard A (MapMerge A m1 m3)))
- =(plus (plus (MapCard A m0) (MapCard A m1)) (plus (MapCard A m2) (MapCard A m3))) in H3.
- Rewrite <- H3. Apply le_reg_l. Apply MapMerge_Card_ub.
- Elim (in_dom_some ? ? ? H4). Intros y H7. Rewrite (MapGet_M2_bit_0_0 ? a H6 m0 m1) in H7.
- Unfold in_dom. Rewrite H7. Reflexivity.
- Elim (in_dom_some ? ? ? H5). Intros y H7. Rewrite (MapGet_M2_bit_0_0 ? a H6 m2 m3) in H7.
- Unfold in_dom. Rewrite H7. Reflexivity.
- Qed.
-
- Lemma MapCard_is_Sn : (m:(Map A)) (n:nat) (MapCard ? m)=(S n) ->
- {a:ad | (in_dom ? a m)=true}.
- Proof.
- Induction m. Intros. Discriminate H.
- Intros a y n H. Split with a. Unfold in_dom. Rewrite (M1_semantics_1 ? a y). Reflexivity.
- Intros. Simpl in H1. Elim (O_or_S (MapCard ? m0)). Intro H2. Elim H2. Intros m2 H3.
- Elim (H ? (sym_eq ? ? ? H3)). Intros a H4. Split with (ad_double a). Unfold in_dom.
- Rewrite (MapGet_M2_bit_0_0 A (ad_double a) (ad_double_bit_0 a) m0 m1).
- Rewrite (ad_double_div_2 a). Elim (in_dom_some ? ? ? H4). Intros y H5. Rewrite H5. Reflexivity.
- Intro H2. Rewrite <- H2 in H1. Simpl in H1. Elim (H0 ? H1). Intros a H3.
- Split with (ad_double_plus_un a). Unfold in_dom.
- Rewrite (MapGet_M2_bit_0_1 A (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) m0 m1).
- Rewrite (ad_double_plus_un_div_2 a). Elim (in_dom_some ? ? ? H3). Intros y H4. Rewrite H4.
- Reflexivity.
+ Lemma MapCard_Remove_sum :
+ forall (m m':Map A) (a:ad) (n n':nat),
+ m' = MapRemove A m a ->
+ n = MapCard A m -> n' = MapCard A m' -> {n = n'} + {n = S n'}.
+ Proof.
+ simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. left. rewrite H1. assumption.
+ simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2. rewrite H2 in H.
+ rewrite H in H1. simpl in H1. right. rewrite H1. assumption.
+ intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. left. rewrite H1. assumption.
+ intros. simpl in H1. simpl in H2. elim (sumbool_of_bool (ad_bit_0 a)). intro H4.
+ rewrite H4 in H1. rewrite H1 in H3.
+ rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H3.
+ elim
+ (H0 (MapRemove A m1 (ad_div_2 a)) (ad_div_2 a) (
+ MapCard A m1) (MapCard A (MapRemove A m1 (ad_div_2 a)))
+ (refl_equal _) (refl_equal _) (refl_equal _)).
+ intro H5. rewrite H5 in H2. left. rewrite H3. exact H2.
+ intro H5. rewrite H5 in H2.
+ rewrite <-
+ (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a))))
+ in H2.
+ right. rewrite H3. exact H2.
+ intro H4. rewrite H4 in H1. rewrite H1 in H3.
+ rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H3.
+ elim
+ (H (MapRemove A m0 (ad_div_2 a)) (ad_div_2 a) (
+ MapCard A m0) (MapCard A (MapRemove A m0 (ad_div_2 a)))
+ (refl_equal _) (refl_equal _) (refl_equal _)).
+ intro H5. rewrite H5 in H2. left. rewrite H3. exact H2.
+ intro H5. rewrite H5 in H2. right. rewrite H3. exact H2.
+ Qed.
+
+ Lemma MapCard_Remove_ub :
+ forall (m:Map A) (a:ad), MapCard A (MapRemove A m a) <= MapCard A m.
+ Proof.
+ intros.
+ elim
+ (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
+ (MapCard A (MapRemove A m a)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H. rewrite H. apply le_n.
+ intro H. rewrite H. apply le_n_Sn.
+ Qed.
+
+ Lemma MapCard_Remove_lb :
+ forall (m:Map A) (a:ad), S (MapCard A (MapRemove A m a)) >= MapCard A m.
+ Proof.
+ unfold ge in |- *. intros.
+ elim
+ (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
+ (MapCard A (MapRemove A m a)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H. rewrite H. apply le_n_Sn.
+ intro H. rewrite H. apply le_n.
+ Qed.
+
+ Lemma MapCard_Remove_1 :
+ forall (m:Map A) (a:ad),
+ MapCard A (MapRemove A m a) = MapCard A m -> MapGet A m a = NONE A.
+ Proof.
+ simple induction m. trivial.
+ simpl in |- *. intros a y a0 H. elim (sumbool_of_bool (ad_eq a a0)). intro H0.
+ rewrite H0 in H. discriminate H.
+ intro H0. rewrite H0. reflexivity.
+ intros. simpl in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2 in H1.
+ rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1.
+ rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
+ intro H2. rewrite H2 in H1.
+ rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1.
+ rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H.
+ rewrite
+ (plus_comm (MapCard A (MapRemove A m0 (ad_div_2 a))) (MapCard A m1))
+ in H1.
+ rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
+ Qed.
+
+ Lemma MapCard_Remove_2 :
+ forall (m:Map A) (a:ad),
+ S (MapCard A (MapRemove A m a)) = MapCard A m ->
+ {y : A | MapGet A m a = SOME A y}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ intros a y a0 H. simpl in H. elim (sumbool_of_bool (ad_eq a a0)). intro H0.
+ rewrite (ad_eq_complete _ _ H0). split with y. exact (M1_semantics_1 A a0 y).
+ intro H0. rewrite H0 in H. discriminate H.
+ intros. simpl in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2 in H1.
+ rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1.
+ rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0.
+ change
+ (S (MapCard A m0) + MapCard A (MapRemove A m1 (ad_div_2 a)) =
+ MapCard A m0 + MapCard A m1) in H1.
+ rewrite
+ (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a))))
+ in H1.
+ exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
+ intro H2. rewrite H2 in H1. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H.
+ rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1.
+ change
+ (S (MapCard A (MapRemove A m0 (ad_div_2 a))) + MapCard A m1 =
+ MapCard A m0 + MapCard A m1) in H1.
+ rewrite
+ (plus_comm (S (MapCard A (MapRemove A m0 (ad_div_2 a)))) (MapCard A m1))
+ in H1.
+ rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
+ Qed.
+
+ Lemma MapCard_Remove_1_conv :
+ forall (m:Map A) (a:ad),
+ MapGet A m a = NONE A -> MapCard A (MapRemove A m a) = MapCard A m.
+ Proof.
+ intros.
+ elim
+ (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
+ (MapCard A (MapRemove A m a)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H0. rewrite H0. reflexivity.
+ intro H0. elim (MapCard_Remove_2 m a (sym_eq H0)). intros y H1. rewrite H1 in H.
+ discriminate H.
+ Qed.
+
+ Lemma MapCard_Remove_2_conv :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = SOME A y -> S (MapCard A (MapRemove A m a)) = MapCard A m.
+ Proof.
+ intros.
+ elim
+ (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
+ (MapCard A (MapRemove A m a)) (refl_equal _) (
+ refl_equal _) (refl_equal _)).
+ intro H0. rewrite (MapCard_Remove_1 m a (sym_eq H0)) in H. discriminate H.
+ intro H0. rewrite H0. reflexivity.
+ Qed.
+
+ Lemma MapMerge_Restr_Card :
+ forall m m':Map A,
+ MapCard A m + MapCard A m' =
+ MapCard A (MapMerge A m m') + MapCard A (MapDomRestrTo A A m m').
+ Proof.
+ simple induction m. simpl in |- *. intro. apply plus_n_O.
+ simpl in |- *. intros a y m'. elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y0 H0.
+ rewrite H0. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_1_conv m' a y0 y H0).
+ simpl in |- *. rewrite <- plus_Snm_nSm. apply plus_n_O.
+ intro H. rewrite H. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_2_conv m' a y H).
+ apply plus_n_O.
+ intros.
+ change
+ (MapCard A m0 + MapCard A m1 + MapCard A m' =
+ MapCard A (MapMerge A (M2 A m0 m1) m') +
+ MapCard A (MapDomRestrTo A A (M2 A m0 m1) m'))
+ in |- *.
+ elim m'. reflexivity.
+ intros a y. unfold MapMerge in |- *. unfold MapDomRestrTo in |- *.
+ elim (option_sum A (MapGet A (M2 A m0 m1) a)). intro H1. elim H1. intros y0 H2. rewrite H2.
+ rewrite (MapCard_Put_1_conv (M2 A m0 m1) a y0 y H2). reflexivity.
+ intro H1. rewrite H1. rewrite (MapCard_Put_2_conv (M2 A m0 m1) a y H1). simpl in |- *.
+ rewrite <- (plus_Snm_nSm (MapCard A m0 + MapCard A m1) 0). reflexivity.
+ intros. simpl in |- *.
+ rewrite
+ (plus_permute_2_in_4 (MapCard A m0) (MapCard A m1) (
+ MapCard A m2) (MapCard A m3)).
+ rewrite (H m2). rewrite (H0 m3).
+ rewrite
+ (MapCard_makeM2 (MapDomRestrTo A A m0 m2) (MapDomRestrTo A A m1 m3))
+ .
+ apply plus_permute_2_in_4.
+ Qed.
+
+ Lemma MapMerge_disjoint_Card :
+ forall m m':Map A,
+ MapDisjoint A A m m' ->
+ MapCard A (MapMerge A m m') = MapCard A m + MapCard A m'.
+ Proof.
+ intros. rewrite (MapMerge_Restr_Card m m').
+ rewrite (MapCard_ext _ _ (MapDisjoint_imp_2 _ _ _ _ H)). apply plus_n_O.
+ Qed.
+
+ Lemma MapSplit_Card :
+ forall (m:Map A) (m':Map B),
+ MapCard A m =
+ MapCard A (MapDomRestrTo A B m m') + MapCard A (MapDomRestrBy A B m m').
+ Proof.
+ intros. rewrite (MapCard_ext _ _ (MapDom_Split_1 A B m m')). apply MapMerge_disjoint_Card.
+ apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *. apply MapDom_Split_3.
+ Qed.
+
+ Lemma MapMerge_Card_ub :
+ forall m m':Map A,
+ MapCard A (MapMerge A m m') <= MapCard A m + MapCard A m'.
+ Proof.
+ intros. rewrite MapMerge_Restr_Card. apply le_plus_l.
+ Qed.
+
+ Lemma MapDomRestrTo_Card_ub_l :
+ forall (m:Map A) (m':Map B),
+ MapCard A (MapDomRestrTo A B m m') <= MapCard A m.
+ Proof.
+ intros. rewrite (MapSplit_Card m m'). apply le_plus_l.
+ Qed.
+
+ Lemma MapDomRestrBy_Card_ub_l :
+ forall (m:Map A) (m':Map B),
+ MapCard A (MapDomRestrBy A B m m') <= MapCard A m.
+ Proof.
+ intros. rewrite (MapSplit_Card m m'). apply le_plus_r.
+ Qed.
+
+ Lemma MapMerge_Card_disjoint :
+ forall m m':Map A,
+ MapCard A (MapMerge A m m') = MapCard A m + MapCard A m' ->
+ MapDisjoint A A m m'.
+ Proof.
+ simple induction m. intros. apply Map_M0_disjoint.
+ simpl in |- *. intros. rewrite (MapCard_Put_behind_Put m' a a0) in H. unfold MapDisjoint, in_dom in |- *.
+ simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2.
+ rewrite (ad_eq_complete _ _ H2) in H. rewrite (MapCard_Put_2 m' a1 a0 H) in H1.
+ discriminate H1.
+ intro H2. rewrite H2 in H0. discriminate H0.
+ simple induction m'. intros. apply Map_disjoint_M0.
+ intros a y H1. rewrite <- (MapCard_ext _ _ (MapPut_as_Merge A (M2 A m0 m1) a y)) in H1.
+ unfold MapCard at 3 in H1. rewrite <- (plus_Snm_nSm (MapCard A (M2 A m0 m1)) 0) in H1.
+ rewrite <- (plus_n_O (S (MapCard A (M2 A m0 m1)))) in H1. unfold MapDisjoint, in_dom in |- *.
+ unfold MapGet at 2 in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H4.
+ rewrite <- (ad_eq_complete _ _ H4) in H2. rewrite (MapCard_Put_2 _ _ _ H1) in H2.
+ discriminate H2.
+ intro H4. rewrite H4 in H3. discriminate H3.
+ intros. unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H6.
+ unfold MapDisjoint in H0. apply H0 with (m' := m3) (a := ad_div_2 a). apply le_antisym.
+ apply MapMerge_Card_ub.
+ apply (fun p n m:nat => plus_le_reg_l n m p) with
+ (p := MapCard A m0 + MapCard A m2).
+ rewrite
+ (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) (
+ MapCard A m1) (MapCard A m3)).
+ change
+ (MapCard A (M2 A (MapMerge A m0 m2) (MapMerge A m1 m3)) =
+ MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3))
+ in H3.
+ rewrite <- H3. simpl in |- *. apply plus_le_compat_r. apply MapMerge_Card_ub.
+ elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m0 m1) in H7.
+ unfold in_dom in |- *. rewrite H7. reflexivity.
+ elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m2 m3) in H7.
+ unfold in_dom in |- *. rewrite H7. reflexivity.
+ intro H6. unfold MapDisjoint in H. apply H with (m' := m2) (a := ad_div_2 a). apply le_antisym.
+ apply MapMerge_Card_ub.
+ apply (fun p n m:nat => plus_le_reg_l n m p) with
+ (p := MapCard A m1 + MapCard A m3).
+ rewrite
+ (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A m0 + MapCard A m2))
+ .
+ rewrite
+ (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) (
+ MapCard A m1) (MapCard A m3)).
+ rewrite
+ (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A (MapMerge A m0 m2)))
+ .
+ change
+ (MapCard A (MapMerge A m0 m2) + MapCard A (MapMerge A m1 m3) =
+ MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3))
+ in H3.
+ rewrite <- H3. apply plus_le_compat_l. apply MapMerge_Card_ub.
+ elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m0 m1) in H7.
+ unfold in_dom in |- *. rewrite H7. reflexivity.
+ elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m2 m3) in H7.
+ unfold in_dom in |- *. rewrite H7. reflexivity.
+ Qed.
+
+ Lemma MapCard_is_Sn :
+ forall (m:Map A) (n:nat),
+ MapCard _ m = S n -> {a : ad | in_dom _ a m = true}.
+ Proof.
+ simple induction m. intros. discriminate H.
+ intros a y n H. split with a. unfold in_dom in |- *. rewrite (M1_semantics_1 _ a y). reflexivity.
+ intros. simpl in H1. elim (O_or_S (MapCard _ m0)). intro H2. elim H2. intros m2 H3.
+ elim (H _ (sym_eq H3)). intros a H4. split with (ad_double a). unfold in_dom in |- *.
+ rewrite (MapGet_M2_bit_0_0 A (ad_double a) (ad_double_bit_0 a) m0 m1).
+ rewrite (ad_double_div_2 a). elim (in_dom_some _ _ _ H4). intros y H5. rewrite H5. reflexivity.
+ intro H2. rewrite <- H2 in H1. simpl in H1. elim (H0 _ H1). intros a H3.
+ split with (ad_double_plus_un a). unfold in_dom in |- *.
+ rewrite
+ (MapGet_M2_bit_0_1 A (ad_double_plus_un a) (ad_double_plus_un_bit_0 a)
+ m0 m1).
+ rewrite (ad_double_plus_un_div_2 a). elim (in_dom_some _ _ _ H3). intros y H4. rewrite H4.
+ reflexivity.
Qed.
End MapCard.
Section MapCard2.
- Variable A, B : Set.
-
- Lemma MapSubset_card_eq_1 : (n:nat) (m:(Map A)) (m':(Map B))
- (MapSubset ? ? m m') -> (MapCard ? m)=n -> (MapCard ? m')=n ->
- (MapSubset ? ? m' m).
- Proof.
- Induction n. Intros. Unfold MapSubset in_dom. Intro. Rewrite (MapCard_is_O ? m H0 a).
- Rewrite (MapCard_is_O ? m' H1 a). Intro H2. Discriminate H2.
- Intros. Elim (MapCard_is_Sn A m n0 H1). Intros a H3. Elim (in_dom_some ? ? ? H3).
- Intros y H4. Elim (in_dom_some ? ? ? (H0 ? H3)). Intros y' H6.
- Cut (eqmap ? (MapPut ? (MapRemove ? m a) a y) m). Intro.
- Cut (eqmap ? (MapPut ? (MapRemove ? m' a) a y') m'). Intro.
- Apply MapSubset_ext with m0:=(MapPut ? (MapRemove ? m' a) a y')
- m2:=(MapPut ? (MapRemove ? m a) a y).
- Assumption.
- Assumption.
- Apply MapSubset_Put_mono. Apply H. Apply MapSubset_Remove_mono. Assumption.
- Rewrite <- (MapCard_Remove_2_conv ? m a y H4) in H1. Inversion_clear H1. Reflexivity.
- Rewrite <- (MapCard_Remove_2_conv ? m' a y' H6) in H2. Inversion_clear H2. Reflexivity.
- Unfold eqmap eqm. Intro. Rewrite (MapPut_semantics ? (MapRemove B m' a) a y' a0).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H7. Rewrite H7. Rewrite <- (ad_eq_complete ? ? H7).
- Apply sym_eq. Assumption.
- Intro H7. Rewrite H7. Rewrite (MapRemove_semantics ? m' a a0). Rewrite H7. Reflexivity.
- Unfold eqmap eqm. Intro. Rewrite (MapPut_semantics ? (MapRemove A m a) a y a0).
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H7. Rewrite H7. Rewrite <- (ad_eq_complete ? ? H7).
- Apply sym_eq. Assumption.
- Intro H7. Rewrite H7. Rewrite (MapRemove_semantics A m a a0). Rewrite H7. Reflexivity.
- Qed.
-
- Lemma MapDomRestrTo_Card_ub_r : (m:(Map A)) (m':(Map B))
- (le (MapCard A (MapDomRestrTo A B m m')) (MapCard B m')).
- Proof.
- Induction m. Intro. Simpl. Apply le_O_n.
- Intros a y m'. Simpl. Elim (option_sum B (MapGet B m' a)). Intro H. Elim H. Intros y0 H0.
- Rewrite H0. Elim (MapCard_is_not_O B m' a y0 H0). Intros n H1. Rewrite H1. Simpl.
- Apply le_n_S. Apply le_O_n.
- Intro H. Rewrite H. Simpl. Apply le_O_n.
- Induction m'. Simpl. Apply le_O_n.
-
- Intros a y. Unfold MapDomRestrTo. Case (MapGet A (M2 A m0 m1) a). Simpl. Apply le_O_n.
- Intro. Simpl. Apply le_n.
- Intros. Simpl. Rewrite (MapCard_makeM2 A (MapDomRestrTo A B m0 m2) (MapDomRestrTo A B m1 m3)).
- Apply le_plus_plus. Apply H.
- Apply H0.
+ Variables A B : Set.
+
+ Lemma MapSubset_card_eq_1 :
+ forall (n:nat) (m:Map A) (m':Map B),
+ MapSubset _ _ m m' ->
+ MapCard _ m = n -> MapCard _ m' = n -> MapSubset _ _ m' m.
+ Proof.
+ simple induction n. intros. unfold MapSubset, in_dom in |- *. intro. rewrite (MapCard_is_O _ m H0 a).
+ rewrite (MapCard_is_O _ m' H1 a). intro H2. discriminate H2.
+ intros. elim (MapCard_is_Sn A m n0 H1). intros a H3. elim (in_dom_some _ _ _ H3).
+ intros y H4. elim (in_dom_some _ _ _ (H0 _ H3)). intros y' H6.
+ cut (eqmap _ (MapPut _ (MapRemove _ m a) a y) m). intro.
+ cut (eqmap _ (MapPut _ (MapRemove _ m' a) a y') m'). intro.
+ apply MapSubset_ext with
+ (m0 := MapPut _ (MapRemove _ m' a) a y')
+ (m2 := MapPut _ (MapRemove _ m a) a y).
+ assumption.
+ assumption.
+ apply MapSubset_Put_mono. apply H. apply MapSubset_Remove_mono. assumption.
+ rewrite <- (MapCard_Remove_2_conv _ m a y H4) in H1. inversion_clear H1. reflexivity.
+ rewrite <- (MapCard_Remove_2_conv _ m' a y' H6) in H2. inversion_clear H2. reflexivity.
+ unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove B m' a) a y' a0).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H7. rewrite H7. rewrite <- (ad_eq_complete _ _ H7).
+ apply sym_eq. assumption.
+ intro H7. rewrite H7. rewrite (MapRemove_semantics _ m' a a0). rewrite H7. reflexivity.
+ unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove A m a) a y a0).
+ elim (sumbool_of_bool (ad_eq a a0)). intro H7. rewrite H7. rewrite <- (ad_eq_complete _ _ H7).
+ apply sym_eq. assumption.
+ intro H7. rewrite H7. rewrite (MapRemove_semantics A m a a0). rewrite H7. reflexivity.
+ Qed.
+
+ Lemma MapDomRestrTo_Card_ub_r :
+ forall (m:Map A) (m':Map B),
+ MapCard A (MapDomRestrTo A B m m') <= MapCard B m'.
+ Proof.
+ simple induction m. intro. simpl in |- *. apply le_O_n.
+ intros a y m'. simpl in |- *. elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y0 H0.
+ rewrite H0. elim (MapCard_is_not_O B m' a y0 H0). intros n H1. rewrite H1. simpl in |- *.
+ apply le_n_S. apply le_O_n.
+ intro H. rewrite H. simpl in |- *. apply le_O_n.
+ simple induction m'. simpl in |- *. apply le_O_n.
+
+ intros a y. unfold MapDomRestrTo in |- *. case (MapGet A (M2 A m0 m1) a). simpl in |- *. apply le_O_n.
+ intro. simpl in |- *. apply le_n.
+ intros. simpl in |- *. rewrite
+ (MapCard_makeM2 A (MapDomRestrTo A B m0 m2) (MapDomRestrTo A B m1 m3))
+ .
+ apply plus_le_compat. apply H.
+ apply H0.
Qed.
End MapCard2.
Section MapCard3.
- Variable A, B : Set.
+ Variables A B : Set.
- Lemma MapMerge_Card_lb_l : (m,m':(Map A))
- (ge (MapCard A (MapMerge A m m')) (MapCard A m)).
+ Lemma MapMerge_Card_lb_l :
+ forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m.
Proof.
- Unfold ge. Intros. Apply (simpl_le_plus_l (MapCard A m')).
- Rewrite (plus_sym (MapCard A m') (MapCard A m)).
- Rewrite (plus_sym (MapCard A m') (MapCard A (MapMerge A m m'))).
- Rewrite (MapMerge_Restr_Card A m m'). Apply le_reg_l. Apply MapDomRestrTo_Card_ub_r.
+ unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m')).
+ rewrite (plus_comm (MapCard A m') (MapCard A m)).
+ rewrite (plus_comm (MapCard A m') (MapCard A (MapMerge A m m'))).
+ rewrite (MapMerge_Restr_Card A m m'). apply plus_le_compat_l. apply MapDomRestrTo_Card_ub_r.
Qed.
- Lemma MapMerge_Card_lb_r : (m,m':(Map A))
- (ge (MapCard A (MapMerge A m m')) (MapCard A m')).
+ Lemma MapMerge_Card_lb_r :
+ forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m'.
Proof.
- Unfold ge. Intros. Apply (simpl_le_plus_l (MapCard A m)). Rewrite (MapMerge_Restr_Card A m m').
- Rewrite (plus_sym (MapCard A (MapMerge A m m')) (MapCard A (MapDomRestrTo A A m m'))).
- Apply le_reg_r. Apply MapDomRestrTo_Card_ub_l.
+ unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m)). rewrite (MapMerge_Restr_Card A m m').
+ rewrite
+ (plus_comm (MapCard A (MapMerge A m m'))
+ (MapCard A (MapDomRestrTo A A m m'))).
+ apply plus_le_compat_r. apply MapDomRestrTo_Card_ub_l.
Qed.
- Lemma MapDomRestrBy_Card_lb : (m:(Map A)) (m':(Map B))
- (ge (plus (MapCard B m') (MapCard A (MapDomRestrBy A B m m'))) (MapCard A m)).
+ Lemma MapDomRestrBy_Card_lb :
+ forall (m:Map A) (m':Map B),
+ MapCard B m' + MapCard A (MapDomRestrBy A B m m') >= MapCard A m.
Proof.
- Unfold ge. Intros. Rewrite (MapSplit_Card A B m m'). Apply le_reg_r.
- Apply MapDomRestrTo_Card_ub_r.
+ unfold ge in |- *. intros. rewrite (MapSplit_Card A B m m'). apply plus_le_compat_r.
+ apply MapDomRestrTo_Card_ub_r.
Qed.
- Lemma MapSubset_Card_le : (m:(Map A)) (m':(Map B))
- (MapSubset A B m m') -> (le (MapCard A m) (MapCard B m')).
+ Lemma MapSubset_Card_le :
+ forall (m:Map A) (m':Map B),
+ MapSubset A B m m' -> MapCard A m <= MapCard B m'.
Proof.
- Intros. Apply le_trans with m:=(plus (MapCard B m') (MapCard A (MapDomRestrBy A B m m'))).
- Exact (MapDomRestrBy_Card_lb m m').
- Rewrite (MapCard_ext ? ? ? (MapSubset_imp_2 ? ? ? ? H)). Simpl. Rewrite <- plus_n_O.
- Apply le_n.
+ intros. apply le_trans with (m := MapCard B m' + MapCard A (MapDomRestrBy A B m m')).
+ exact (MapDomRestrBy_Card_lb m m').
+ rewrite (MapCard_ext _ _ _ (MapSubset_imp_2 _ _ _ _ H)). simpl in |- *. rewrite <- plus_n_O.
+ apply le_n.
Qed.
- Lemma MapSubset_card_eq : (m:(Map A)) (m':(Map B))
- (MapSubset ? ? m m') -> (le (MapCard ? m') (MapCard ? m)) ->
- (eqmap ? (MapDom ? m) (MapDom ? m')).
+ Lemma MapSubset_card_eq :
+ forall (m:Map A) (m':Map B),
+ MapSubset _ _ m m' ->
+ MapCard _ m' <= MapCard _ m -> eqmap _ (MapDom _ m) (MapDom _ m').
Proof.
- Intros. Apply MapSubset_antisym. Assumption.
- Cut (MapCard B m')=(MapCard A m). Intro. Apply (MapSubset_card_eq_1 A B (MapCard A m)).
- Assumption.
- Reflexivity.
- Assumption.
- Apply le_antisym. Assumption.
- Apply MapSubset_Card_le. Assumption.
+ intros. apply MapSubset_antisym. assumption.
+ cut (MapCard B m' = MapCard A m). intro. apply (MapSubset_card_eq_1 A B (MapCard A m)).
+ assumption.
+ reflexivity.
+ assumption.
+ apply le_antisym. assumption.
+ apply MapSubset_Card_le. assumption.
Qed.
-End MapCard3.
+End MapCard3. \ No newline at end of file
diff --git a/theories/IntMap/Mapfold.v b/theories/IntMap/Mapfold.v
index 1e59e42b22..f14b072610 100644
--- a/theories/IntMap/Mapfold.v
+++ b/theories/IntMap/Mapfold.v
@@ -7,19 +7,19 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Bool.
-Require Sumbool.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
-Require Fset.
-Require Mapaxioms.
-Require Mapiter.
-Require Lsort.
-Require Mapsubset.
-Require PolyList.
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Fset.
+Require Import Mapaxioms.
+Require Import Mapiter.
+Require Import Lsort.
+Require Import Mapsubset.
+Require Import List.
Section MapFoldResults.
@@ -29,218 +29,238 @@ Section MapFoldResults.
Variable neutral : M.
Variable op : M -> M -> M.
- Variable nleft : (a:M) (op neutral a)=a.
- Variable nright : (a:M) (op a neutral)=a.
- Variable assoc : (a,b,c:M) (op (op a b) c)=(op a (op b c)).
+ Variable nleft : forall a:M, op neutral a = a.
+ Variable nright : forall a:M, op a neutral = a.
+ Variable assoc : forall a b c:M, op (op a b) c = op a (op b c).
- Lemma MapFold_ext : (f:ad->A->M) (m,m':(Map A)) (eqmap A m m') ->
- (MapFold ? ? neutral op f m)=(MapFold ? ? neutral op f m').
+ Lemma MapFold_ext :
+ forall (f:ad -> A -> M) (m m':Map A),
+ eqmap A m m' -> MapFold _ _ neutral op f m = MapFold _ _ neutral op f m'.
Proof.
- Intros. Rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m).
- Rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m').
- Cut (alist_of_Map A m)=(alist_of_Map A m'). Intro. Rewrite H0. Reflexivity.
- Apply alist_canonical. Unfold eqmap in H. Apply eqm_trans with f':=(MapGet A m).
- Apply eqm_sym. Apply alist_of_Map_semantics.
- Apply eqm_trans with f':=(MapGet A m'). Assumption.
- Apply alist_of_Map_semantics.
- Apply alist_of_Map_sorts2.
- Apply alist_of_Map_sorts2.
+ intros. rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m).
+ rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m').
+ cut (alist_of_Map A m = alist_of_Map A m'). intro. rewrite H0. reflexivity.
+ apply alist_canonical. unfold eqmap in H. apply eqm_trans with (f' := MapGet A m).
+ apply eqm_sym. apply alist_of_Map_semantics.
+ apply eqm_trans with (f' := MapGet A m'). assumption.
+ apply alist_of_Map_semantics.
+ apply alist_of_Map_sorts2.
+ apply alist_of_Map_sorts2.
Qed.
- Lemma MapFold_ext_f_1 : (m:(Map A)) (f,g:ad->A->M) (pf:ad->ad)
- ((a:ad) (y:A) (MapGet ? m a)=(SOME ? y) -> (f (pf a) y)=(g (pf a) y)) ->
- (MapFold1 ? ? neutral op f pf m)=(MapFold1 ? ? neutral op g pf m).
+ Lemma MapFold_ext_f_1 :
+ forall (m:Map A) (f g:ad -> A -> M) (pf:ad -> ad),
+ (forall (a:ad) (y:A), MapGet _ m a = SOME _ y -> f (pf a) y = g (pf a) y) ->
+ MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op g pf m.
Proof.
- Induction m. Trivial.
- Simpl. Intros. Apply H. Rewrite (ad_eq_correct a). Reflexivity.
- Intros. Simpl. Rewrite (H f g [a0:ad](pf (ad_double a0))).
- Rewrite (H0 f g [a0:ad](pf (ad_double_plus_un a0))). Reflexivity.
- Intros. Apply H1. Rewrite MapGet_M2_bit_0_1. Rewrite ad_double_plus_un_div_2. Assumption.
- Apply ad_double_plus_un_bit_0.
- Intros. Apply H1. Rewrite MapGet_M2_bit_0_0. Rewrite ad_double_div_2. Assumption.
- Apply ad_double_bit_0.
+ simple induction m. trivial.
+ simpl in |- *. intros. apply H. rewrite (ad_eq_correct a). reflexivity.
+ intros. simpl in |- *. rewrite (H f g (fun a0:ad => pf (ad_double a0))).
+ rewrite (H0 f g (fun a0:ad => pf (ad_double_plus_un a0))). reflexivity.
+ intros. apply H1. rewrite MapGet_M2_bit_0_1. rewrite ad_double_plus_un_div_2. assumption.
+ apply ad_double_plus_un_bit_0.
+ intros. apply H1. rewrite MapGet_M2_bit_0_0. rewrite ad_double_div_2. assumption.
+ apply ad_double_bit_0.
Qed.
- Lemma MapFold_ext_f : (f,g:ad->A->M) (m:(Map A))
- ((a:ad) (y:A) (MapGet ? m a)=(SOME ? y) -> (f a y)=(g a y)) ->
- (MapFold ? ? neutral op f m)=(MapFold ? ? neutral op g m).
+ Lemma MapFold_ext_f :
+ forall (f g:ad -> A -> M) (m:Map A),
+ (forall (a:ad) (y:A), MapGet _ m a = SOME _ y -> f a y = g a y) ->
+ MapFold _ _ neutral op f m = MapFold _ _ neutral op g m.
Proof.
- Intros. Exact (MapFold_ext_f_1 m f g [a0:ad]a0 H).
+ intros. exact (MapFold_ext_f_1 m f g (fun a0:ad => a0) H).
Qed.
- Lemma MapFold1_as_Fold_1 : (m:(Map A)) (f,f':ad->A->M) (pf, pf':ad->ad)
- ((a:ad) (y:A) (f (pf a) y)=(f' (pf' a) y)) ->
- (MapFold1 ? ? neutral op f pf m)=(MapFold1 ? ? neutral op f' pf' m).
+ Lemma MapFold1_as_Fold_1 :
+ forall (m:Map A) (f f':ad -> A -> M) (pf pf':ad -> ad),
+ (forall (a:ad) (y:A), f (pf a) y = f' (pf' a) y) ->
+ MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op f' pf' m.
Proof.
- Induction m. Trivial.
- Intros. Simpl. Apply H.
- Intros. Simpl.
- Rewrite (H f f' [a0:ad](pf (ad_double a0)) [a0:ad](pf' (ad_double a0))).
- Rewrite (H0 f f' [a0:ad](pf (ad_double_plus_un a0)) [a0:ad](pf' (ad_double_plus_un a0))).
- Reflexivity.
- Intros. Apply H1.
- Intros. Apply H1.
+ simple induction m. trivial.
+ intros. simpl in |- *. apply H.
+ intros. simpl in |- *.
+ rewrite
+ (H f f' (fun a0:ad => pf (ad_double a0))
+ (fun a0:ad => pf' (ad_double a0))).
+ rewrite
+ (H0 f f' (fun a0:ad => pf (ad_double_plus_un a0))
+ (fun a0:ad => pf' (ad_double_plus_un a0))).
+ reflexivity.
+ intros. apply H1.
+ intros. apply H1.
Qed.
- Lemma MapFold1_as_Fold : (f:ad->A->M) (pf:ad->ad) (m:(Map A))
- (MapFold1 ? ? neutral op f pf m)=(MapFold ? ? neutral op [a:ad][y:A] (f (pf a) y) m).
+ Lemma MapFold1_as_Fold :
+ forall (f:ad -> A -> M) (pf:ad -> ad) (m:Map A),
+ MapFold1 _ _ neutral op f pf m =
+ MapFold _ _ neutral op (fun (a:ad) (y:A) => f (pf a) y) m.
Proof.
- Intros. Unfold MapFold. Apply MapFold1_as_Fold_1. Trivial.
+ intros. unfold MapFold in |- *. apply MapFold1_as_Fold_1. trivial.
Qed.
- Lemma MapFold1_ext : (f:ad->A->M) (m,m':(Map A)) (eqmap A m m') -> (pf:ad->ad)
- (MapFold1 ? ? neutral op f pf m)=(MapFold1 ? ? neutral op f pf m').
+ Lemma MapFold1_ext :
+ forall (f:ad -> A -> M) (m m':Map A),
+ eqmap A m m' ->
+ forall pf:ad -> ad,
+ MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op f pf m'.
Proof.
- Intros. Rewrite MapFold1_as_Fold. Rewrite MapFold1_as_Fold. Apply MapFold_ext. Assumption.
+ intros. rewrite MapFold1_as_Fold. rewrite MapFold1_as_Fold. apply MapFold_ext. assumption.
Qed.
- Variable comm : (a,b:M) (op a b)=(op b a).
+ Variable comm : forall a b:M, op a b = op b a.
- Lemma MapFold_Put_disjoint_1 : (p:positive)
- (f:ad->A->M) (pf:ad->ad) (a1,a2:ad) (y1,y2:A)
- (ad_xor a1 a2)=(ad_x p) ->
- (MapFold1 A M neutral op f pf (MapPut1 A a1 y1 a2 y2 p))=
- (op (f (pf a1) y1) (f (pf a2) y2)).
+ Lemma MapFold_Put_disjoint_1 :
+ forall (p:positive) (f:ad -> A -> M) (pf:ad -> ad)
+ (a1 a2:ad) (y1 y2:A),
+ ad_xor a1 a2 = ad_x p ->
+ MapFold1 A M neutral op f pf (MapPut1 A a1 y1 a2 y2 p) =
+ op (f (pf a1) y1) (f (pf a2) y2).
Proof.
- Induction p. Intros. Simpl. Elim (sumbool_of_bool (ad_bit_0 a1)). Intro H1. Rewrite H1.
- Simpl. Rewrite ad_div_2_double_plus_un. Rewrite ad_div_2_double. Apply comm.
- Change (ad_bit_0 a2)=(negb true). Rewrite <- H1. Rewrite (ad_neg_bit_0_2 ? ? ? H0).
- Rewrite negb_elim. Reflexivity.
- Assumption.
- Intro H1. Rewrite H1. Simpl. Rewrite ad_div_2_double. Rewrite ad_div_2_double_plus_un.
- Reflexivity.
- Change (ad_bit_0 a2)=(negb false). Rewrite <- H1. Rewrite (ad_neg_bit_0_2 ? ? ? H0).
- Rewrite negb_elim. Reflexivity.
- Assumption.
- Simpl. Intros. Elim (sumbool_of_bool (ad_bit_0 a1)). Intro H1. Rewrite H1. Simpl.
- Rewrite nleft.
- Rewrite (H f [a0:ad](pf (ad_double_plus_un a0)) (ad_div_2 a1) (ad_div_2 a2) y1 y2).
- Rewrite ad_div_2_double_plus_un. Rewrite ad_div_2_double_plus_un. Reflexivity.
- Rewrite <- (ad_same_bit_0 ? ? ? H0). Assumption.
- Assumption.
- Rewrite <- ad_xor_div_2. Rewrite H0. Reflexivity.
- Intro H1. Rewrite H1. Simpl. Rewrite nright.
- Rewrite (H f [a0:ad](pf (ad_double a0)) (ad_div_2 a1) (ad_div_2 a2) y1 y2).
- Rewrite ad_div_2_double. Rewrite ad_div_2_double. Reflexivity.
- Rewrite <- (ad_same_bit_0 ? ? ? H0). Assumption.
- Assumption.
- Rewrite <- ad_xor_div_2. Rewrite H0. Reflexivity.
- Intros. Simpl. Elim (sumbool_of_bool (ad_bit_0 a1)). Intro H0. Rewrite H0. Simpl.
- Rewrite ad_div_2_double. Rewrite ad_div_2_double_plus_un. Apply comm.
- Assumption.
- Change (ad_bit_0 a2)=(negb true). Rewrite <- H0. Rewrite (ad_neg_bit_0_1 ? ? H).
- Rewrite negb_elim. Reflexivity.
- Intro H0. Rewrite H0. Simpl. Rewrite ad_div_2_double. Rewrite ad_div_2_double_plus_un.
- Reflexivity.
- Change (ad_bit_0 a2)=(negb false). Rewrite <- H0. Rewrite (ad_neg_bit_0_1 ? ? H).
- Rewrite negb_elim. Reflexivity.
- Assumption.
+ simple induction p. intros. simpl in |- *. elim (sumbool_of_bool (ad_bit_0 a1)). intro H1. rewrite H1.
+ simpl in |- *. rewrite ad_div_2_double_plus_un. rewrite ad_div_2_double. apply comm.
+ change (ad_bit_0 a2 = negb true) in |- *. rewrite <- H1. rewrite (ad_neg_bit_0_2 _ _ _ H0).
+ rewrite negb_elim. reflexivity.
+ assumption.
+ intro H1. rewrite H1. simpl in |- *. rewrite ad_div_2_double. rewrite ad_div_2_double_plus_un.
+ reflexivity.
+ change (ad_bit_0 a2 = negb false) in |- *. rewrite <- H1. rewrite (ad_neg_bit_0_2 _ _ _ H0).
+ rewrite negb_elim. reflexivity.
+ assumption.
+ simpl in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a1)). intro H1. rewrite H1. simpl in |- *.
+ rewrite nleft.
+ rewrite
+ (H f (fun a0:ad => pf (ad_double_plus_un a0)) (
+ ad_div_2 a1) (ad_div_2 a2) y1 y2).
+ rewrite ad_div_2_double_plus_un. rewrite ad_div_2_double_plus_un. reflexivity.
+ rewrite <- (ad_same_bit_0 _ _ _ H0). assumption.
+ assumption.
+ rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
+ intro H1. rewrite H1. simpl in |- *. rewrite nright.
+ rewrite
+ (H f (fun a0:ad => pf (ad_double a0)) (ad_div_2 a1) (ad_div_2 a2) y1 y2)
+ .
+ rewrite ad_div_2_double. rewrite ad_div_2_double. reflexivity.
+ rewrite <- (ad_same_bit_0 _ _ _ H0). assumption.
+ assumption.
+ rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
+ intros. simpl in |- *. elim (sumbool_of_bool (ad_bit_0 a1)). intro H0. rewrite H0. simpl in |- *.
+ rewrite ad_div_2_double. rewrite ad_div_2_double_plus_un. apply comm.
+ assumption.
+ change (ad_bit_0 a2 = negb true) in |- *. rewrite <- H0. rewrite (ad_neg_bit_0_1 _ _ H).
+ rewrite negb_elim. reflexivity.
+ intro H0. rewrite H0. simpl in |- *. rewrite ad_div_2_double. rewrite ad_div_2_double_plus_un.
+ reflexivity.
+ change (ad_bit_0 a2 = negb false) in |- *. rewrite <- H0. rewrite (ad_neg_bit_0_1 _ _ H).
+ rewrite negb_elim. reflexivity.
+ assumption.
Qed.
- Lemma MapFold_Put_disjoint_2 :
- (f:ad->A->M) (m:(Map A)) (a:ad) (y:A) (pf:ad->ad)
- (MapGet A m a)=(NONE A) ->
- (MapFold1 A M neutral op f pf (MapPut A m a y))=
- (op (f (pf a) y) (MapFold1 A M neutral op f pf m)).
+ Lemma MapFold_Put_disjoint_2 :
+ forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A) (pf:ad -> ad),
+ MapGet A m a = NONE A ->
+ MapFold1 A M neutral op f pf (MapPut A m a y) =
+ op (f (pf a) y) (MapFold1 A M neutral op f pf m).
Proof.
- Induction m. Intros. Simpl. Rewrite (nright (f (pf a) y)). Reflexivity.
- Intros a1 y1 a2 y2 pf H. Simpl. Elim (ad_sum (ad_xor a1 a2)). Intro H0. Elim H0.
- Intros p H1. Rewrite H1. Rewrite comm. Exact (MapFold_Put_disjoint_1 p f pf a1 a2 y1 y2 H1).
- Intro H0. Rewrite (ad_eq_complete ? ? (ad_xor_eq_true ? ? H0)) in H.
- Rewrite (M1_semantics_1 A a2 y1) in H. Discriminate H.
- Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2.
- Cut (MapPut A (M2 A m0 m1) a y)=(M2 A m0 (MapPut A m1 (ad_div_2 a) y)). Intro.
- Rewrite H3. Simpl. Rewrite (H0 (ad_div_2 a) y [a0:ad](pf (ad_double_plus_un a0))).
- Rewrite ad_div_2_double_plus_un. Rewrite <- assoc.
- Rewrite (comm (MapFold1 A M neutral op f [a0:ad](pf (ad_double a0)) m0) (f (pf a) y)).
- Rewrite assoc. Reflexivity.
- Assumption.
- Rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. Assumption.
- Simpl. Elim (ad_sum a). Intro H3. Elim H3. Intro p. Elim p. Intros p0 H4 H5. Rewrite H5.
- Reflexivity.
- Intros p0 H4 H5. Rewrite H5 in H2. Discriminate H2.
- Intro H4. Rewrite H4. Reflexivity.
- Intro H3. Rewrite H3 in H2. Discriminate H2.
- Intro H2. Cut (MapPut A (M2 A m0 m1) a y)=(M2 A (MapPut A m0 (ad_div_2 a) y) m1).
- Intro. Rewrite H3. Simpl. Rewrite (H (ad_div_2 a) y [a0:ad](pf (ad_double a0))).
- Rewrite ad_div_2_double. Rewrite <- assoc. Reflexivity.
- Assumption.
- Rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. Assumption.
- Simpl. Elim (ad_sum a). Intro H3. Elim H3. Intro p. Elim p. Intros p0 H4 H5. Rewrite H5 in H2.
- Discriminate H2.
- Intros p0 H4 H5. Rewrite H5. Reflexivity.
- Intro H4. Rewrite H4 in H2. Discriminate H2.
- Intro H3. Rewrite H3. Reflexivity.
+ simple induction m. intros. simpl in |- *. rewrite (nright (f (pf a) y)). reflexivity.
+ intros a1 y1 a2 y2 pf H. simpl in |- *. elim (ad_sum (ad_xor a1 a2)). intro H0. elim H0.
+ intros p H1. rewrite H1. rewrite comm. exact (MapFold_Put_disjoint_1 p f pf a1 a2 y1 y2 H1).
+ intro H0. rewrite (ad_eq_complete _ _ (ad_xor_eq_true _ _ H0)) in H.
+ rewrite (M1_semantics_1 A a2 y1) in H. discriminate H.
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H2.
+ cut (MapPut A (M2 A m0 m1) a y = M2 A m0 (MapPut A m1 (ad_div_2 a) y)). intro.
+ rewrite H3. simpl in |- *. rewrite (H0 (ad_div_2 a) y (fun a0:ad => pf (ad_double_plus_un a0))).
+ rewrite ad_div_2_double_plus_un. rewrite <- assoc.
+ rewrite
+ (comm (MapFold1 A M neutral op f (fun a0:ad => pf (ad_double a0)) m0)
+ (f (pf a) y)).
+ rewrite assoc. reflexivity.
+ assumption.
+ rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. assumption.
+ simpl in |- *. elim (ad_sum a). intro H3. elim H3. intro p. elim p. intros p0 H4 H5. rewrite H5.
+ reflexivity.
+ intros p0 H4 H5. rewrite H5 in H2. discriminate H2.
+ intro H4. rewrite H4. reflexivity.
+ intro H3. rewrite H3 in H2. discriminate H2.
+ intro H2. cut (MapPut A (M2 A m0 m1) a y = M2 A (MapPut A m0 (ad_div_2 a) y) m1).
+ intro. rewrite H3. simpl in |- *. rewrite (H (ad_div_2 a) y (fun a0:ad => pf (ad_double a0))).
+ rewrite ad_div_2_double. rewrite <- assoc. reflexivity.
+ assumption.
+ rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. assumption.
+ simpl in |- *. elim (ad_sum a). intro H3. elim H3. intro p. elim p. intros p0 H4 H5. rewrite H5 in H2.
+ discriminate H2.
+ intros p0 H4 H5. rewrite H5. reflexivity.
+ intro H4. rewrite H4 in H2. discriminate H2.
+ intro H3. rewrite H3. reflexivity.
Qed.
- Lemma MapFold_Put_disjoint :
- (f:ad->A->M) (m:(Map A)) (a:ad) (y:A)
- (MapGet A m a)=(NONE A) ->
- (MapFold A M neutral op f (MapPut A m a y))=
- (op (f a y) (MapFold A M neutral op f m)).
+ Lemma MapFold_Put_disjoint :
+ forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A),
+ MapGet A m a = NONE A ->
+ MapFold A M neutral op f (MapPut A m a y) =
+ op (f a y) (MapFold A M neutral op f m).
Proof.
- Intros. Exact (MapFold_Put_disjoint_2 f m a y [a0:ad]a0 H).
+ intros. exact (MapFold_Put_disjoint_2 f m a y (fun a0:ad => a0) H).
Qed.
- Lemma MapFold_Put_behind_disjoint_2 :
- (f:ad->A->M) (m:(Map A)) (a:ad) (y:A) (pf:ad->ad)
- (MapGet A m a)=(NONE A) ->
- (MapFold1 A M neutral op f pf (MapPut_behind A m a y))=
- (op (f (pf a) y) (MapFold1 A M neutral op f pf m)).
+ Lemma MapFold_Put_behind_disjoint_2 :
+ forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A) (pf:ad -> ad),
+ MapGet A m a = NONE A ->
+ MapFold1 A M neutral op f pf (MapPut_behind A m a y) =
+ op (f (pf a) y) (MapFold1 A M neutral op f pf m).
Proof.
- Intros. Cut (eqmap A (MapPut_behind A m a y) (MapPut A m a y)). Intro.
- Rewrite (MapFold1_ext f ? ? H0 pf). Apply MapFold_Put_disjoint_2. Assumption.
- Apply eqmap_trans with m':=(MapMerge A (M1 A a y) m). Apply MapPut_behind_as_Merge.
- Apply eqmap_trans with m':=(MapMerge A m (M1 A a y)).
- Apply eqmap_trans with m':=(MapDelta A (M1 A a y) m). Apply eqmap_sym. Apply MapDelta_disjoint.
- Unfold MapDisjoint. Unfold in_dom. Simpl. Intros. Elim (sumbool_of_bool (ad_eq a a0)).
- Intro H2. Rewrite (ad_eq_complete ? ? H2) in H. Rewrite H in H1. Discriminate H1.
- Intro H2. Rewrite H2 in H0. Discriminate H0.
- Apply eqmap_trans with m':=(MapDelta A m (M1 A a y)). Apply MapDelta_sym.
- Apply MapDelta_disjoint. Unfold MapDisjoint. Unfold in_dom. Simpl. Intros.
- Elim (sumbool_of_bool (ad_eq a a0)). Intro H2. Rewrite (ad_eq_complete ? ? H2) in H.
- Rewrite H in H0. Discriminate H0.
- Intro H2. Rewrite H2 in H1. Discriminate H1.
- Apply eqmap_sym. Apply MapPut_as_Merge.
+ intros. cut (eqmap A (MapPut_behind A m a y) (MapPut A m a y)). intro.
+ rewrite (MapFold1_ext f _ _ H0 pf). apply MapFold_Put_disjoint_2. assumption.
+ apply eqmap_trans with (m' := MapMerge A (M1 A a y) m). apply MapPut_behind_as_Merge.
+ apply eqmap_trans with (m' := MapMerge A m (M1 A a y)).
+ apply eqmap_trans with (m' := MapDelta A (M1 A a y) m). apply eqmap_sym. apply MapDelta_disjoint.
+ unfold MapDisjoint in |- *. unfold in_dom in |- *. simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)).
+ intro H2. rewrite (ad_eq_complete _ _ H2) in H. rewrite H in H1. discriminate H1.
+ intro H2. rewrite H2 in H0. discriminate H0.
+ apply eqmap_trans with (m' := MapDelta A m (M1 A a y)). apply MapDelta_sym.
+ apply MapDelta_disjoint. unfold MapDisjoint in |- *. unfold in_dom in |- *. simpl in |- *. intros.
+ elim (sumbool_of_bool (ad_eq a a0)). intro H2. rewrite (ad_eq_complete _ _ H2) in H.
+ rewrite H in H0. discriminate H0.
+ intro H2. rewrite H2 in H1. discriminate H1.
+ apply eqmap_sym. apply MapPut_as_Merge.
Qed.
- Lemma MapFold_Put_behind_disjoint :
- (f:ad->A->M) (m:(Map A)) (a:ad) (y:A)
- (MapGet A m a)=(NONE A) ->
- (MapFold A M neutral op f (MapPut_behind A m a y))
- =(op (f a y) (MapFold A M neutral op f m)).
+ Lemma MapFold_Put_behind_disjoint :
+ forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A),
+ MapGet A m a = NONE A ->
+ MapFold A M neutral op f (MapPut_behind A m a y) =
+ op (f a y) (MapFold A M neutral op f m).
Proof.
- Intros. Exact (MapFold_Put_behind_disjoint_2 f m a y [a0:ad]a0 H).
+ intros. exact (MapFold_Put_behind_disjoint_2 f m a y (fun a0:ad => a0) H).
Qed.
Lemma MapFold_Merge_disjoint_1 :
- (f:ad->A->M) (m1,m2:(Map A)) (pf:ad->ad)
- (MapDisjoint A A m1 m2) ->
- (MapFold1 A M neutral op f pf (MapMerge A m1 m2))=
- (op (MapFold1 A M neutral op f pf m1) (MapFold1 A M neutral op f pf m2)).
+ forall (f:ad -> A -> M) (m1 m2:Map A) (pf:ad -> ad),
+ MapDisjoint A A m1 m2 ->
+ MapFold1 A M neutral op f pf (MapMerge A m1 m2) =
+ op (MapFold1 A M neutral op f pf m1) (MapFold1 A M neutral op f pf m2).
Proof.
- Induction m1. Simpl. Intros. Rewrite nleft. Reflexivity.
- Intros. Unfold MapMerge. Apply (MapFold_Put_behind_disjoint_2 f m2 a a0 pf).
- Apply in_dom_none. Exact (MapDisjoint_M1_l ? ? m2 a a0 H).
- Induction m2. Intros. Simpl. Rewrite nright. Reflexivity.
- Intros. Unfold MapMerge. Rewrite (MapFold_Put_disjoint_2 f (M2 A m m0) a a0 pf). Apply comm.
- Apply in_dom_none. Exact (MapDisjoint_M1_r ? ? (M2 A m m0) a a0 H1).
- Intros. Simpl. Rewrite (H m3 [a0:ad](pf (ad_double a0))).
- Rewrite (H0 m4 [a0:ad](pf (ad_double_plus_un a0))).
- Cut (a,b,c,d:M)(op (op a b) (op c d))=(op (op a c) (op b d)). Intro. Apply H4.
- Intros. Rewrite assoc. Rewrite <- (assoc b c d). Rewrite (comm b c). Rewrite (assoc c b d).
- Rewrite assoc. Reflexivity.
- Exact (MapDisjoint_M2_r ? ? ? ? ? ? H3).
- Exact (MapDisjoint_M2_l ? ? ? ? ? ? H3).
+ simple induction m1. simpl in |- *. intros. rewrite nleft. reflexivity.
+ intros. unfold MapMerge in |- *. apply (MapFold_Put_behind_disjoint_2 f m2 a a0 pf).
+ apply in_dom_none. exact (MapDisjoint_M1_l _ _ m2 a a0 H).
+ simple induction m2. intros. simpl in |- *. rewrite nright. reflexivity.
+ intros. unfold MapMerge in |- *. rewrite (MapFold_Put_disjoint_2 f (M2 A m m0) a a0 pf). apply comm.
+ apply in_dom_none. exact (MapDisjoint_M1_r _ _ (M2 A m m0) a a0 H1).
+ intros. simpl in |- *. rewrite (H m3 (fun a0:ad => pf (ad_double a0))).
+ rewrite (H0 m4 (fun a0:ad => pf (ad_double_plus_un a0))).
+ cut (forall a b c d:M, op (op a b) (op c d) = op (op a c) (op b d)). intro. apply H4.
+ intros. rewrite assoc. rewrite <- (assoc b c d). rewrite (comm b c). rewrite (assoc c b d).
+ rewrite assoc. reflexivity.
+ exact (MapDisjoint_M2_r _ _ _ _ _ _ H3).
+ exact (MapDisjoint_M2_l _ _ _ _ _ _ H3).
Qed.
Lemma MapFold_Merge_disjoint :
- (f:ad->A->M) (m1,m2:(Map A))
- (MapDisjoint A A m1 m2) ->
- (MapFold A M neutral op f (MapMerge A m1 m2))=
- (op (MapFold A M neutral op f m1) (MapFold A M neutral op f m2)).
+ forall (f:ad -> A -> M) (m1 m2:Map A),
+ MapDisjoint A A m1 m2 ->
+ MapFold A M neutral op f (MapMerge A m1 m2) =
+ op (MapFold A M neutral op f m1) (MapFold A M neutral op f m2).
Proof.
- Intros. Exact (MapFold_Merge_disjoint_1 f m1 m2 [a0:ad]a0 H).
+ intros. exact (MapFold_Merge_disjoint_1 f m1 m2 (fun a0:ad => a0) H).
Qed.
End MapFoldResults.
@@ -261,23 +281,27 @@ Section MapFoldDistr.
Variable times : M -> N -> M'.
- Variable absorb : (c:N)(times neutral c)=neutral'.
- Variable distr : (a,b:M) (c:N) (times (op a b) c) = (op' (times a c) (times b c)).
+ Variable absorb : forall c:N, times neutral c = neutral'.
+ Variable
+ distr :
+ forall (a b:M) (c:N), times (op a b) c = op' (times a c) (times b c).
- Lemma MapFold_distr_r_1 : (f:ad->A->M) (m:(Map A)) (c:N) (pf:ad->ad)
- (times (MapFold1 A M neutral op f pf m) c)=
- (MapFold1 A M' neutral' op' [a:ad][y:A] (times (f a y) c) pf m).
+ Lemma MapFold_distr_r_1 :
+ forall (f:ad -> A -> M) (m:Map A) (c:N) (pf:ad -> ad),
+ times (MapFold1 A M neutral op f pf m) c =
+ MapFold1 A M' neutral' op' (fun (a:ad) (y:A) => times (f a y) c) pf m.
Proof.
- Induction m. Intros. Exact (absorb c).
- Trivial.
- Intros. Simpl. Rewrite distr. Rewrite H. Rewrite H0. Reflexivity.
+ simple induction m. intros. exact (absorb c).
+ trivial.
+ intros. simpl in |- *. rewrite distr. rewrite H. rewrite H0. reflexivity.
Qed.
- Lemma MapFold_distr_r : (f:ad->A->M) (m:(Map A)) (c:N)
- (times (MapFold A M neutral op f m) c)=
- (MapFold A M' neutral' op' [a:ad][y:A] (times (f a y) c) m).
+ Lemma MapFold_distr_r :
+ forall (f:ad -> A -> M) (m:Map A) (c:N),
+ times (MapFold A M neutral op f m) c =
+ MapFold A M' neutral' op' (fun (a:ad) (y:A) => times (f a y) c) m.
Proof.
- Intros. Exact (MapFold_distr_r_1 f m c [a:ad]a).
+ intros. exact (MapFold_distr_r_1 f m c (fun a:ad => a)).
Qed.
End MapFoldDistr.
@@ -298,14 +322,18 @@ Section MapFoldDistrL.
Variable times : N -> M -> M'.
- Variable absorb : (c:N)(times c neutral)=neutral'.
- Variable distr : (a,b:M) (c:N) (times c (op a b)) = (op' (times c a) (times c b)).
+ Variable absorb : forall c:N, times c neutral = neutral'.
+ Variable
+ distr :
+ forall (a b:M) (c:N), times c (op a b) = op' (times c a) (times c b).
- Lemma MapFold_distr_l : (f:ad->A->M) (m:(Map A)) (c:N)
- (times c (MapFold A M neutral op f m))=
- (MapFold A M' neutral' op' [a:ad][y:A] (times c (f a y)) m).
+ Lemma MapFold_distr_l :
+ forall (f:ad -> A -> M) (m:Map A) (c:N),
+ times c (MapFold A M neutral op f m) =
+ MapFold A M' neutral' op' (fun (a:ad) (y:A) => times c (f a y)) m.
Proof.
- Intros. Apply MapFold_distr_r with times:=[a:M][b:N](times b a); Assumption.
+ intros. apply MapFold_distr_r with (times := fun (a:M) (b:N) => times b a);
+ assumption.
Qed.
End MapFoldDistrL.
@@ -314,27 +342,30 @@ Section MapFoldExists.
Variable A : Set.
- Lemma MapFold_orb_1 : (f:ad->A->bool) (m:(Map A)) (pf:ad->ad)
- (MapFold1 A bool false orb f pf m)=
- (Cases (MapSweep1 A f pf m) of
- (SOME _) => true
- | _ => false
- end).
+ Lemma MapFold_orb_1 :
+ forall (f:ad -> A -> bool) (m:Map A) (pf:ad -> ad),
+ MapFold1 A bool false orb f pf m =
+ match MapSweep1 A f pf m with
+ | SOME _ => true
+ | _ => false
+ end.
Proof.
- Induction m. Trivial.
- Intros a y pf. Simpl. Unfold MapSweep2. (Case (f (pf a) y); Reflexivity).
- Intros. Simpl. Rewrite (H [a0:ad](pf (ad_double a0))).
- Rewrite (H0 [a0:ad](pf (ad_double_plus_un a0))).
- Case (MapSweep1 A f [a0:ad](pf (ad_double a0)) m0); Reflexivity.
+ simple induction m. trivial.
+ intros a y pf. simpl in |- *. unfold MapSweep2 in |- *. case (f (pf a) y); reflexivity.
+ intros. simpl in |- *. rewrite (H (fun a0:ad => pf (ad_double a0))).
+ rewrite (H0 (fun a0:ad => pf (ad_double_plus_un a0))).
+ case (MapSweep1 A f (fun a0:ad => pf (ad_double a0)) m0); reflexivity.
Qed.
- Lemma MapFold_orb : (f:ad->A->bool) (m:(Map A)) (MapFold A bool false orb f m)=
- (Cases (MapSweep A f m) of
- (SOME _) => true
- | _ => false
- end).
+ Lemma MapFold_orb :
+ forall (f:ad -> A -> bool) (m:Map A),
+ MapFold A bool false orb f m =
+ match MapSweep A f m with
+ | SOME _ => true
+ | _ => false
+ end.
Proof.
- Intros. Exact (MapFold_orb_1 f m [a:ad]a).
+ intros. exact (MapFold_orb_1 f m (fun a:ad => a)).
Qed.
End MapFoldExists.
@@ -343,39 +374,51 @@ Section DMergeDef.
Variable A : Set.
- Definition DMerge := (MapFold (Map A) (Map A) (M0 A) (MapMerge A) [_:ad][m:(Map A)] m).
+ Definition DMerge :=
+ MapFold (Map A) (Map A) (M0 A) (MapMerge A) (fun (_:ad) (m:Map A) => m).
- Lemma in_dom_DMerge_1 : (m:(Map (Map A))) (a:ad) (in_dom A a (DMerge m))=
- (Cases (MapSweep ? [_:ad][m0:(Map A)] (in_dom A a m0) m) of
- (SOME _) => true
- | _ => false
- end).
+ Lemma in_dom_DMerge_1 :
+ forall (m:Map (Map A)) (a:ad),
+ in_dom A a (DMerge m) =
+ match MapSweep _ (fun (_:ad) (m0:Map A) => in_dom A a m0) m with
+ | SOME _ => true
+ | _ => false
+ end.
Proof.
- Unfold DMerge. Intros.
- Rewrite (MapFold_distr_l (Map A) (Map A) (M0 A) (MapMerge A) bool false
- orb ad (in_dom A) [c:ad](refl_equal ? ?) (in_dom_merge A)).
- Apply MapFold_orb.
+ unfold DMerge in |- *. intros.
+ rewrite
+ (MapFold_distr_l (Map A) (Map A) (M0 A) (MapMerge A) bool false orb ad
+ (in_dom A) (fun c:ad => refl_equal _) (in_dom_merge A))
+ .
+ apply MapFold_orb.
Qed.
- Lemma in_dom_DMerge_2 : (m:(Map (Map A))) (a:ad) (in_dom A a (DMerge m))=true ->
- {b:ad & {m0:(Map A) | (MapGet ? m b)=(SOME ? m0) /\
- (in_dom A a m0)=true}}.
+ Lemma in_dom_DMerge_2 :
+ forall (m:Map (Map A)) (a:ad),
+ in_dom A a (DMerge m) = true ->
+ {b : ad &
+ {m0 : Map A | MapGet _ m b = SOME _ m0 /\ in_dom A a m0 = true}}.
Proof.
- Intros m a. Rewrite in_dom_DMerge_1.
- Elim (option_sum ? (MapSweep (Map A) [_:ad][m0:(Map A)](in_dom A a m0) m)).
- Intro H. Elim H. Intro r. Elim r. Intros b m0 H0. Intro. Split with b. Split with m0.
- Split. Exact (MapSweep_semantics_2 ? ? ? ? ? H0).
- Exact (MapSweep_semantics_1 ? ? ? ? ? H0).
- Intro H. Rewrite H. Intro. Discriminate H0.
+ intros m a. rewrite in_dom_DMerge_1.
+ elim
+ (option_sum _
+ (MapSweep (Map A) (fun (_:ad) (m0:Map A) => in_dom A a m0) m)).
+ intro H. elim H. intro r. elim r. intros b m0 H0. intro. split with b. split with m0.
+ split. exact (MapSweep_semantics_2 _ _ _ _ _ H0).
+ exact (MapSweep_semantics_1 _ _ _ _ _ H0).
+ intro H. rewrite H. intro. discriminate H0.
Qed.
- Lemma in_dom_DMerge_3 : (m:(Map (Map A))) (a,b:ad) (m0:(Map A))
- (MapGet ? m a)=(SOME ? m0) -> (in_dom A b m0)=true ->
- (in_dom A b (DMerge m))=true.
+ Lemma in_dom_DMerge_3 :
+ forall (m:Map (Map A)) (a b:ad) (m0:Map A),
+ MapGet _ m a = SOME _ m0 ->
+ in_dom A b m0 = true -> in_dom A b (DMerge m) = true.
Proof.
- Intros m a b m0 H H0. Rewrite in_dom_DMerge_1.
- Elim (MapSweep_semantics_4 ? [_:ad][m'0:(Map A)](in_dom A b m'0) ? ? ? H H0).
- Intros a' H1. Elim H1. Intros m'0 H2. Rewrite H2. Reflexivity.
+ intros m a b m0 H H0. rewrite in_dom_DMerge_1.
+ elim
+ (MapSweep_semantics_4 _ (fun (_:ad) (m'0:Map A) => in_dom A b m'0) _ _ _
+ H H0).
+ intros a' H1. elim H1. intros m'0 H2. rewrite H2. reflexivity.
Qed.
-End DMergeDef.
+End DMergeDef. \ No newline at end of file
diff --git a/theories/IntMap/Mapiter.v b/theories/IntMap/Mapiter.v
index 216a07c630..3c0aad8028 100644
--- a/theories/IntMap/Mapiter.v
+++ b/theories/IntMap/Mapiter.v
@@ -7,16 +7,16 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Bool.
-Require Sumbool.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
-Require Mapaxioms.
-Require Fset.
-Require PolyList.
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Mapaxioms.
+Require Import Fset.
+Require Import List.
Section MapIter.
@@ -24,172 +24,200 @@ Section MapIter.
Section MapSweepDef.
- Variable f:ad->A->bool.
-
- Definition MapSweep2 := [a0:ad; y:A] if (f a0 y) then (SOME ? (a0, y)) else (NONE ?).
-
- Fixpoint MapSweep1 [pf:ad->ad; m:(Map A)] : (option (ad * A)) :=
- Cases m of
- M0 => (NONE ?)
- | (M1 a y) => (MapSweep2 (pf a) y)
- | (M2 m m') => Cases (MapSweep1 ([a:ad] (pf (ad_double a))) m) of
- (SOME r) => (SOME ? r)
- | NONE => (MapSweep1 ([a:ad] (pf (ad_double_plus_un a))) m')
- end
+ Variable f : ad -> A -> bool.
+
+ Definition MapSweep2 (a0:ad) (y:A) :=
+ if f a0 y then SOME _ (a0, y) else NONE _.
+
+ Fixpoint MapSweep1 (pf:ad -> ad) (m:Map A) {struct m} :
+ option (ad * A) :=
+ match m with
+ | M0 => NONE _
+ | M1 a y => MapSweep2 (pf a) y
+ | M2 m m' =>
+ match MapSweep1 (fun a:ad => pf (ad_double a)) m with
+ | SOME r => SOME _ r
+ | NONE => MapSweep1 (fun a:ad => pf (ad_double_plus_un a)) m'
+ end
end.
- Definition MapSweep := [m:(Map A)] (MapSweep1 ([a:ad] a) m).
+ Definition MapSweep (m:Map A) := MapSweep1 (fun a:ad => a) m.
- Lemma MapSweep_semantics_1_1 : (m:(Map A)) (pf:ad->ad) (a:ad) (y:A)
- (MapSweep1 pf m)=(SOME ? (a, y)) -> (f a y)=true.
+ Lemma MapSweep_semantics_1_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> f a y = true.
Proof.
- Induction m. Intros. Discriminate H.
- Simpl. Intros a y pf a0 y0. Elim (sumbool_of_bool (f (pf a) y)). Intro H. Unfold MapSweep2.
- Rewrite H. Intro H0. Inversion H0. Rewrite <- H3. Assumption.
- Intro H. Unfold MapSweep2. Rewrite H. Intro H0. Discriminate H0.
- Simpl. Intros. Elim (option_sum ad*A (MapSweep1 [a0:ad](pf (ad_double a0)) m0)).
- Intro H2. Elim H2. Intros r H3. Rewrite H3 in H1. Inversion H1. Rewrite H5 in H3.
- Exact (H [a0:ad](pf (ad_double a0)) a y H3).
- Intro H2. Rewrite H2 in H1. Exact (H0 [a0:ad](pf (ad_double_plus_un a0)) a y H1).
+ simple induction m. intros. discriminate H.
+ simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (f (pf a) y)). intro H. unfold MapSweep2 in |- *.
+ rewrite H. intro H0. inversion H0. rewrite <- H3. assumption.
+ intro H. unfold MapSweep2 in |- *. rewrite H. intro H0. discriminate H0.
+ simpl in |- *. intros. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)).
+ intro H2. elim H2. intros r H3. rewrite H3 in H1. inversion H1. rewrite H5 in H3.
+ exact (H (fun a0:ad => pf (ad_double a0)) a y H3).
+ intro H2. rewrite H2 in H1. exact (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H1).
Qed.
- Lemma MapSweep_semantics_1 : (m:(Map A)) (a:ad) (y:A)
- (MapSweep m)=(SOME ? (a, y)) -> (f a y)=true.
+ Lemma MapSweep_semantics_1 :
+ forall (m:Map A) (a:ad) (y:A), MapSweep m = SOME _ (a, y) -> f a y = true.
Proof.
- Intros. Exact (MapSweep_semantics_1_1 m [a:ad]a a y H).
+ intros. exact (MapSweep_semantics_1_1 m (fun a:ad => a) a y H).
Qed.
- Lemma MapSweep_semantics_2_1 : (m:(Map A)) (pf:ad->ad) (a:ad) (y:A)
- (MapSweep1 pf m)=(SOME ? (a, y)) -> {a':ad | a=(pf a')}.
+ Lemma MapSweep_semantics_2_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> {a' : ad | a = pf a'}.
Proof.
- Induction m. Intros. Discriminate H.
- Simpl. Unfold MapSweep2. Intros a y pf a0 y0. Case (f (pf a) y). Intros. Split with a.
- Inversion H. Reflexivity.
- Intro. Discriminate H.
- Intros m0 H m1 H0 pf a y. Simpl.
- Elim (option_sum ad*A (MapSweep1 [a0:ad](pf (ad_double a0)) m0)). Intro H1. Elim H1.
- Intros r H2. Rewrite H2. Intro H3. Inversion H3. Rewrite H5 in H2.
- Elim (H [a0:ad](pf (ad_double a0)) a y H2). Intros a0 H6. Split with (ad_double a0).
- Assumption.
- Intro H1. Rewrite H1. Intro H2. Elim (H0 [a0:ad](pf (ad_double_plus_un a0)) a y H2).
- Intros a0 H3. Split with (ad_double_plus_un a0). Assumption.
+ simple induction m. intros. discriminate H.
+ simpl in |- *. unfold MapSweep2 in |- *. intros a y pf a0 y0. case (f (pf a) y). intros. split with a.
+ inversion H. reflexivity.
+ intro. discriminate H.
+ intros m0 H m1 H0 pf a y. simpl in |- *.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H1. elim H1.
+ intros r H2. rewrite H2. intro H3. inversion H3. rewrite H5 in H2.
+ elim (H (fun a0:ad => pf (ad_double a0)) a y H2). intros a0 H6. split with (ad_double a0).
+ assumption.
+ intro H1. rewrite H1. intro H2. elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H2).
+ intros a0 H3. split with (ad_double_plus_un a0). assumption.
Qed.
- Lemma MapSweep_semantics_2_2 : (m:(Map A))
- (pf,fp:ad->ad) ((a0:ad) (fp (pf a0))=a0) -> (a:ad) (y:A)
- (MapSweep1 pf m)=(SOME ? (a, y)) -> (MapGet A m (fp a))=(SOME ? y).
+ Lemma MapSweep_semantics_2_2 :
+ forall (m:Map A) (pf fp:ad -> ad),
+ (forall a0:ad, fp (pf a0) = a0) ->
+ forall (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> MapGet A m (fp a) = SOME _ y.
Proof.
- Induction m. Intros. Discriminate H0.
- Simpl. Intros a y pf fp H a0 y0. Unfold MapSweep2. Elim (sumbool_of_bool (f (pf a) y)).
- Intro H0. Rewrite H0. Intro H1. Inversion H1. Rewrite (H a). Rewrite (ad_eq_correct a).
- Reflexivity.
- Intro H0. Rewrite H0. Intro H1. Discriminate H1.
- Intros. Rewrite (MapGet_M2_bit_0_if A m0 m1 (fp a)). Elim (sumbool_of_bool (ad_bit_0 (fp a))).
- Intro H3. Rewrite H3. Elim (option_sum ad*A (MapSweep1 [a0:ad](pf (ad_double a0)) m0)).
- Intro H4. Simpl in H2. Apply (H0 [a0:ad](pf (ad_double_plus_un a0)) [a0:ad](ad_div_2 (fp a0))).
- Intro. Rewrite H1. Apply ad_double_plus_un_div_2.
- Elim (option_sum ad*A (MapSweep1 [a0:ad](pf (ad_double a0)) m0)). Intro H5. Elim H5.
- Intros r H6. Rewrite H6 in H2. Inversion H2. Rewrite H8 in H6.
- Elim (MapSweep_semantics_2_1 m0 [a0:ad](pf (ad_double a0)) a y H6). Intros a0 H9.
- Rewrite H9 in H3. Rewrite (H1 (ad_double a0)) in H3. Rewrite (ad_double_bit_0 a0) in H3.
- Discriminate H3.
- Intro H5. Rewrite H5 in H2. Assumption.
- Intro H4. Simpl in H2. Rewrite H4 in H2.
- Apply (H0 [a0:ad](pf (ad_double_plus_un a0)) [a0:ad](ad_div_2 (fp a0))). Intro.
- Rewrite H1. Apply ad_double_plus_un_div_2.
- Assumption.
- Intro H3. Rewrite H3. Simpl in H2.
- Elim (option_sum ad*A (MapSweep1 [a0:ad](pf (ad_double a0)) m0)). Intro H4. Elim H4.
- Intros r H5. Rewrite H5 in H2. Inversion H2. Rewrite H7 in H5.
- Apply (H [a0:ad](pf (ad_double a0)) [a0:ad](ad_div_2 (fp a0))). Intro. Rewrite H1.
- Apply ad_double_div_2.
- Assumption.
- Intro H4. Rewrite H4 in H2.
- Elim (MapSweep_semantics_2_1 m1 [a0:ad](pf (ad_double_plus_un a0)) a y H2).
- Intros a0 H5. Rewrite H5 in H3. Rewrite (H1 (ad_double_plus_un a0)) in H3.
- Rewrite (ad_double_plus_un_bit_0 a0) in H3. Discriminate H3.
+ simple induction m. intros. discriminate H0.
+ simpl in |- *. intros a y pf fp H a0 y0. unfold MapSweep2 in |- *. elim (sumbool_of_bool (f (pf a) y)).
+ intro H0. rewrite H0. intro H1. inversion H1. rewrite (H a). rewrite (ad_eq_correct a).
+ reflexivity.
+ intro H0. rewrite H0. intro H1. discriminate H1.
+ intros. rewrite (MapGet_M2_bit_0_if A m0 m1 (fp a)). elim (sumbool_of_bool (ad_bit_0 (fp a))).
+ intro H3. rewrite H3. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)).
+ intro H4. simpl in H2. apply
+ (H0 (fun a0:ad => pf (ad_double_plus_un a0))
+ (fun a0:ad => ad_div_2 (fp a0))).
+ intro. rewrite H1. apply ad_double_plus_un_div_2.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H5. elim H5.
+ intros r H6. rewrite H6 in H2. inversion H2. rewrite H8 in H6.
+ elim (MapSweep_semantics_2_1 m0 (fun a0:ad => pf (ad_double a0)) a y H6). intros a0 H9.
+ rewrite H9 in H3. rewrite (H1 (ad_double a0)) in H3. rewrite (ad_double_bit_0 a0) in H3.
+ discriminate H3.
+ intro H5. rewrite H5 in H2. assumption.
+ intro H4. simpl in H2. rewrite H4 in H2.
+ apply
+ (H0 (fun a0:ad => pf (ad_double_plus_un a0))
+ (fun a0:ad => ad_div_2 (fp a0))). intro.
+ rewrite H1. apply ad_double_plus_un_div_2.
+ assumption.
+ intro H3. rewrite H3. simpl in H2.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H4. elim H4.
+ intros r H5. rewrite H5 in H2. inversion H2. rewrite H7 in H5.
+ apply
+ (H (fun a0:ad => pf (ad_double a0)) (fun a0:ad => ad_div_2 (fp a0))). intro. rewrite H1.
+ apply ad_double_div_2.
+ assumption.
+ intro H4. rewrite H4 in H2.
+ elim
+ (MapSweep_semantics_2_1 m1 (fun a0:ad => pf (ad_double_plus_un a0)) a y
+ H2).
+ intros a0 H5. rewrite H5 in H3. rewrite (H1 (ad_double_plus_un a0)) in H3.
+ rewrite (ad_double_plus_un_bit_0 a0) in H3. discriminate H3.
Qed.
- Lemma MapSweep_semantics_2 : (m:(Map A)) (a:ad) (y:A)
- (MapSweep m)=(SOME ? (a, y)) -> (MapGet A m a)=(SOME ? y).
+ Lemma MapSweep_semantics_2 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapSweep m = SOME _ (a, y) -> MapGet A m a = SOME _ y.
Proof.
- Intros.
- Exact (MapSweep_semantics_2_2 m [a0:ad]a0 [a0:ad]a0 [a0:ad](refl_equal ad a0) a y H).
+ intros.
+ exact
+ (MapSweep_semantics_2_2 m (fun a0:ad => a0) (fun a0:ad => a0)
+ (fun a0:ad => refl_equal a0) a y H).
Qed.
- Lemma MapSweep_semantics_3_1 : (m:(Map A)) (pf:ad->ad)
- (MapSweep1 pf m)=(NONE ?) ->
- (a:ad) (y:A) (MapGet A m a)=(SOME ? y) -> (f (pf a) y)=false.
+ Lemma MapSweep_semantics_3_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ MapSweep1 pf m = NONE _ ->
+ forall (a:ad) (y:A), MapGet A m a = SOME _ y -> f (pf a) y = false.
Proof.
- Induction m. Intros. Discriminate H0.
- Simpl. Unfold MapSweep2. Intros a y pf. Elim (sumbool_of_bool (f (pf a) y)). Intro H.
- Rewrite H. Intro. Discriminate H0.
- Intro H. Rewrite H. Intros H0 a0 y0. Elim (sumbool_of_bool (ad_eq a a0)). Intro H1. Rewrite H1.
- Intro H2. Inversion H2. Rewrite <- H4. Rewrite <- (ad_eq_complete ? ? H1). Assumption.
- Intro H1. Rewrite H1. Intro. Discriminate H2.
- Intros. Simpl in H1. Elim (option_sum ad*A (MapSweep1 [a:ad](pf (ad_double a)) m0)).
- Intro H3. Elim H3. Intros r H4. Rewrite H4 in H1. Discriminate H1.
- Intro H3. Rewrite H3 in H1. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H4.
- Rewrite (MapGet_M2_bit_0_1 A a H4 m0 m1) in H2. Rewrite <- (ad_div_2_double_plus_un a H4).
- Exact (H0 [a:ad](pf (ad_double_plus_un a)) H1 (ad_div_2 a) y H2).
- Intro H4. Rewrite (MapGet_M2_bit_0_0 A a H4 m0 m1) in H2. Rewrite <- (ad_div_2_double a H4).
- Exact (H [a:ad](pf (ad_double a)) H3 (ad_div_2 a) y H2).
+ simple induction m. intros. discriminate H0.
+ simpl in |- *. unfold MapSweep2 in |- *. intros a y pf. elim (sumbool_of_bool (f (pf a) y)). intro H.
+ rewrite H. intro. discriminate H0.
+ intro H. rewrite H. intros H0 a0 y0. elim (sumbool_of_bool (ad_eq a a0)). intro H1. rewrite H1.
+ intro H2. inversion H2. rewrite <- H4. rewrite <- (ad_eq_complete _ _ H1). assumption.
+ intro H1. rewrite H1. intro. discriminate H2.
+ intros. simpl in H1. elim (option_sum (ad * A) (MapSweep1 (fun a:ad => pf (ad_double a)) m0)).
+ intro H3. elim H3. intros r H4. rewrite H4 in H1. discriminate H1.
+ intro H3. rewrite H3 in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H4.
+ rewrite (MapGet_M2_bit_0_1 A a H4 m0 m1) in H2. rewrite <- (ad_div_2_double_plus_un a H4).
+ exact (H0 (fun a:ad => pf (ad_double_plus_un a)) H1 (ad_div_2 a) y H2).
+ intro H4. rewrite (MapGet_M2_bit_0_0 A a H4 m0 m1) in H2. rewrite <- (ad_div_2_double a H4).
+ exact (H (fun a:ad => pf (ad_double a)) H3 (ad_div_2 a) y H2).
Qed.
- Lemma MapSweep_semantics_3 : (m:(Map A))
- (MapSweep m)=(NONE ?) -> (a:ad) (y:A) (MapGet A m a)=(SOME ? y) ->
- (f a y)=false.
+ Lemma MapSweep_semantics_3 :
+ forall m:Map A,
+ MapSweep m = NONE _ ->
+ forall (a:ad) (y:A), MapGet A m a = SOME _ y -> f a y = false.
Proof.
- Intros.
- Exact (MapSweep_semantics_3_1 m [a0:ad]a0 H a y H0).
+ intros.
+ exact (MapSweep_semantics_3_1 m (fun a0:ad => a0) H a y H0).
Qed.
- Lemma MapSweep_semantics_4_1 : (m:(Map A)) (pf:ad->ad) (a:ad) (y:A)
- (MapGet A m a)=(SOME A y) -> (f (pf a) y)=true ->
- {a':ad & {y':A | (MapSweep1 pf m)=(SOME ? (a', y'))}}.
+ Lemma MapSweep_semantics_4_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapGet A m a = SOME A y ->
+ f (pf a) y = true ->
+ {a' : ad & {y' : A | MapSweep1 pf m = SOME _ (a', y')}}.
Proof.
- Induction m. Intros. Discriminate H.
- Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H1. Split with (pf a1). Split with y.
- Rewrite (ad_eq_complete ? ? H1). Unfold MapSweep1 MapSweep2.
- Rewrite (ad_eq_complete ? ? H1) in H. Rewrite (M1_semantics_1 ? a1 a0) in H.
- Inversion H. Rewrite H0. Reflexivity.
-
- Intro H1. Rewrite (M1_semantics_2 ? a a1 a0 H1) in H. Discriminate H.
-
- Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H3.
- Rewrite (MapGet_M2_bit_0_1 ? ? H3 m0 m1) in H1.
- Rewrite <- (ad_div_2_double_plus_un a H3) in H2.
- Elim (H0 [a0:ad](pf (ad_double_plus_un a0)) (ad_div_2 a) y H1 H2). Intros a'' H4. Elim H4.
- Intros y'' H5. Simpl. Elim (option_sum ? (MapSweep1 [a:ad](pf (ad_double a)) m0)).
- Intro H6. Elim H6. Intro r. Elim r. Intros a''' y''' H7. Rewrite H7. Split with a'''.
- Split with y'''. Reflexivity.
- Intro H6. Rewrite H6. Split with a''. Split with y''. Assumption.
- Intro H3. Rewrite (MapGet_M2_bit_0_0 ? ? H3 m0 m1) in H1.
- Rewrite <- (ad_div_2_double a H3) in H2.
- Elim (H [a0:ad](pf (ad_double a0)) (ad_div_2 a) y H1 H2). Intros a'' H4. Elim H4.
- Intros y'' H5. Split with a''. Split with y''. Simpl. Rewrite H5. Reflexivity.
+ simple induction m. intros. discriminate H.
+ intros. elim (sumbool_of_bool (ad_eq a a1)). intro H1. split with (pf a1). split with y.
+ rewrite (ad_eq_complete _ _ H1). unfold MapSweep1, MapSweep2 in |- *.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 _ a1 a0) in H.
+ inversion H. rewrite H0. reflexivity.
+
+ intro H1. rewrite (M1_semantics_2 _ a a1 a0 H1) in H. discriminate H.
+
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H3.
+ rewrite (MapGet_M2_bit_0_1 _ _ H3 m0 m1) in H1.
+ rewrite <- (ad_div_2_double_plus_un a H3) in H2.
+ elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) (ad_div_2 a) y H1 H2). intros a'' H4. elim H4.
+ intros y'' H5. simpl in |- *. elim (option_sum _ (MapSweep1 (fun a:ad => pf (ad_double a)) m0)).
+ intro H6. elim H6. intro r. elim r. intros a''' y''' H7. rewrite H7. split with a'''.
+ split with y'''. reflexivity.
+ intro H6. rewrite H6. split with a''. split with y''. assumption.
+ intro H3. rewrite (MapGet_M2_bit_0_0 _ _ H3 m0 m1) in H1.
+ rewrite <- (ad_div_2_double a H3) in H2.
+ elim (H (fun a0:ad => pf (ad_double a0)) (ad_div_2 a) y H1 H2). intros a'' H4. elim H4.
+ intros y'' H5. split with a''. split with y''. simpl in |- *. rewrite H5. reflexivity.
Qed.
- Lemma MapSweep_semantics_4 : (m:(Map A)) (a:ad) (y:A)
- (MapGet A m a)=(SOME A y) -> (f a y)=true ->
- {a':ad & {y':A | (MapSweep m)=(SOME ? (a', y'))}}.
+ Lemma MapSweep_semantics_4 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = SOME A y ->
+ f a y = true -> {a' : ad & {y' : A | MapSweep m = SOME _ (a', y')}}.
Proof.
- Intros. Exact (MapSweep_semantics_4_1 m [a0:ad]a0 a y H H0).
+ intros. exact (MapSweep_semantics_4_1 m (fun a0:ad => a0) a y H H0).
Qed.
End MapSweepDef.
Variable B : Set.
- Fixpoint MapCollect1 [f:ad->A->(Map B); pf:ad->ad; m:(Map A)] : (Map B) :=
- Cases m of
- M0 => (M0 B)
- | (M1 a y) => (f (pf a) y)
- | (M2 m1 m2) => (MapMerge B (MapCollect1 f [a0:ad] (pf (ad_double a0)) m1)
- (MapCollect1 f [a0:ad] (pf (ad_double_plus_un a0)) m2))
+ Fixpoint MapCollect1 (f:ad -> A -> Map B) (pf:ad -> ad)
+ (m:Map A) {struct m} : Map B :=
+ match m with
+ | M0 => M0 B
+ | M1 a y => f (pf a) y
+ | M2 m1 m2 =>
+ MapMerge B (MapCollect1 f (fun a0:ad => pf (ad_double a0)) m1)
+ (MapCollect1 f (fun a0:ad => pf (ad_double_plus_un a0)) m2)
end.
- Definition MapCollect := [f:ad->A->(Map B); m:(Map A)] (MapCollect1 f [a:ad]a m).
+ Definition MapCollect (f:ad -> A -> Map B) (m:Map A) :=
+ MapCollect1 f (fun a:ad => a) m.
Section MapFoldDef.
@@ -197,331 +225,396 @@ Section MapIter.
Variable neutral : M.
Variable op : M -> M -> M.
- Fixpoint MapFold1 [f:ad->A->M; pf:ad->ad; m:(Map A)] : M :=
- Cases m of
- M0 => neutral
- | (M1 a y) => (f (pf a) y)
- | (M2 m1 m2) => (op (MapFold1 f [a0:ad] (pf (ad_double a0)) m1)
- (MapFold1 f [a0:ad] (pf (ad_double_plus_un a0)) m2))
+ Fixpoint MapFold1 (f:ad -> A -> M) (pf:ad -> ad)
+ (m:Map A) {struct m} : M :=
+ match m with
+ | M0 => neutral
+ | M1 a y => f (pf a) y
+ | M2 m1 m2 =>
+ op (MapFold1 f (fun a0:ad => pf (ad_double a0)) m1)
+ (MapFold1 f (fun a0:ad => pf (ad_double_plus_un a0)) m2)
end.
- Definition MapFold := [f:ad->A->M; m:(Map A)] (MapFold1 f [a:ad]a m).
+ Definition MapFold (f:ad -> A -> M) (m:Map A) :=
+ MapFold1 f (fun a:ad => a) m.
- Lemma MapFold_empty : (f:ad->A->M) (MapFold f (M0 A))=neutral.
+ Lemma MapFold_empty : forall f:ad -> A -> M, MapFold f (M0 A) = neutral.
Proof.
- Trivial.
+ trivial.
Qed.
- Lemma MapFold_M1 : (f:ad->A->M) (a:ad) (y:A) (MapFold f (M1 A a y)) = (f a y).
+ Lemma MapFold_M1 :
+ forall (f:ad -> A -> M) (a:ad) (y:A), MapFold f (M1 A a y) = f a y.
Proof.
- Trivial.
+ trivial.
Qed.
Variable State : Set.
- Variable f:State -> ad -> A -> State * M.
-
- Fixpoint MapFold1_state [state:State; pf:ad->ad; m:(Map A)]
- : State * M :=
- Cases m of
- M0 => (state, neutral)
- | (M1 a y) => (f state (pf a) y)
- | (M2 m1 m2) =>
- Cases (MapFold1_state state [a0:ad] (pf (ad_double a0)) m1) of
- (state1, x1) =>
- Cases (MapFold1_state state1 [a0:ad] (pf (ad_double_plus_un a0)) m2) of
- (state2, x2) => (state2, (op x1 x2))
- end
+ Variable f : State -> ad -> A -> State * M.
+
+ Fixpoint MapFold1_state (state:State) (pf:ad -> ad)
+ (m:Map A) {struct m} : State * M :=
+ match m with
+ | M0 => (state, neutral)
+ | M1 a y => f state (pf a) y
+ | M2 m1 m2 =>
+ match MapFold1_state state (fun a0:ad => pf (ad_double a0)) m1 with
+ | (state1, x1) =>
+ match
+ MapFold1_state state1
+ (fun a0:ad => pf (ad_double_plus_un a0)) m2
+ with
+ | (state2, x2) => (state2, op x1 x2)
+ end
end
end.
- Definition MapFold_state := [state:State] (MapFold1_state state [a:ad]a).
+ Definition MapFold_state (state:State) :=
+ MapFold1_state state (fun a:ad => a).
- Lemma pair_sp : (B,C:Set) (x:B*C) x=(Fst x, Snd x).
+ Lemma pair_sp : forall (B C:Set) (x:B * C), x = (fst x, snd x).
Proof.
- Induction x. Trivial.
+ simple induction x. trivial.
Qed.
- Lemma MapFold_state_stateless_1 : (m:(Map A)) (g:ad->A->M) (pf:ad->ad)
- ((state:State) (a:ad) (y:A) (Snd (f state a y))=(g a y)) ->
- (state:State)
- (Snd (MapFold1_state state pf m))=(MapFold1 g pf m).
+ Lemma MapFold_state_stateless_1 :
+ forall (m:Map A) (g:ad -> A -> M) (pf:ad -> ad),
+ (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) ->
+ forall state:State, snd (MapFold1_state state pf m) = MapFold1 g pf m.
Proof.
- Induction m. Trivial.
- Intros. Simpl. Apply H.
- Intros. Simpl. Rewrite (pair_sp ? ?
- (MapFold1_state state [a0:ad](pf (ad_double a0)) m0)).
- Rewrite (H g [a0:ad](pf (ad_double a0)) H1 state).
- Rewrite (pair_sp ? ?
+ simple induction m. trivial.
+ intros. simpl in |- *. apply H.
+ intros. simpl in |- *. rewrite
+ (pair_sp _ _ (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0))
+ .
+ rewrite (H g (fun a0:ad => pf (ad_double a0)) H1 state).
+ rewrite
+ (pair_sp _ _
(MapFold1_state
- (Fst (MapFold1_state state [a0:ad](pf (ad_double a0)) m0))
- [a0:ad](pf (ad_double_plus_un a0)) m1)).
- Simpl.
- Rewrite (H0 g [a0:ad](pf (ad_double_plus_un a0)) H1
- (Fst (MapFold1_state state [a0:ad](pf (ad_double a0)) m0))).
- Reflexivity.
+ (fst (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0))
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1))
+ .
+ simpl in |- *.
+ rewrite
+ (H0 g (fun a0:ad => pf (ad_double_plus_un a0)) H1
+ (fst (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0)))
+ .
+ reflexivity.
Qed.
- Lemma MapFold_state_stateless : (g:ad->A->M)
- ((state:State) (a:ad) (y:A) (Snd (f state a y))=(g a y)) ->
- (state:State) (m:(Map A))
- (Snd (MapFold_state state m))=(MapFold g m).
+ Lemma MapFold_state_stateless :
+ forall g:ad -> A -> M,
+ (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) ->
+ forall (state:State) (m:Map A),
+ snd (MapFold_state state m) = MapFold g m.
Proof.
- Intros. Exact (MapFold_state_stateless_1 m g [a0:ad]a0 H state).
+ intros. exact (MapFold_state_stateless_1 m g (fun a0:ad => a0) H state).
Qed.
End MapFoldDef.
- Lemma MapCollect_as_Fold : (f:ad->A->(Map B)) (m:(Map A))
- (MapCollect f m)=(MapFold (Map B) (M0 B) (MapMerge B) f m).
+ Lemma MapCollect_as_Fold :
+ forall (f:ad -> A -> Map B) (m:Map A),
+ MapCollect f m = MapFold (Map B) (M0 B) (MapMerge B) f m.
Proof.
- Induction m;Trivial.
+ simple induction m; trivial.
Qed.
- Definition alist := (list (ad*A)).
- Definition anil := (nil (ad*A)).
- Definition acons := (!cons (ad*A)).
- Definition aapp := (!app (ad*A)).
+ Definition alist := list (ad * A).
+ Definition anil := nil (A:=(ad * A)).
+ Definition acons := cons (A:=(ad * A)).
+ Definition aapp := app (A:=(ad * A)).
- Definition alist_of_Map := (MapFold alist anil aapp [a:ad;y:A] (acons (pair ? ? a y) anil)).
+ Definition alist_of_Map :=
+ MapFold alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil).
- Fixpoint alist_semantics [l:alist] : ad -> (option A) :=
- Cases l of
- nil => [_:ad] (NONE A)
- | (cons (a, y) l') => [a0:ad] if (ad_eq a a0) then (SOME A y) else (alist_semantics l' a0)
+ Fixpoint alist_semantics (l:alist) : ad -> option A :=
+ match l with
+ | nil => fun _:ad => NONE A
+ | (a, y) :: l' =>
+ fun a0:ad => if ad_eq a a0 then SOME A y else alist_semantics l' a0
end.
- Lemma alist_semantics_app : (l,l':alist) (a:ad)
- (alist_semantics (aapp l l') a)=
- (Cases (alist_semantics l a) of
- NONE => (alist_semantics l' a)
- | (SOME y) => (SOME A y)
- end).
+ Lemma alist_semantics_app :
+ forall (l l':alist) (a:ad),
+ alist_semantics (aapp l l') a =
+ match alist_semantics l a with
+ | NONE => alist_semantics l' a
+ | SOME y => SOME A y
+ end.
Proof.
- Unfold aapp. Induction l. Trivial.
- Intros. Elim a. Intros a1 y1. Simpl. Case (ad_eq a1 a0). Reflexivity.
- Apply H.
+ unfold aapp in |- *. simple induction l. trivial.
+ intros. elim a. intros a1 y1. simpl in |- *. case (ad_eq a1 a0). reflexivity.
+ apply H.
Qed.
- Lemma alist_of_Map_semantics_1_1 : (m:(Map A)) (pf:ad->ad) (a:ad) (y:A)
- (alist_semantics (MapFold1 alist anil aapp [a0:ad][y:A](acons (a0,y) anil) pf m) a)
- =(SOME A y) -> {a':ad | a=(pf a')}.
+ Lemma alist_of_Map_semantics_1_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ alist_semantics
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil) pf
+ m) a = SOME A y -> {a' : ad | a = pf a'}.
Proof.
- Induction m. Simpl. Intros. Discriminate H.
- Simpl. Intros a y pf a0 y0. Elim (sumbool_of_bool (ad_eq (pf a) a0)). Intro H. Rewrite H.
- Intro H0. Split with a. Rewrite (ad_eq_complete ? ? H). Reflexivity.
- Intro H. Rewrite H. Intro H0. Discriminate H0.
- Intros. Change (alist_semantics
- (aapp
- (MapFold1 alist anil aapp [a0:ad][y:A](acons (a0,y) anil)
- [a0:ad](pf (ad_double a0)) m0)
- (MapFold1 alist anil aapp [a0:ad][y:A](acons (a0,y) anil)
- [a0:ad](pf (ad_double_plus_un a0)) m1)) a)=(SOME A y) in H1.
- Rewrite (alist_semantics_app
- (MapFold1 alist anil aapp [a0:ad][y0:A](acons (a0,y0) anil)
- [a0:ad](pf (ad_double a0)) m0)
- (MapFold1 alist anil aapp [a0:ad][y0:A](acons (a0,y0) anil)
- [a0:ad](pf (ad_double_plus_un a0)) m1) a) in H1.
- Elim (option_sum A
- (alist_semantics
- (MapFold1 alist anil aapp [a0:ad][y0:A](acons (a0,y0) anil)
- [a0:ad](pf (ad_double a0)) m0) a)).
- Intro H2. Elim H2. Intros y0 H3. Elim (H [a0:ad](pf (ad_double a0)) a y0 H3). Intros a0 H4.
- Split with (ad_double a0). Assumption.
- Intro H2. Rewrite H2 in H1. Elim (H0 [a0:ad](pf (ad_double_plus_un a0)) a y H1).
- Intros a0 H3. Split with (ad_double_plus_un a0). Assumption.
+ simple induction m. simpl in |- *. intros. discriminate H.
+ simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (ad_eq (pf a) a0)). intro H. rewrite H.
+ intro H0. split with a. rewrite (ad_eq_complete _ _ H). reflexivity.
+ intro H. rewrite H. intro H0. discriminate H0.
+ intros. change
+ (alist_semantics
+ (aapp
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1)) a =
+ SOME A y) in H1.
+ rewrite
+ (alist_semantics_app
+ (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1) a)
+ in H1.
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double a0)) m0) a)).
+ intro H2. elim H2. intros y0 H3. elim (H (fun a0:ad => pf (ad_double a0)) a y0 H3). intros a0 H4.
+ split with (ad_double a0). assumption.
+ intro H2. rewrite H2 in H1. elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H1).
+ intros a0 H3. split with (ad_double_plus_un a0). assumption.
Qed.
- Definition ad_inj := [pf:ad->ad] (a0,a1:ad) (pf a0)=(pf a1) -> a0=a1.
+ Definition ad_inj (pf:ad -> ad) :=
+ forall a0 a1:ad, pf a0 = pf a1 -> a0 = a1.
- Lemma ad_comp_double_inj :
- (pf:ad->ad) (ad_inj pf) -> (ad_inj [a0:ad] (pf (ad_double a0))).
+ Lemma ad_comp_double_inj :
+ forall pf:ad -> ad, ad_inj pf -> ad_inj (fun a0:ad => pf (ad_double a0)).
Proof.
- Unfold ad_inj. Intros. Apply ad_double_inj. Exact (H ? ? H0).
+ unfold ad_inj in |- *. intros. apply ad_double_inj. exact (H _ _ H0).
Qed.
- Lemma ad_comp_double_plus_un_inj : (pf:ad->ad) (ad_inj pf) ->
- (ad_inj [a0:ad] (pf (ad_double_plus_un a0))).
+ Lemma ad_comp_double_plus_un_inj :
+ forall pf:ad -> ad,
+ ad_inj pf -> ad_inj (fun a0:ad => pf (ad_double_plus_un a0)).
Proof.
- Unfold ad_inj. Intros. Apply ad_double_plus_un_inj. Exact (H ? ? H0).
+ unfold ad_inj in |- *. intros. apply ad_double_plus_un_inj. exact (H _ _ H0).
Qed.
- Lemma alist_of_Map_semantics_1 : (m:(Map A)) (pf:ad->ad) (ad_inj pf) ->
- (a:ad) (MapGet A m a)=(alist_semantics (MapFold1 alist anil aapp
- [a0:ad;y:A] (acons (pair ? ? a0 y) anil) pf m)
- (pf a)).
+ Lemma alist_of_Map_semantics_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ ad_inj pf ->
+ forall a:ad,
+ MapGet A m a =
+ alist_semantics
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ pf m) (pf a).
Proof.
- Induction m. Trivial.
- Simpl. Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H0. Rewrite H0.
- Rewrite (ad_eq_complete ? ? H0). Rewrite (ad_eq_correct (pf a1)). Reflexivity.
- Intro H0. Rewrite H0. Elim (sumbool_of_bool (ad_eq (pf a) (pf a1))). Intro H1.
- Rewrite (H a a1 (ad_eq_complete ? ? H1)) in H0. Rewrite (ad_eq_correct a1) in H0.
- Discriminate H0.
- Intro H1. Rewrite H1. Reflexivity.
- Intros. Change (MapGet A (M2 A m0 m1) a)
- =(alist_semantics
- (aapp
- (MapFold1 alist anil aapp [a0:ad][y:A](acons (a0,y) anil)
- [a0:ad](pf (ad_double a0)) m0)
- (MapFold1 alist anil aapp [a0:ad][y:A](acons (a0,y) anil)
- [a0:ad](pf (ad_double_plus_un a0)) m1)) (pf a)).
- Rewrite alist_semantics_app. Rewrite (MapGet_M2_bit_0_if A m0 m1 a).
- Elim (ad_double_or_double_plus_un a). Intro H2. Elim H2. Intros a0 H3. Rewrite H3.
- Rewrite (ad_double_bit_0 a0).
- Rewrite <- (H [a1:ad](pf (ad_double a1)) (ad_comp_double_inj pf H1) a0).
- Rewrite ad_double_div_2. Case (MapGet A m0 a0).
- Elim (option_sum A
- (alist_semantics
- (MapFold1 alist anil aapp [a1:ad][y:A](acons (a1,y) anil)
- [a1:ad](pf (ad_double_plus_un a1)) m1) (pf (ad_double a0)))).
- Intro H4. Elim H4. Intros y H5.
- Elim (alist_of_Map_semantics_1_1 m1 [a1:ad](pf (ad_double_plus_un a1))
- (pf (ad_double a0)) y H5).
- Intros a1 H6. Cut (ad_bit_0 (ad_double a0))=(ad_bit_0 (ad_double_plus_un a1)).
- Intro. Rewrite (ad_double_bit_0 a0) in H7. Rewrite (ad_double_plus_un_bit_0 a1) in H7.
- Discriminate H7.
- Rewrite (H1 (ad_double a0) (ad_double_plus_un a1) H6). Reflexivity.
- Intro H4. Rewrite H4. Reflexivity.
- Trivial.
- Intro H2. Elim H2. Intros a0 H3. Rewrite H3. Rewrite (ad_double_plus_un_bit_0 a0).
- Rewrite <- (H0 [a1:ad](pf (ad_double_plus_un a1)) (ad_comp_double_plus_un_inj pf H1) a0).
- Rewrite ad_double_plus_un_div_2.
- Elim (option_sum A
- (alist_semantics
- (MapFold1 alist anil aapp [a1:ad][y:A](acons (a1,y) anil)
- [a1:ad](pf (ad_double a1)) m0) (pf (ad_double_plus_un a0)))).
- Intro H4. Elim H4. Intros y H5.
- Elim (alist_of_Map_semantics_1_1 m0 [a1:ad](pf (ad_double a1))
- (pf (ad_double_plus_un a0)) y H5).
- Intros a1 H6. Cut (ad_bit_0 (ad_double_plus_un a0))=(ad_bit_0 (ad_double a1)).
- Intro H7. Rewrite (ad_double_plus_un_bit_0 a0) in H7. Rewrite (ad_double_bit_0 a1) in H7.
- Discriminate H7.
- Rewrite (H1 (ad_double_plus_un a0) (ad_double a1) H6). Reflexivity.
- Intro H4. Rewrite H4. Reflexivity.
+ simple induction m. trivial.
+ simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0.
+ rewrite (ad_eq_complete _ _ H0). rewrite (ad_eq_correct (pf a1)). reflexivity.
+ intro H0. rewrite H0. elim (sumbool_of_bool (ad_eq (pf a) (pf a1))). intro H1.
+ rewrite (H a a1 (ad_eq_complete _ _ H1)) in H0. rewrite (ad_eq_correct a1) in H0.
+ discriminate H0.
+ intro H1. rewrite H1. reflexivity.
+ intros. change
+ (MapGet A (M2 A m0 m1) a =
+ alist_semantics
+ (aapp
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1)) (
+ pf a)) in |- *.
+ rewrite alist_semantics_app. rewrite (MapGet_M2_bit_0_if A m0 m1 a).
+ elim (ad_double_or_double_plus_un a). intro H2. elim H2. intros a0 H3. rewrite H3.
+ rewrite (ad_double_bit_0 a0).
+ rewrite <-
+ (H (fun a1:ad => pf (ad_double a1)) (ad_comp_double_inj pf H1) a0)
+ .
+ rewrite ad_double_div_2. case (MapGet A m0 a0).
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a1:ad) (y:A) => acons (a1, y) anil)
+ (fun a1:ad => pf (ad_double_plus_un a1)) m1)
+ (pf (ad_double a0)))).
+ intro H4. elim H4. intros y H5.
+ elim
+ (alist_of_Map_semantics_1_1 m1 (fun a1:ad => pf (ad_double_plus_un a1))
+ (pf (ad_double a0)) y H5).
+ intros a1 H6. cut (ad_bit_0 (ad_double a0) = ad_bit_0 (ad_double_plus_un a1)).
+ intro. rewrite (ad_double_bit_0 a0) in H7. rewrite (ad_double_plus_un_bit_0 a1) in H7.
+ discriminate H7.
+ rewrite (H1 (ad_double a0) (ad_double_plus_un a1) H6). reflexivity.
+ intro H4. rewrite H4. reflexivity.
+ trivial.
+ intro H2. elim H2. intros a0 H3. rewrite H3. rewrite (ad_double_plus_un_bit_0 a0).
+ rewrite <-
+ (H0 (fun a1:ad => pf (ad_double_plus_un a1))
+ (ad_comp_double_plus_un_inj pf H1) a0).
+ rewrite ad_double_plus_un_div_2.
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a1:ad) (y:A) => acons (a1, y) anil)
+ (fun a1:ad => pf (ad_double a1)) m0)
+ (pf (ad_double_plus_un a0)))).
+ intro H4. elim H4. intros y H5.
+ elim
+ (alist_of_Map_semantics_1_1 m0 (fun a1:ad => pf (ad_double a1))
+ (pf (ad_double_plus_un a0)) y H5).
+ intros a1 H6. cut (ad_bit_0 (ad_double_plus_un a0) = ad_bit_0 (ad_double a1)).
+ intro H7. rewrite (ad_double_plus_un_bit_0 a0) in H7. rewrite (ad_double_bit_0 a1) in H7.
+ discriminate H7.
+ rewrite (H1 (ad_double_plus_un a0) (ad_double a1) H6). reflexivity.
+ intro H4. rewrite H4. reflexivity.
Qed.
- Lemma alist_of_Map_semantics : (m:(Map A))
- (eqm A (MapGet A m) (alist_semantics (alist_of_Map m))).
+ Lemma alist_of_Map_semantics :
+ forall m:Map A, eqm A (MapGet A m) (alist_semantics (alist_of_Map m)).
Proof.
- Unfold eqm. Intros. Exact (alist_of_Map_semantics_1 m [a0:ad]a0 [a0,a1:ad][p:a0=a1]p a).
+ unfold eqm in |- *. intros. exact
+ (alist_of_Map_semantics_1 m (fun a0:ad => a0)
+ (fun (a0 a1:ad) (p:a0 = a1) => p) a).
Qed.
- Fixpoint Map_of_alist [l:alist] : (Map A) :=
- Cases l of
- nil => (M0 A)
- | (cons (a, y) l') => (MapPut A (Map_of_alist l') a y)
+ Fixpoint Map_of_alist (l:alist) : Map A :=
+ match l with
+ | nil => M0 A
+ | (a, y) :: l' => MapPut A (Map_of_alist l') a y
end.
- Lemma Map_of_alist_semantics : (l:alist)
- (eqm A (alist_semantics l) (MapGet A (Map_of_alist l))).
+ Lemma Map_of_alist_semantics :
+ forall l:alist, eqm A (alist_semantics l) (MapGet A (Map_of_alist l)).
Proof.
- Unfold eqm. Induction l. Trivial.
- Intros r l0 H a. Elim r. Intros a0 y0. Simpl. Elim (sumbool_of_bool (ad_eq a0 a)).
- Intro H0. Rewrite H0. Rewrite (ad_eq_complete ? ? H0).
- Rewrite (MapPut_semantics A (Map_of_alist l0) a y0 a). Rewrite (ad_eq_correct a).
- Reflexivity.
- Intro H0. Rewrite H0. Rewrite (MapPut_semantics A (Map_of_alist l0) a0 y0 a).
- Rewrite H0. Apply H.
+ unfold eqm in |- *. simple induction l. trivial.
+ intros r l0 H a. elim r. intros a0 y0. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 a)).
+ intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0).
+ rewrite (MapPut_semantics A (Map_of_alist l0) a y0 a). rewrite (ad_eq_correct a).
+ reflexivity.
+ intro H0. rewrite H0. rewrite (MapPut_semantics A (Map_of_alist l0) a0 y0 a).
+ rewrite H0. apply H.
Qed.
- Lemma Map_of_alist_of_Map : (m:(Map A)) (eqmap A (Map_of_alist (alist_of_Map m)) m).
+ Lemma Map_of_alist_of_Map :
+ forall m:Map A, eqmap A (Map_of_alist (alist_of_Map m)) m.
Proof.
- Unfold eqmap. Intro. Apply eqm_trans with f':=(alist_semantics (alist_of_Map m)).
- Apply eqm_sym. Apply Map_of_alist_semantics.
- Apply eqm_sym. Apply alist_of_Map_semantics.
+ unfold eqmap in |- *. intro. apply eqm_trans with (f' := alist_semantics (alist_of_Map m)).
+ apply eqm_sym. apply Map_of_alist_semantics.
+ apply eqm_sym. apply alist_of_Map_semantics.
Qed.
- Lemma alist_of_Map_of_alist : (l:alist)
- (eqm A (alist_semantics (alist_of_Map (Map_of_alist l))) (alist_semantics l)).
+ Lemma alist_of_Map_of_alist :
+ forall l:alist,
+ eqm A (alist_semantics (alist_of_Map (Map_of_alist l)))
+ (alist_semantics l).
Proof.
- Intro. Apply eqm_trans with f':=(MapGet A (Map_of_alist l)).
- Apply eqm_sym. Apply alist_of_Map_semantics.
- Apply eqm_sym. Apply Map_of_alist_semantics.
+ intro. apply eqm_trans with (f' := MapGet A (Map_of_alist l)).
+ apply eqm_sym. apply alist_of_Map_semantics.
+ apply eqm_sym. apply Map_of_alist_semantics.
Qed.
- Lemma fold_right_aapp : (M:Set) (neutral:M) (op:M->M->M)
- ((a,b,c:M) (op (op a b) c)=(op a (op b c))) ->
- ((a:M) (op neutral a)=a) ->
- (f:ad->A->M) (l,l':alist)
- (fold_right [r:ad*A][m:M] let (a,y)=r in (op (f a y) m) neutral
- (aapp l l'))=
- (op (fold_right [r:ad*A][m:M] let (a,y)=r in (op (f a y) m) neutral l)
- (fold_right [r:ad*A][m:M] let (a,y)=r in (op (f a y) m) neutral l'))
-.
+ Lemma fold_right_aapp :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ forall (f:ad -> A -> M) (l l':alist),
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral (aapp l l') =
+ op
+ (fold_right
+ (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral
+ l)
+ (fold_right
+ (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral
+ l').
Proof.
- Induction l. Simpl. Intro. Rewrite H0. Reflexivity.
- Intros r l0 H1 l'. Elim r. Intros a y. Simpl. Rewrite H. Rewrite (H1 l'). Reflexivity.
+ simple induction l. simpl in |- *. intro. rewrite H0. reflexivity.
+ intros r l0 H1 l'. elim r. intros a y. simpl in |- *. rewrite H. rewrite (H1 l'). reflexivity.
Qed.
- Lemma MapFold_as_fold_1 : (M:Set) (neutral:M) (op:M->M->M)
- ((a,b,c:M) (op (op a b) c)=(op a (op b c))) ->
- ((a:M) (op neutral a)=a) ->
- ((a:M) (op a neutral)=a) ->
- (f:ad->A->M) (m:(Map A)) (pf:ad->ad)
- (MapFold1 M neutral op f pf m)=
- (fold_right [r:(ad*A)][m:M] let (a,y)=r in (op (f a y) m) neutral
- (MapFold1 alist anil aapp [a:ad;y:A] (acons (pair ? ?
-a y) anil) pf m)).
+ Lemma MapFold_as_fold_1 :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ (forall a:M, op a neutral = a) ->
+ forall (f:ad -> A -> M) (m:Map A) (pf:ad -> ad),
+ MapFold1 M neutral op f pf m =
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral
+ (MapFold1 alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil) pf
+ m).
Proof.
- Induction m. Trivial.
- Intros. Simpl. Rewrite H1. Reflexivity.
- Intros. Simpl. Rewrite (fold_right_aapp M neutral op H H0 f).
- Rewrite (H2 [a0:ad](pf (ad_double a0))). Rewrite (H3 [a0:ad](pf (ad_double_plus_un a0))).
- Reflexivity.
+ simple induction m. trivial.
+ intros. simpl in |- *. rewrite H1. reflexivity.
+ intros. simpl in |- *. rewrite (fold_right_aapp M neutral op H H0 f).
+ rewrite (H2 (fun a0:ad => pf (ad_double a0))). rewrite (H3 (fun a0:ad => pf (ad_double_plus_un a0))).
+ reflexivity.
Qed.
- Lemma MapFold_as_fold : (M:Set) (neutral:M) (op:M->M->M)
- ((a,b,c:M) (op (op a b) c)=(op a (op b c))) ->
- ((a:M) (op neutral a)=a) ->
- ((a:M) (op a neutral)=a) ->
- (f:ad->A->M) (m:(Map A))
- (MapFold M neutral op f m)=
- (fold_right [r:(ad*A)][m:M] let (a,y)=r in (op (f a y) m) neutral
- (alist_of_Map m)).
+ Lemma MapFold_as_fold :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ (forall a:M, op a neutral = a) ->
+ forall (f:ad -> A -> M) (m:Map A),
+ MapFold M neutral op f m =
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral (alist_of_Map m).
Proof.
- Intros. Exact (MapFold_as_fold_1 M neutral op H H0 H1 f m [a0:ad]a0).
+ intros. exact (MapFold_as_fold_1 M neutral op H H0 H1 f m (fun a0:ad => a0)).
Qed.
- Lemma alist_MapMerge_semantics : (m,m':(Map A))
- (eqm A (alist_semantics (aapp (alist_of_Map m') (alist_of_Map m)))
- (alist_semantics (alist_of_Map (MapMerge A m m')))).
+ Lemma alist_MapMerge_semantics :
+ forall m m':Map A,
+ eqm A (alist_semantics (aapp (alist_of_Map m') (alist_of_Map m)))
+ (alist_semantics (alist_of_Map (MapMerge A m m'))).
Proof.
- Unfold eqm. Intros. Rewrite alist_semantics_app. Rewrite <- (alist_of_Map_semantics m a).
- Rewrite <- (alist_of_Map_semantics m' a).
- Rewrite <- (alist_of_Map_semantics (MapMerge A m m') a).
- Rewrite (MapMerge_semantics A m m' a). Reflexivity.
+ unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a).
+ rewrite <- (alist_of_Map_semantics m' a).
+ rewrite <- (alist_of_Map_semantics (MapMerge A m m') a).
+ rewrite (MapMerge_semantics A m m' a). reflexivity.
Qed.
- Lemma alist_MapMerge_semantics_disjoint : (m,m':(Map A))
- (eqmap A (MapDomRestrTo A A m m') (M0 A)) ->
- (eqm A (alist_semantics (aapp (alist_of_Map m) (alist_of_Map m')))
- (alist_semantics (alist_of_Map (MapMerge A m m')))).
+ Lemma alist_MapMerge_semantics_disjoint :
+ forall m m':Map A,
+ eqmap A (MapDomRestrTo A A m m') (M0 A) ->
+ eqm A (alist_semantics (aapp (alist_of_Map m) (alist_of_Map m')))
+ (alist_semantics (alist_of_Map (MapMerge A m m'))).
Proof.
- Unfold eqm. Intros. Rewrite alist_semantics_app. Rewrite <- (alist_of_Map_semantics m a).
- Rewrite <- (alist_of_Map_semantics m' a).
- Rewrite <- (alist_of_Map_semantics (MapMerge A m m') a). Rewrite (MapMerge_semantics A m m' a).
- Elim (option_sum ? (MapGet A m a)). Intro H0. Elim H0. Intros y H1. Rewrite H1.
- Elim (option_sum ? (MapGet A m' a)). Intro H2. Elim H2. Intros y' H3.
- Cut (MapGet A (MapDomRestrTo A A m m') a)=(NONE A).
- Rewrite (MapDomRestrTo_semantics A A m m' a). Rewrite H3. Rewrite H1. Intro. Discriminate H4.
- Exact (H a).
- Intro H2. Rewrite H2. Reflexivity.
- Intro H0. Rewrite H0. Case (MapGet A m' a); Trivial.
+ unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a).
+ rewrite <- (alist_of_Map_semantics m' a).
+ rewrite <- (alist_of_Map_semantics (MapMerge A m m') a). rewrite (MapMerge_semantics A m m' a).
+ elim (option_sum _ (MapGet A m a)). intro H0. elim H0. intros y H1. rewrite H1.
+ elim (option_sum _ (MapGet A m' a)). intro H2. elim H2. intros y' H3.
+ cut (MapGet A (MapDomRestrTo A A m m') a = NONE A).
+ rewrite (MapDomRestrTo_semantics A A m m' a). rewrite H3. rewrite H1. intro. discriminate H4.
+ exact (H a).
+ intro H2. rewrite H2. reflexivity.
+ intro H0. rewrite H0. case (MapGet A m' a); trivial.
Qed.
- Lemma alist_semantics_disjoint_comm : (l,l':alist)
- (eqmap A (MapDomRestrTo A A (Map_of_alist l) (Map_of_alist l')) (M0 A)) ->
- (eqm A (alist_semantics (aapp l l')) (alist_semantics (aapp l' l))).
+ Lemma alist_semantics_disjoint_comm :
+ forall l l':alist,
+ eqmap A (MapDomRestrTo A A (Map_of_alist l) (Map_of_alist l')) (M0 A) ->
+ eqm A (alist_semantics (aapp l l')) (alist_semantics (aapp l' l)).
Proof.
- Unfold eqm. Intros. Rewrite (alist_semantics_app l l' a). Rewrite (alist_semantics_app l' l a).
- Rewrite <- (alist_of_Map_of_alist l a). Rewrite <- (alist_of_Map_of_alist l' a).
- Rewrite <- (alist_semantics_app (alist_of_Map (Map_of_alist l))
- (alist_of_Map (Map_of_alist l')) a).
- Rewrite <- (alist_semantics_app (alist_of_Map (Map_of_alist l'))
- (alist_of_Map (Map_of_alist l)) a).
- Rewrite (alist_MapMerge_semantics (Map_of_alist l) (Map_of_alist l') a).
- Rewrite (alist_MapMerge_semantics_disjoint (Map_of_alist l) (Map_of_alist l') H a).
- Reflexivity.
+ unfold eqm in |- *. intros. rewrite (alist_semantics_app l l' a). rewrite (alist_semantics_app l' l a).
+ rewrite <- (alist_of_Map_of_alist l a). rewrite <- (alist_of_Map_of_alist l' a).
+ rewrite <-
+ (alist_semantics_app (alist_of_Map (Map_of_alist l))
+ (alist_of_Map (Map_of_alist l')) a).
+ rewrite <-
+ (alist_semantics_app (alist_of_Map (Map_of_alist l'))
+ (alist_of_Map (Map_of_alist l)) a).
+ rewrite (alist_MapMerge_semantics (Map_of_alist l) (Map_of_alist l') a).
+ rewrite
+ (alist_MapMerge_semantics_disjoint (Map_of_alist l) (
+ Map_of_alist l') H a).
+ reflexivity.
Qed.
End MapIter.
-
diff --git a/theories/IntMap/Maplists.v b/theories/IntMap/Maplists.v
index 6e5e40814b..bcb87179c4 100644
--- a/theories/IntMap/Maplists.v
+++ b/theories/IntMap/Maplists.v
@@ -7,304 +7,334 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Addr.
-Require Addec.
-Require Map.
-Require Fset.
-Require Mapaxioms.
-Require Mapsubset.
-Require Mapcard.
-Require Mapcanon.
-Require Mapc.
-Require Bool.
-Require Sumbool.
-Require PolyList.
-Require Arith.
-Require Mapiter.
-Require Mapfold.
+Require Import Addr.
+Require Import Addec.
+Require Import Map.
+Require Import Fset.
+Require Import Mapaxioms.
+Require Import Mapsubset.
+Require Import Mapcard.
+Require Import Mapcanon.
+Require Import Mapc.
+Require Import Bool.
+Require Import Sumbool.
+Require Import List.
+Require Import Arith.
+Require Import Mapiter.
+Require Import Mapfold.
Section MapLists.
- Fixpoint ad_in_list [a:ad;l:(list ad)] : bool :=
- Cases l of
- nil => false
- | (cons a' l') => (orb (ad_eq a a') (ad_in_list a l'))
+ Fixpoint ad_in_list (a:ad) (l:list ad) {struct l} : bool :=
+ match l with
+ | nil => false
+ | a' :: l' => orb (ad_eq a a') (ad_in_list a l')
end.
- Fixpoint ad_list_stutters [l:(list ad)] : bool :=
- Cases l of
- nil => false
- | (cons a l') => (orb (ad_in_list a l') (ad_list_stutters l'))
+ Fixpoint ad_list_stutters (l:list ad) : bool :=
+ match l with
+ | nil => false
+ | a :: l' => orb (ad_in_list a l') (ad_list_stutters l')
end.
- Lemma ad_in_list_forms_circuit : (x:ad) (l:(list ad)) (ad_in_list x l)=true ->
- {l1 : (list ad) & {l2 : (list ad) | l=(app l1 (cons x l2))}}.
- Proof.
- Induction l. Intro. Discriminate H.
- Intros. Elim (sumbool_of_bool (ad_eq x a)). Intro H1. Simpl in H0. Split with (nil ad).
- Split with l0. Rewrite (ad_eq_complete ? ? H1). Reflexivity.
- Intro H2. Simpl in H0. Rewrite H2 in H0. Simpl in H0. Elim (H H0). Intros l'1 H3.
- Split with (cons a l'1). Elim H3. Intros l2 H4. Split with l2. Rewrite H4. Reflexivity.
- Qed.
-
- Lemma ad_list_stutters_has_circuit : (l:(list ad)) (ad_list_stutters l)=true ->
- {x:ad & {l0 : (list ad) & {l1 : (list ad) & {l2 : (list ad) |
- l=(app l0 (cons x (app l1 (cons x l2))))}}}}.
- Proof.
- Induction l. Intro. Discriminate H.
- Intros. Simpl in H0. Elim (orb_true_elim ? ? H0). Intro H1. Split with a.
- Split with (nil ad). Simpl. Elim (ad_in_list_forms_circuit a l0 H1). Intros l1 H2.
- Split with l1. Elim H2. Intros l2 H3. Split with l2. Rewrite H3. Reflexivity.
- Intro H1. Elim (H H1). Intros x H2. Split with x. Elim H2. Intros l1 H3.
- Split with (cons a l1). Elim H3. Intros l2 H4. Split with l2. Elim H4. Intros l3 H5.
- Split with l3. Rewrite H5. Reflexivity.
- Qed.
-
- Fixpoint Elems [l:(list ad)] : FSet :=
- Cases l of
- nil => (M0 unit)
- | (cons a l') => (MapPut ? (Elems l') a tt)
+ Lemma ad_in_list_forms_circuit :
+ forall (x:ad) (l:list ad),
+ ad_in_list x l = true ->
+ {l1 : list ad & {l2 : list ad | l = l1 ++ x :: l2}}.
+ Proof.
+ simple induction l. intro. discriminate H.
+ intros. elim (sumbool_of_bool (ad_eq x a)). intro H1. simpl in H0. split with (nil (A:=ad)).
+ split with l0. rewrite (ad_eq_complete _ _ H1). reflexivity.
+ intro H2. simpl in H0. rewrite H2 in H0. simpl in H0. elim (H H0). intros l'1 H3.
+ split with (a :: l'1). elim H3. intros l2 H4. split with l2. rewrite H4. reflexivity.
+ Qed.
+
+ Lemma ad_list_stutters_has_circuit :
+ forall l:list ad,
+ ad_list_stutters l = true ->
+ {x : ad &
+ {l0 : list ad &
+ {l1 : list ad & {l2 : list ad | l = l0 ++ x :: l1 ++ x :: l2}}}}.
+ Proof.
+ simple induction l. intro. discriminate H.
+ intros. simpl in H0. elim (orb_true_elim _ _ H0). intro H1. split with a.
+ split with (nil (A:=ad)). simpl in |- *. elim (ad_in_list_forms_circuit a l0 H1). intros l1 H2.
+ split with l1. elim H2. intros l2 H3. split with l2. rewrite H3. reflexivity.
+ intro H1. elim (H H1). intros x H2. split with x. elim H2. intros l1 H3.
+ split with (a :: l1). elim H3. intros l2 H4. split with l2. elim H4. intros l3 H5.
+ split with l3. rewrite H5. reflexivity.
+ Qed.
+
+ Fixpoint Elems (l:list ad) : FSet :=
+ match l with
+ | nil => M0 unit
+ | a :: l' => MapPut _ (Elems l') a tt
end.
- Lemma Elems_canon : (l:(list ad)) (mapcanon ? (Elems l)).
+ Lemma Elems_canon : forall l:list ad, mapcanon _ (Elems l).
Proof.
- Induction l. Exact (M0_canon unit).
- Intros. Simpl. Apply MapPut_canon. Assumption.
+ simple induction l. exact (M0_canon unit).
+ intros. simpl in |- *. apply MapPut_canon. assumption.
Qed.
- Lemma Elems_app : (l,l':(list ad)) (Elems (app l l'))=(FSetUnion (Elems l) (Elems l')).
+ Lemma Elems_app :
+ forall l l':list ad, Elems (l ++ l') = FSetUnion (Elems l) (Elems l').
Proof.
- Induction l. Trivial.
- Intros. Simpl. Rewrite (MapPut_as_Merge_c unit (Elems l0)).
- Rewrite (MapPut_as_Merge_c unit (Elems (app l0 l'))).
- Change (FSetUnion (Elems (app l0 l')) (M1 unit a tt))
- =(FSetUnion (FSetUnion (Elems l0) (M1 unit a tt)) (Elems l')).
- Rewrite FSetUnion_comm_c. Rewrite (FSetUnion_comm_c (Elems l0) (M1 unit a tt)).
- Rewrite FSetUnion_assoc_c. Rewrite (H l'). Reflexivity.
- Apply M1_canon.
- Apply Elems_canon.
- Apply Elems_canon.
- Apply Elems_canon.
- Apply M1_canon.
- Apply Elems_canon.
- Apply M1_canon.
- Apply Elems_canon.
- Apply Elems_canon.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (MapPut_as_Merge_c unit (Elems l0)).
+ rewrite (MapPut_as_Merge_c unit (Elems (l0 ++ l'))).
+ change
+ (FSetUnion (Elems (l0 ++ l')) (M1 unit a tt) =
+ FSetUnion (FSetUnion (Elems l0) (M1 unit a tt)) (Elems l'))
+ in |- *.
+ rewrite FSetUnion_comm_c. rewrite (FSetUnion_comm_c (Elems l0) (M1 unit a tt)).
+ rewrite FSetUnion_assoc_c. rewrite (H l'). reflexivity.
+ apply M1_canon.
+ apply Elems_canon.
+ apply Elems_canon.
+ apply Elems_canon.
+ apply M1_canon.
+ apply Elems_canon.
+ apply M1_canon.
+ apply Elems_canon.
+ apply Elems_canon.
Qed.
- Lemma Elems_rev : (l:(list ad)) (Elems (rev l))=(Elems l).
+ Lemma Elems_rev : forall l:list ad, Elems (rev l) = Elems l.
Proof.
- Induction l. Trivial.
- Intros. Simpl. Rewrite Elems_app. Simpl. Rewrite (MapPut_as_Merge_c unit (Elems l0)).
- Rewrite H. Reflexivity.
- Apply Elems_canon.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite Elems_app. simpl in |- *. rewrite (MapPut_as_Merge_c unit (Elems l0)).
+ rewrite H. reflexivity.
+ apply Elems_canon.
Qed.
- Lemma ad_in_elems_in_list : (l:(list ad)) (a:ad) (in_FSet a (Elems l))=(ad_in_list a l).
+ Lemma ad_in_elems_in_list :
+ forall (l:list ad) (a:ad), in_FSet a (Elems l) = ad_in_list a l.
Proof.
- Induction l. Trivial.
- Simpl. Unfold in_FSet. Intros. Rewrite (in_dom_put ? (Elems l0) a tt a0).
- Rewrite (H a0). Reflexivity.
+ simple induction l. trivial.
+ simpl in |- *. unfold in_FSet in |- *. intros. rewrite (in_dom_put _ (Elems l0) a tt a0).
+ rewrite (H a0). reflexivity.
Qed.
- Lemma ad_list_not_stutters_card : (l:(list ad)) (ad_list_stutters l)=false ->
- (length l)=(MapCard ? (Elems l)).
+ Lemma ad_list_not_stutters_card :
+ forall l:list ad,
+ ad_list_stutters l = false -> length l = MapCard _ (Elems l).
Proof.
- Induction l. Trivial.
- Simpl. Intros. Rewrite MapCard_Put_2_conv. Rewrite H. Reflexivity.
- Elim (orb_false_elim ? ? H0). Trivial.
- Elim (sumbool_of_bool (in_FSet a (Elems l0))). Rewrite ad_in_elems_in_list.
- Intro H1. Rewrite H1 in H0. Discriminate H0.
- Exact (in_dom_none unit (Elems l0) a).
+ simple induction l. trivial.
+ simpl in |- *. intros. rewrite MapCard_Put_2_conv. rewrite H. reflexivity.
+ elim (orb_false_elim _ _ H0). trivial.
+ elim (sumbool_of_bool (in_FSet a (Elems l0))). rewrite ad_in_elems_in_list.
+ intro H1. rewrite H1 in H0. discriminate H0.
+ exact (in_dom_none unit (Elems l0) a).
Qed.
- Lemma ad_list_card : (l:(list ad)) (le (MapCard ? (Elems l)) (length l)).
+ Lemma ad_list_card : forall l:list ad, MapCard _ (Elems l) <= length l.
Proof.
- Induction l. Trivial.
- Intros. Simpl. Apply le_trans with m:=(S (MapCard ? (Elems l0))). Apply MapCard_Put_ub.
- Apply le_n_S. Assumption.
+ simple induction l. trivial.
+ intros. simpl in |- *. apply le_trans with (m := S (MapCard _ (Elems l0))). apply MapCard_Put_ub.
+ apply le_n_S. assumption.
Qed.
- Lemma ad_list_stutters_card : (l:(list ad)) (ad_list_stutters l)=true ->
- (lt (MapCard ? (Elems l)) (length l)).
+ Lemma ad_list_stutters_card :
+ forall l:list ad,
+ ad_list_stutters l = true -> MapCard _ (Elems l) < length l.
Proof.
- Induction l. Intro. Discriminate H.
- Intros. Simpl. Simpl in H0. Elim (orb_true_elim ? ? H0). Intro H1.
- Rewrite <- (ad_in_elems_in_list l0 a) in H1. Elim (in_dom_some ? ? ? H1). Intros y H2.
- Rewrite (MapCard_Put_1_conv ? ? ? ? tt H2). Apply le_lt_trans with m:=(length l0).
- Apply ad_list_card.
- Apply lt_n_Sn.
- Intro H1. Apply le_lt_trans with m:=(S (MapCard ? (Elems l0))). Apply MapCard_Put_ub.
- Apply lt_n_S. Apply H. Assumption.
+ simple induction l. intro. discriminate H.
+ intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1.
+ rewrite <- (ad_in_elems_in_list l0 a) in H1. elim (in_dom_some _ _ _ H1). intros y H2.
+ rewrite (MapCard_Put_1_conv _ _ _ _ tt H2). apply le_lt_trans with (m := length l0).
+ apply ad_list_card.
+ apply lt_n_Sn.
+ intro H1. apply le_lt_trans with (m := S (MapCard _ (Elems l0))). apply MapCard_Put_ub.
+ apply lt_n_S. apply H. assumption.
Qed.
- Lemma ad_list_not_stutters_card_conv : (l:(list ad)) (length l)=(MapCard ? (Elems l)) ->
- (ad_list_stutters l)=false.
+ Lemma ad_list_not_stutters_card_conv :
+ forall l:list ad,
+ length l = MapCard _ (Elems l) -> ad_list_stutters l = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_list_stutters l)). Intro H0.
- Cut (lt (MapCard ? (Elems l)) (length l)). Intro. Rewrite H in H1. Elim (lt_n_n ? H1).
- Exact (ad_list_stutters_card ? H0).
- Trivial.
+ intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H0.
+ cut (MapCard _ (Elems l) < length l). intro. rewrite H in H1. elim (lt_irrefl _ H1).
+ exact (ad_list_stutters_card _ H0).
+ trivial.
Qed.
- Lemma ad_list_stutters_card_conv : (l:(list ad)) (lt (MapCard ? (Elems l)) (length l)) ->
- (ad_list_stutters l)=true.
+ Lemma ad_list_stutters_card_conv :
+ forall l:list ad,
+ MapCard _ (Elems l) < length l -> ad_list_stutters l = true.
Proof.
- Intros. Elim (sumbool_of_bool (ad_list_stutters l)). Trivial.
- Intro H0. Rewrite (ad_list_not_stutters_card ? H0) in H. Elim (lt_n_n ? H).
+ intros. elim (sumbool_of_bool (ad_list_stutters l)). trivial.
+ intro H0. rewrite (ad_list_not_stutters_card _ H0) in H. elim (lt_irrefl _ H).
Qed.
- Lemma ad_in_list_l : (l,l':(list ad)) (a:ad) (ad_in_list a l)=true ->
- (ad_in_list a (app l l'))=true.
+ Lemma ad_in_list_l :
+ forall (l l':list ad) (a:ad),
+ ad_in_list a l = true -> ad_in_list a (l ++ l') = true.
Proof.
- Induction l. Intros. Discriminate H.
- Intros. Simpl. Simpl in H0. Elim (orb_true_elim ? ? H0). Intro H1. Rewrite H1. Reflexivity.
- Intro H1. Rewrite (H l' a0 H1). Apply orb_b_true.
+ simple induction l. intros. discriminate H.
+ intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity.
+ intro H1. rewrite (H l' a0 H1). apply orb_b_true.
Qed.
- Lemma ad_list_stutters_app_l : (l,l':(list ad)) (ad_list_stutters l)=true ->
- (ad_list_stutters (app l l'))=true.
+ Lemma ad_list_stutters_app_l :
+ forall l l':list ad,
+ ad_list_stutters l = true -> ad_list_stutters (l ++ l') = true.
Proof.
- Induction l. Intros. Discriminate H.
- Intros. Simpl. Simpl in H0. Elim (orb_true_elim ? ? H0). Intro H1.
- Rewrite (ad_in_list_l l0 l' a H1). Reflexivity.
- Intro H1. Rewrite (H l' H1). Apply orb_b_true.
+ simple induction l. intros. discriminate H.
+ intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1.
+ rewrite (ad_in_list_l l0 l' a H1). reflexivity.
+ intro H1. rewrite (H l' H1). apply orb_b_true.
Qed.
- Lemma ad_in_list_r : (l,l':(list ad)) (a:ad) (ad_in_list a l')=true ->
- (ad_in_list a (app l l'))=true.
+ Lemma ad_in_list_r :
+ forall (l l':list ad) (a:ad),
+ ad_in_list a l' = true -> ad_in_list a (l ++ l') = true.
Proof.
- Induction l. Trivial.
- Intros. Simpl. Rewrite (H l' a0 H0). Apply orb_b_true.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (H l' a0 H0). apply orb_b_true.
Qed.
- Lemma ad_list_stutters_app_r : (l,l':(list ad)) (ad_list_stutters l')=true ->
- (ad_list_stutters (app l l'))=true.
+ Lemma ad_list_stutters_app_r :
+ forall l l':list ad,
+ ad_list_stutters l' = true -> ad_list_stutters (l ++ l') = true.
Proof.
- Induction l. Trivial.
- Intros. Simpl. Rewrite (H l' H0). Apply orb_b_true.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (H l' H0). apply orb_b_true.
Qed.
- Lemma ad_list_stutters_app_conv_l : (l,l':(list ad)) (ad_list_stutters (app l l'))=false ->
- (ad_list_stutters l)=false.
+ Lemma ad_list_stutters_app_conv_l :
+ forall l l':list ad,
+ ad_list_stutters (l ++ l') = false -> ad_list_stutters l = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_list_stutters l)). Intro H0.
- Rewrite (ad_list_stutters_app_l l l' H0) in H. Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H0.
+ rewrite (ad_list_stutters_app_l l l' H0) in H. discriminate H.
+ trivial.
Qed.
- Lemma ad_list_stutters_app_conv_r : (l,l':(list ad)) (ad_list_stutters (app l l'))=false ->
- (ad_list_stutters l')=false.
+ Lemma ad_list_stutters_app_conv_r :
+ forall l l':list ad,
+ ad_list_stutters (l ++ l') = false -> ad_list_stutters l' = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_list_stutters l')). Intro H0.
- Rewrite (ad_list_stutters_app_r l l' H0) in H. Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_list_stutters l')). intro H0.
+ rewrite (ad_list_stutters_app_r l l' H0) in H. discriminate H.
+ trivial.
Qed.
- Lemma ad_in_list_app_1 : (l,l':(list ad)) (x:ad) (ad_in_list x (app l (cons x l')))=true.
+ Lemma ad_in_list_app_1 :
+ forall (l l':list ad) (x:ad), ad_in_list x (l ++ x :: l') = true.
Proof.
- Induction l. Simpl. Intros. Rewrite (ad_eq_correct x). Reflexivity.
- Intros. Simpl. Rewrite (H l' x). Apply orb_b_true.
+ simple induction l. simpl in |- *. intros. rewrite (ad_eq_correct x). reflexivity.
+ intros. simpl in |- *. rewrite (H l' x). apply orb_b_true.
Qed.
- Lemma ad_in_list_app : (l,l':(list ad)) (x:ad)
- (ad_in_list x (app l l'))=(orb (ad_in_list x l) (ad_in_list x l')).
+ Lemma ad_in_list_app :
+ forall (l l':list ad) (x:ad),
+ ad_in_list x (l ++ l') = orb (ad_in_list x l) (ad_in_list x l').
Proof.
- Induction l. Trivial.
- Intros. Simpl. Rewrite <- orb_assoc. Rewrite (H l' x). Reflexivity.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite <- orb_assoc. rewrite (H l' x). reflexivity.
Qed.
- Lemma ad_in_list_rev : (l:(list ad)) (x:ad)
- (ad_in_list x (rev l))=(ad_in_list x l).
+ Lemma ad_in_list_rev :
+ forall (l:list ad) (x:ad), ad_in_list x (rev l) = ad_in_list x l.
Proof.
- Induction l. Trivial.
- Intros. Simpl. Rewrite ad_in_list_app. Rewrite (H x). Simpl. Rewrite orb_b_false.
- Apply orb_sym.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite ad_in_list_app. rewrite (H x). simpl in |- *. rewrite orb_b_false.
+ apply orb_comm.
Qed.
- Lemma ad_list_has_circuit_stutters : (l0,l1,l2:(list ad)) (x:ad)
- (ad_list_stutters (app l0 (cons x (app l1 (cons x l2)))))=true.
+ Lemma ad_list_has_circuit_stutters :
+ forall (l0 l1 l2:list ad) (x:ad),
+ ad_list_stutters (l0 ++ x :: l1 ++ x :: l2) = true.
Proof.
- Induction l0. Simpl. Intros. Rewrite (ad_in_list_app_1 l1 l2 x). Reflexivity.
- Intros. Simpl. Rewrite (H l1 l2 x). Apply orb_b_true.
+ simple induction l0. simpl in |- *. intros. rewrite (ad_in_list_app_1 l1 l2 x). reflexivity.
+ intros. simpl in |- *. rewrite (H l1 l2 x). apply orb_b_true.
Qed.
- Lemma ad_list_stutters_prev_l : (l,l':(list ad)) (x:ad) (ad_in_list x l)=true ->
- (ad_list_stutters (app l (cons x l')))=true.
+ Lemma ad_list_stutters_prev_l :
+ forall (l l':list ad) (x:ad),
+ ad_in_list x l = true -> ad_list_stutters (l ++ x :: l') = true.
Proof.
- Intros. Elim (ad_in_list_forms_circuit ? ? H). Intros l0 H0. Elim H0. Intros l1 H1.
- Rewrite H1. Rewrite app_ass. Simpl. Apply ad_list_has_circuit_stutters.
+ intros. elim (ad_in_list_forms_circuit _ _ H). intros l0 H0. elim H0. intros l1 H1.
+ rewrite H1. rewrite app_ass. simpl in |- *. apply ad_list_has_circuit_stutters.
Qed.
- Lemma ad_list_stutters_prev_conv_l : (l,l':(list ad)) (x:ad)
- (ad_list_stutters (app l (cons x l')))=false -> (ad_in_list x l)=false.
+ Lemma ad_list_stutters_prev_conv_l :
+ forall (l l':list ad) (x:ad),
+ ad_list_stutters (l ++ x :: l') = false -> ad_in_list x l = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_in_list x l)). Intro H0.
- Rewrite (ad_list_stutters_prev_l l l' x H0) in H. Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_in_list x l)). intro H0.
+ rewrite (ad_list_stutters_prev_l l l' x H0) in H. discriminate H.
+ trivial.
Qed.
- Lemma ad_list_stutters_prev_r : (l,l':(list ad)) (x:ad) (ad_in_list x l')=true ->
- (ad_list_stutters (app l (cons x l')))=true.
+ Lemma ad_list_stutters_prev_r :
+ forall (l l':list ad) (x:ad),
+ ad_in_list x l' = true -> ad_list_stutters (l ++ x :: l') = true.
Proof.
- Intros. Elim (ad_in_list_forms_circuit ? ? H). Intros l0 H0. Elim H0. Intros l1 H1.
- Rewrite H1. Apply ad_list_has_circuit_stutters.
+ intros. elim (ad_in_list_forms_circuit _ _ H). intros l0 H0. elim H0. intros l1 H1.
+ rewrite H1. apply ad_list_has_circuit_stutters.
Qed.
- Lemma ad_list_stutters_prev_conv_r : (l,l':(list ad)) (x:ad)
- (ad_list_stutters (app l (cons x l')))=false -> (ad_in_list x l')=false.
+ Lemma ad_list_stutters_prev_conv_r :
+ forall (l l':list ad) (x:ad),
+ ad_list_stutters (l ++ x :: l') = false -> ad_in_list x l' = false.
Proof.
- Intros. Elim (sumbool_of_bool (ad_in_list x l')). Intro H0.
- Rewrite (ad_list_stutters_prev_r l l' x H0) in H. Discriminate H.
- Trivial.
+ intros. elim (sumbool_of_bool (ad_in_list x l')). intro H0.
+ rewrite (ad_list_stutters_prev_r l l' x H0) in H. discriminate H.
+ trivial.
Qed.
- Lemma ad_list_Elems : (l,l':(list ad)) (MapCard ? (Elems l))=(MapCard ? (Elems l')) ->
- (length l)=(length l') ->
- (ad_list_stutters l)=(ad_list_stutters l').
+ Lemma ad_list_Elems :
+ forall l l':list ad,
+ MapCard _ (Elems l) = MapCard _ (Elems l') ->
+ length l = length l' -> ad_list_stutters l = ad_list_stutters l'.
Proof.
- Intros. Elim (sumbool_of_bool (ad_list_stutters l)). Intro H1. Rewrite H1. Apply sym_eq.
- Apply ad_list_stutters_card_conv. Rewrite <- H. Rewrite <- H0. Apply ad_list_stutters_card.
- Assumption.
- Intro H1. Rewrite H1. Apply sym_eq. Apply ad_list_not_stutters_card_conv. Rewrite <- H.
- Rewrite <- H0. Apply ad_list_not_stutters_card. Assumption.
+ intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H1. rewrite H1. apply sym_eq.
+ apply ad_list_stutters_card_conv. rewrite <- H. rewrite <- H0. apply ad_list_stutters_card.
+ assumption.
+ intro H1. rewrite H1. apply sym_eq. apply ad_list_not_stutters_card_conv. rewrite <- H.
+ rewrite <- H0. apply ad_list_not_stutters_card. assumption.
Qed.
- Lemma ad_list_app_length : (l,l':(list ad)) (length (app l l'))=(plus (length l) (length l')).
+ Lemma ad_list_app_length :
+ forall l l':list ad, length (l ++ l') = length l + length l'.
Proof.
- Induction l. Trivial.
- Intros. Simpl. Rewrite (H l'). Reflexivity.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (H l'). reflexivity.
Qed.
- Lemma ad_list_stutters_permute : (l,l':(list ad))
- (ad_list_stutters (app l l'))=(ad_list_stutters (app l' l)).
+ Lemma ad_list_stutters_permute :
+ forall l l':list ad,
+ ad_list_stutters (l ++ l') = ad_list_stutters (l' ++ l).
Proof.
- Intros. Apply ad_list_Elems. Rewrite Elems_app. Rewrite Elems_app.
- Rewrite (FSetUnion_comm_c ? ? (Elems_canon l) (Elems_canon l')). Reflexivity.
- Rewrite ad_list_app_length. Rewrite ad_list_app_length. Apply plus_sym.
+ intros. apply ad_list_Elems. rewrite Elems_app. rewrite Elems_app.
+ rewrite (FSetUnion_comm_c _ _ (Elems_canon l) (Elems_canon l')). reflexivity.
+ rewrite ad_list_app_length. rewrite ad_list_app_length. apply plus_comm.
Qed.
- Lemma ad_list_rev_length : (l:(list ad)) (length (rev l))=(length l).
+ Lemma ad_list_rev_length : forall l:list ad, length (rev l) = length l.
Proof.
- Induction l. Trivial.
- Intros. Simpl. Rewrite ad_list_app_length. Simpl. Rewrite H. Rewrite <- plus_Snm_nSm.
- Rewrite <- plus_n_O. Reflexivity.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite ad_list_app_length. simpl in |- *. rewrite H. rewrite <- plus_Snm_nSm.
+ rewrite <- plus_n_O. reflexivity.
Qed.
- Lemma ad_list_stutters_rev : (l:(list ad)) (ad_list_stutters (rev l))=(ad_list_stutters l).
+ Lemma ad_list_stutters_rev :
+ forall l:list ad, ad_list_stutters (rev l) = ad_list_stutters l.
Proof.
- Intros. Apply ad_list_Elems. Rewrite Elems_rev. Reflexivity.
- Apply ad_list_rev_length.
+ intros. apply ad_list_Elems. rewrite Elems_rev. reflexivity.
+ apply ad_list_rev_length.
Qed.
- Lemma ad_list_app_rev : (l,l':(list ad)) (x:ad)
- (app (rev l) (cons x l'))=(app (rev (cons x l)) l').
+ Lemma ad_list_app_rev :
+ forall (l l':list ad) (x:ad), rev l ++ x :: l' = rev (x :: l) ++ l'.
Proof.
- Induction l. Trivial.
- Intros. Simpl. Rewrite (app_ass (rev l0) (cons a (nil ad)) (cons x l')). Simpl.
- Rewrite (H (cons x l') a). Simpl.
- Rewrite (app_ass (rev l0) (cons a (nil ad)) (cons x (nil ad))). Simpl.
- Rewrite app_ass. Simpl. Rewrite app_ass. Reflexivity.
+ simple induction l. trivial.
+ intros. simpl in |- *. rewrite (app_ass (rev l0) (a :: nil) (x :: l')). simpl in |- *.
+ rewrite (H (x :: l') a). simpl in |- *.
+ rewrite (app_ass (rev l0) (a :: nil) (x :: nil)). simpl in |- *.
+ rewrite app_ass. simpl in |- *. rewrite app_ass. reflexivity.
Qed.
Section ListOfDomDef.
@@ -312,88 +342,96 @@ Section MapLists.
Variable A : Set.
Definition ad_list_of_dom :=
- (MapFold A (list ad) (nil ad) (!app ad) [a:ad][_:A] (cons a (nil ad))).
+ MapFold A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil).
- Lemma ad_in_list_of_dom_in_dom : (m:(Map A)) (a:ad)
- (ad_in_list a (ad_list_of_dom m))=(in_dom A a m).
+ Lemma ad_in_list_of_dom_in_dom :
+ forall (m:Map A) (a:ad), ad_in_list a (ad_list_of_dom m) = in_dom A a m.
Proof.
- Unfold ad_list_of_dom. Intros.
- Rewrite (MapFold_distr_l A (list ad) (nil ad) (!app ad) bool false orb
- ad [a:ad][l:(list ad)](ad_in_list a l) [c:ad](refl_equal ? ?)
- ad_in_list_app [a0:ad][_:A](cons a0 (nil ad)) m a).
- Simpl. Rewrite (MapFold_orb A [a0:ad][_:A](orb (ad_eq a a0) false) m).
- Elim (option_sum ? (MapSweep A [a0:ad][_:A](orb (ad_eq a a0) false) m)). Intro H. Elim H.
- Intro r. Elim r. Intros a0 y H0. Rewrite H0. Unfold in_dom.
- Elim (orb_prop ? ? (MapSweep_semantics_1 ? ? ? ? ? H0)). Intro H1.
- Rewrite (ad_eq_complete ? ? H1). Rewrite (MapSweep_semantics_2 A ? ? ? ? H0). Reflexivity.
- Intro H1. Discriminate H1.
- Intro H. Rewrite H. Elim (sumbool_of_bool (in_dom A a m)). Intro H0.
- Elim (in_dom_some A m a H0). Intros y H1.
- Elim (orb_false_elim ? ? (MapSweep_semantics_3 ? ? ? H ? ? H1)). Intro H2.
- Rewrite (ad_eq_correct a) in H2. Discriminate H2.
- Exact (sym_eq ? ? ?).
+ unfold ad_list_of_dom in |- *. intros.
+ rewrite
+ (MapFold_distr_l A (list ad) nil (app (A:=ad)) bool false orb ad
+ (fun (a:ad) (l:list ad) => ad_in_list a l) (
+ fun c:ad => refl_equal _) ad_in_list_app
+ (fun (a0:ad) (_:A) => a0 :: nil) m a).
+ simpl in |- *. rewrite (MapFold_orb A (fun (a0:ad) (_:A) => orb (ad_eq a a0) false) m).
+ elim
+ (option_sum _
+ (MapSweep A (fun (a0:ad) (_:A) => orb (ad_eq a a0) false) m)). intro H. elim H.
+ intro r. elim r. intros a0 y H0. rewrite H0. unfold in_dom in |- *.
+ elim (orb_prop _ _ (MapSweep_semantics_1 _ _ _ _ _ H0)). intro H1.
+ rewrite (ad_eq_complete _ _ H1). rewrite (MapSweep_semantics_2 A _ _ _ _ H0). reflexivity.
+ intro H1. discriminate H1.
+ intro H. rewrite H. elim (sumbool_of_bool (in_dom A a m)). intro H0.
+ elim (in_dom_some A m a H0). intros y H1.
+ elim (orb_false_elim _ _ (MapSweep_semantics_3 _ _ _ H _ _ H1)). intro H2.
+ rewrite (ad_eq_correct a) in H2. discriminate H2.
+ exact (sym_eq (y:=_)).
Qed.
- Lemma Elems_of_list_of_dom :
- (m:(Map A)) (eqmap unit (Elems (ad_list_of_dom m)) (MapDom A m)).
+ Lemma Elems_of_list_of_dom :
+ forall m:Map A, eqmap unit (Elems (ad_list_of_dom m)) (MapDom A m).
Proof.
- Unfold eqmap eqm. Intros. Elim (sumbool_of_bool (in_FSet a (Elems (ad_list_of_dom m)))).
- Intro H. Elim (in_dom_some ? ? ? H). Intro t. Elim t. Intro H0.
- Rewrite (ad_in_elems_in_list (ad_list_of_dom m) a) in H.
- Rewrite (ad_in_list_of_dom_in_dom m a) in H. Rewrite (MapDom_Dom A m a) in H.
- Elim (in_dom_some ? ? ? H). Intro t'. Elim t'. Intro H1. Rewrite H1. Assumption.
- Intro H. Rewrite (in_dom_none ? ? ? H).
- Rewrite (ad_in_elems_in_list (ad_list_of_dom m) a) in H.
- Rewrite (ad_in_list_of_dom_in_dom m a) in H. Rewrite (MapDom_Dom A m a) in H.
- Rewrite (in_dom_none ? ? ? H). Reflexivity.
+ unfold eqmap, eqm in |- *. intros. elim (sumbool_of_bool (in_FSet a (Elems (ad_list_of_dom m)))).
+ intro H. elim (in_dom_some _ _ _ H). intro t. elim t. intro H0.
+ rewrite (ad_in_elems_in_list (ad_list_of_dom m) a) in H.
+ rewrite (ad_in_list_of_dom_in_dom m a) in H. rewrite (MapDom_Dom A m a) in H.
+ elim (in_dom_some _ _ _ H). intro t'. elim t'. intro H1. rewrite H1. assumption.
+ intro H. rewrite (in_dom_none _ _ _ H).
+ rewrite (ad_in_elems_in_list (ad_list_of_dom m) a) in H.
+ rewrite (ad_in_list_of_dom_in_dom m a) in H. rewrite (MapDom_Dom A m a) in H.
+ rewrite (in_dom_none _ _ _ H). reflexivity.
Qed.
- Lemma Elems_of_list_of_dom_c : (m:(Map A)) (mapcanon A m) ->
- (Elems (ad_list_of_dom m))=(MapDom A m).
+ Lemma Elems_of_list_of_dom_c :
+ forall m:Map A, mapcanon A m -> Elems (ad_list_of_dom m) = MapDom A m.
Proof.
- Intros. Apply (mapcanon_unique unit). Apply Elems_canon.
- Apply MapDom_canon. Assumption.
- Apply Elems_of_list_of_dom.
+ intros. apply (mapcanon_unique unit). apply Elems_canon.
+ apply MapDom_canon. assumption.
+ apply Elems_of_list_of_dom.
Qed.
- Lemma ad_list_of_dom_card_1 : (m:(Map A)) (pf:ad->ad)
- (length (MapFold1 A (list ad) (nil ad) (app 1!ad) [a:ad][_:A](cons a (nil ad)) pf m))=
- (MapCard A m).
+ Lemma ad_list_of_dom_card_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ length
+ (MapFold1 A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil)
+ pf m) = MapCard A m.
Proof.
- Induction m; Try Trivial. Simpl. Intros. Rewrite ad_list_app_length.
- Rewrite (H [a0:ad](pf (ad_double a0))). Rewrite (H0 [a0:ad](pf (ad_double_plus_un a0))).
- Reflexivity.
+ simple induction m; try trivial. simpl in |- *. intros. rewrite ad_list_app_length.
+ rewrite (H (fun a0:ad => pf (ad_double a0))). rewrite (H0 (fun a0:ad => pf (ad_double_plus_un a0))).
+ reflexivity.
Qed.
- Lemma ad_list_of_dom_card : (m:(Map A)) (length (ad_list_of_dom m))=(MapCard A m).
+ Lemma ad_list_of_dom_card :
+ forall m:Map A, length (ad_list_of_dom m) = MapCard A m.
Proof.
- Exact [m:(Map A)](ad_list_of_dom_card_1 m [a:ad]a).
+ exact (fun m:Map A => ad_list_of_dom_card_1 m (fun a:ad => a)).
Qed.
- Lemma ad_list_of_dom_not_stutters :
- (m:(Map A)) (ad_list_stutters (ad_list_of_dom m))=false.
+ Lemma ad_list_of_dom_not_stutters :
+ forall m:Map A, ad_list_stutters (ad_list_of_dom m) = false.
Proof.
- Intro. Apply ad_list_not_stutters_card_conv. Rewrite ad_list_of_dom_card. Apply sym_eq.
- Rewrite (MapCard_Dom A m). Apply MapCard_ext. Exact (Elems_of_list_of_dom m).
+ intro. apply ad_list_not_stutters_card_conv. rewrite ad_list_of_dom_card. apply sym_eq.
+ rewrite (MapCard_Dom A m). apply MapCard_ext. exact (Elems_of_list_of_dom m).
Qed.
End ListOfDomDef.
- Lemma ad_list_of_dom_Dom_1 : (A:Set)
- (m:(Map A)) (pf:ad->ad)
- (MapFold1 A (list ad) (nil ad) (app 1!ad)
- [a:ad][_:A](cons a (nil ad)) pf m)=
- (MapFold1 unit (list ad) (nil ad) (app 1!ad)
- [a:ad][_:unit](cons a (nil ad)) pf (MapDom A m)).
+ Lemma ad_list_of_dom_Dom_1 :
+ forall (A:Set) (m:Map A) (pf:ad -> ad),
+ MapFold1 A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil) pf
+ m =
+ MapFold1 unit (list ad) nil (app (A:=ad))
+ (fun (a:ad) (_:unit) => a :: nil) pf (MapDom A m).
Proof.
- Induction m; Try Trivial. Simpl. Intros. Rewrite (H [a0:ad](pf (ad_double a0))).
- Rewrite (H0 [a0:ad](pf (ad_double_plus_un a0))). Reflexivity.
+ simple induction m; try trivial. simpl in |- *. intros. rewrite (H (fun a0:ad => pf (ad_double a0))).
+ rewrite (H0 (fun a0:ad => pf (ad_double_plus_un a0))). reflexivity.
Qed.
- Lemma ad_list_of_dom_Dom : (A:Set) (m:(Map A))
- (ad_list_of_dom A m)=(ad_list_of_dom unit (MapDom A m)).
+ Lemma ad_list_of_dom_Dom :
+ forall (A:Set) (m:Map A),
+ ad_list_of_dom A m = ad_list_of_dom unit (MapDom A m).
Proof.
- Intros. Exact (ad_list_of_dom_Dom_1 A m [a0:ad]a0).
+ intros. exact (ad_list_of_dom_Dom_1 A m (fun a0:ad => a0)).
Qed.
-End MapLists.
+End MapLists. \ No newline at end of file
diff --git a/theories/IntMap/Mapsubset.v b/theories/IntMap/Mapsubset.v
index defe49712c..cff8f670bb 100644
--- a/theories/IntMap/Mapsubset.v
+++ b/theories/IntMap/Mapsubset.v
@@ -7,548 +7,600 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Bool.
-Require Sumbool.
-Require Arith.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
-Require Fset.
-Require Mapaxioms.
-Require Mapiter.
+Require Import Bool.
+Require Import Sumbool.
+Require Import Arith.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Fset.
+Require Import Mapaxioms.
+Require Import Mapiter.
Section MapSubsetDef.
- Variable A, B : Set.
+ Variables A B : Set.
- Definition MapSubset := [m:(Map A)] [m':(Map B)]
- (a:ad) (in_dom A a m)=true -> (in_dom B a m')=true.
+ Definition MapSubset (m:Map A) (m':Map B) :=
+ forall a:ad, in_dom A a m = true -> in_dom B a m' = true.
- Definition MapSubset_1 := [m:(Map A)] [m':(Map B)]
- Cases (MapSweep A [a:ad][_:A] (negb (in_dom B a m')) m) of
- NONE => true
- | _ => false
- end.
+ Definition MapSubset_1 (m:Map A) (m':Map B) :=
+ match MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m with
+ | NONE => true
+ | _ => false
+ end.
- Definition MapSubset_2 := [m:(Map A)] [m':(Map B)]
- (eqmap A (MapDomRestrBy A B m m') (M0 A)).
+ Definition MapSubset_2 (m:Map A) (m':Map B) :=
+ eqmap A (MapDomRestrBy A B m m') (M0 A).
- Lemma MapSubset_imp_1 : (m:(Map A)) (m':(Map B))
- (MapSubset m m') -> (MapSubset_1 m m')=true.
+ Lemma MapSubset_imp_1 :
+ forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_1 m m' = true.
Proof.
- Unfold MapSubset MapSubset_1. Intros.
- Elim (option_sum ? (MapSweep A [a:ad][_:A](negb (in_dom B a m')) m)).
- Intro H0. Elim H0. Intro r. Elim r. Intros a y H1. Cut (negb (in_dom B a m'))=true.
- Intro. Cut (in_dom A a m)=false. Intro. Unfold in_dom in H3.
- Rewrite (MapSweep_semantics_2 ? ? m a y H1) in H3. Discriminate H3.
- Elim (sumbool_of_bool (in_dom A a m)). Intro H3. Rewrite (H a H3) in H2. Discriminate H2.
- Trivial.
- Exact (MapSweep_semantics_1 ? ? m a y H1).
- Intro H0. Rewrite H0. Reflexivity.
+ unfold MapSubset, MapSubset_1 in |- *. intros.
+ elim
+ (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)).
+ intro H0. elim H0. intro r. elim r. intros a y H1. cut (negb (in_dom B a m') = true).
+ intro. cut (in_dom A a m = false). intro. unfold in_dom in H3.
+ rewrite (MapSweep_semantics_2 _ _ m a y H1) in H3. discriminate H3.
+ elim (sumbool_of_bool (in_dom A a m)). intro H3. rewrite (H a H3) in H2. discriminate H2.
+ trivial.
+ exact (MapSweep_semantics_1 _ _ m a y H1).
+ intro H0. rewrite H0. reflexivity.
Qed.
- Lemma MapSubset_1_imp : (m:(Map A)) (m':(Map B))
- (MapSubset_1 m m')=true -> (MapSubset m m').
+ Lemma MapSubset_1_imp :
+ forall (m:Map A) (m':Map B), MapSubset_1 m m' = true -> MapSubset m m'.
Proof.
- Unfold MapSubset MapSubset_1. Unfold 2 in_dom. Intros. Elim (option_sum ? (MapGet A m a)).
- Intro H1. Elim H1. Intros y H2.
- Elim (option_sum ? (MapSweep A [a:ad][_:A](negb (in_dom B a m')) m)). Intro H3.
- Elim H3. Intro r. Elim r. Intros a' y' H4. Rewrite H4 in H. Discriminate H.
- Intro H3. Cut (negb (in_dom B a m'))=false. Intro. Rewrite (negb_intro (in_dom B a m')).
- Rewrite H4. Reflexivity.
- Exact (MapSweep_semantics_3 ? ? m H3 a y H2).
- Intro H1. Rewrite H1 in H0. Discriminate H0.
+ unfold MapSubset, MapSubset_1 in |- *. unfold in_dom at 2 in |- *. intros. elim (option_sum _ (MapGet A m a)).
+ intro H1. elim H1. intros y H2.
+ elim
+ (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)). intro H3.
+ elim H3. intro r. elim r. intros a' y' H4. rewrite H4 in H. discriminate H.
+ intro H3. cut (negb (in_dom B a m') = false). intro. rewrite (negb_intro (in_dom B a m')).
+ rewrite H4. reflexivity.
+ exact (MapSweep_semantics_3 _ _ m H3 a y H2).
+ intro H1. rewrite H1 in H0. discriminate H0.
Qed.
- Lemma map_dom_empty_1 :
- (m:(Map A)) (eqmap A m (M0 A)) -> (a:ad) (in_dom ? a m)=false.
+ Lemma map_dom_empty_1 :
+ forall m:Map A, eqmap A m (M0 A) -> forall a:ad, in_dom _ a m = false.
Proof.
- Unfold eqmap eqm in_dom. Intros. Rewrite (H a). Reflexivity.
+ unfold eqmap, eqm, in_dom in |- *. intros. rewrite (H a). reflexivity.
Qed.
- Lemma map_dom_empty_2 :
- (m:(Map A)) ((a:ad) (in_dom ? a m)=false) -> (eqmap A m (M0 A)).
+ Lemma map_dom_empty_2 :
+ forall m:Map A, (forall a:ad, in_dom _ a m = false) -> eqmap A m (M0 A).
Proof.
- Unfold eqmap eqm in_dom. Intros.
- Cut (Cases (MapGet A m a) of NONE => false | (SOME _) => true end)=false.
- Case (MapGet A m a). Trivial.
- Intros. Discriminate H0.
- Exact (H a).
+ unfold eqmap, eqm, in_dom in |- *. intros.
+ cut
+ (match MapGet A m a with
+ | NONE => false
+ | SOME _ => true
+ end = false).
+ case (MapGet A m a). trivial.
+ intros. discriminate H0.
+ exact (H a).
Qed.
- Lemma MapSubset_imp_2 :
- (m:(Map A)) (m':(Map B)) (MapSubset m m') -> (MapSubset_2 m m').
+ Lemma MapSubset_imp_2 :
+ forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_2 m m'.
Proof.
- Unfold MapSubset MapSubset_2. Intros. Apply map_dom_empty_2. Intro. Rewrite in_dom_restrby.
- Elim (sumbool_of_bool (in_dom A a m)). Intro H0. Rewrite H0. Rewrite (H a H0). Reflexivity.
- Intro H0. Rewrite H0. Reflexivity.
+ unfold MapSubset, MapSubset_2 in |- *. intros. apply map_dom_empty_2. intro. rewrite in_dom_restrby.
+ elim (sumbool_of_bool (in_dom A a m)). intro H0. rewrite H0. rewrite (H a H0). reflexivity.
+ intro H0. rewrite H0. reflexivity.
Qed.
- Lemma MapSubset_2_imp :
- (m:(Map A)) (m':(Map B)) (MapSubset_2 m m') -> (MapSubset m m').
+ Lemma MapSubset_2_imp :
+ forall (m:Map A) (m':Map B), MapSubset_2 m m' -> MapSubset m m'.
Proof.
- Unfold MapSubset MapSubset_2. Intros. Cut (in_dom ? a (MapDomRestrBy A B m m'))=false.
- Rewrite in_dom_restrby. Intro. Elim (andb_false_elim ? ? H1). Rewrite H0.
- Intro H2. Discriminate H2.
- Intro H2. Rewrite (negb_intro (in_dom B a m')). Rewrite H2. Reflexivity.
- Exact (map_dom_empty_1 ? H a).
+ unfold MapSubset, MapSubset_2 in |- *. intros. cut (in_dom _ a (MapDomRestrBy A B m m') = false).
+ rewrite in_dom_restrby. intro. elim (andb_false_elim _ _ H1). rewrite H0.
+ intro H2. discriminate H2.
+ intro H2. rewrite (negb_intro (in_dom B a m')). rewrite H2. reflexivity.
+ exact (map_dom_empty_1 _ H a).
Qed.
End MapSubsetDef.
Section MapSubsetOrder.
- Variable A, B, C : Set.
+ Variables A B C : Set.
- Lemma MapSubset_refl : (m:(Map A)) (MapSubset A A m m).
+ Lemma MapSubset_refl : forall m:Map A, MapSubset A A m m.
Proof.
- Unfold MapSubset. Trivial.
+ unfold MapSubset in |- *. trivial.
Qed.
- Lemma MapSubset_antisym : (m:(Map A)) (m':(Map B))
- (MapSubset A B m m') -> (MapSubset B A m' m) ->
- (eqmap unit (MapDom A m) (MapDom B m')).
+ Lemma MapSubset_antisym :
+ forall (m:Map A) (m':Map B),
+ MapSubset A B m m' ->
+ MapSubset B A m' m -> eqmap unit (MapDom A m) (MapDom B m').
Proof.
- Unfold MapSubset eqmap eqm. Intros. Elim (option_sum ? (MapGet ? (MapDom A m) a)).
- Intro H1. Elim H1. Intro t. Elim t. Intro H2. Elim (option_sum ? (MapGet ? (MapDom B m') a)).
- Intro H3. Elim H3. Intro t'. Elim t'. Intro H4. Rewrite H4. Exact H2.
- Intro H3. Cut (in_dom B a m')=true. Intro. Rewrite (MapDom_Dom B m' a) in H4.
- Unfold in_FSet in_dom in H4. Rewrite H3 in H4. Discriminate H4.
- Apply H. Rewrite (MapDom_Dom A m a). Unfold in_FSet in_dom. Rewrite H2. Reflexivity.
- Intro H1. Elim (option_sum ? (MapGet ? (MapDom B m') a)). Intro H2. Elim H2. Intros t H3.
- Cut (in_dom A a m)=true. Intro. Rewrite (MapDom_Dom A m a) in H4. Unfold in_FSet in_dom in H4.
- Rewrite H1 in H4. Discriminate H4.
- Apply H0. Rewrite (MapDom_Dom B m' a). Unfold in_FSet in_dom. Rewrite H3. Reflexivity.
- Intro H2. Rewrite H2. Exact H1.
+ unfold MapSubset, eqmap, eqm in |- *. intros. elim (option_sum _ (MapGet _ (MapDom A m) a)).
+ intro H1. elim H1. intro t. elim t. intro H2. elim (option_sum _ (MapGet _ (MapDom B m') a)).
+ intro H3. elim H3. intro t'. elim t'. intro H4. rewrite H4. exact H2.
+ intro H3. cut (in_dom B a m' = true). intro. rewrite (MapDom_Dom B m' a) in H4.
+ unfold in_FSet, in_dom in H4. rewrite H3 in H4. discriminate H4.
+ apply H. rewrite (MapDom_Dom A m a). unfold in_FSet, in_dom in |- *. rewrite H2. reflexivity.
+ intro H1. elim (option_sum _ (MapGet _ (MapDom B m') a)). intro H2. elim H2. intros t H3.
+ cut (in_dom A a m = true). intro. rewrite (MapDom_Dom A m a) in H4. unfold in_FSet, in_dom in H4.
+ rewrite H1 in H4. discriminate H4.
+ apply H0. rewrite (MapDom_Dom B m' a). unfold in_FSet, in_dom in |- *. rewrite H3. reflexivity.
+ intro H2. rewrite H2. exact H1.
Qed.
- Lemma MapSubset_trans : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (MapSubset A B m m') -> (MapSubset B C m' m'') -> (MapSubset A C m m'').
+ Lemma MapSubset_trans :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ MapSubset A B m m' -> MapSubset B C m' m'' -> MapSubset A C m m''.
Proof.
- Unfold MapSubset. Intros. Apply H0. Apply H. Assumption.
+ unfold MapSubset in |- *. intros. apply H0. apply H. assumption.
Qed.
End MapSubsetOrder.
Section FSubsetOrder.
- Lemma FSubset_refl : (s:FSet) (MapSubset ? ? s s).
+ Lemma FSubset_refl : forall s:FSet, MapSubset _ _ s s.
Proof.
- Exact (MapSubset_refl unit).
+ exact (MapSubset_refl unit).
Qed.
- Lemma FSubset_antisym : (s,s':FSet)
- (MapSubset ? ? s s') -> (MapSubset ? ? s' s) -> (eqmap unit s s').
+ Lemma FSubset_antisym :
+ forall s s':FSet,
+ MapSubset _ _ s s' -> MapSubset _ _ s' s -> eqmap unit s s'.
Proof.
- Intros. Rewrite <- (FSet_Dom s). Rewrite <- (FSet_Dom s').
- Exact (MapSubset_antisym ? ? s s' H H0).
+ intros. rewrite <- (FSet_Dom s). rewrite <- (FSet_Dom s').
+ exact (MapSubset_antisym _ _ s s' H H0).
Qed.
- Lemma FSubset_trans : (s,s',s'':FSet)
- (MapSubset ? ? s s') -> (MapSubset ? ? s' s'') -> (MapSubset ? ? s s'').
+ Lemma FSubset_trans :
+ forall s s' s'':FSet,
+ MapSubset _ _ s s' -> MapSubset _ _ s' s'' -> MapSubset _ _ s s''.
Proof.
- Exact (MapSubset_trans unit unit unit).
+ exact (MapSubset_trans unit unit unit).
Qed.
End FSubsetOrder.
Section MapSubsetExtra.
- Variable A, B : Set.
+ Variables A B : Set.
- Lemma MapSubset_Dom_1 : (m:(Map A)) (m':(Map B))
- (MapSubset A B m m') -> (MapSubset unit unit (MapDom A m) (MapDom B m')).
+ Lemma MapSubset_Dom_1 :
+ forall (m:Map A) (m':Map B),
+ MapSubset A B m m' -> MapSubset unit unit (MapDom A m) (MapDom B m').
Proof.
- Unfold MapSubset. Intros. Elim (MapDom_semantics_2 ? m a H0). Intros y H1.
- Cut (in_dom A a m)=true->(in_dom B a m')=true. Intro. Unfold in_dom in H2.
- Rewrite H1 in H2. Elim (option_sum ? (MapGet B m' a)). Intro H3. Elim H3.
- Intros y' H4. Exact (MapDom_semantics_1 ? m' a y' H4).
- Intro H3. Rewrite H3 in H2. Cut false=true. Intro. Discriminate H4.
- Apply H2. Reflexivity.
- Exact (H a).
+ unfold MapSubset in |- *. intros. elim (MapDom_semantics_2 _ m a H0). intros y H1.
+ cut (in_dom A a m = true -> in_dom B a m' = true). intro. unfold in_dom in H2.
+ rewrite H1 in H2. elim (option_sum _ (MapGet B m' a)). intro H3. elim H3.
+ intros y' H4. exact (MapDom_semantics_1 _ m' a y' H4).
+ intro H3. rewrite H3 in H2. cut (false = true). intro. discriminate H4.
+ apply H2. reflexivity.
+ exact (H a).
Qed.
- Lemma MapSubset_Dom_2 : (m:(Map A)) (m':(Map B))
- (MapSubset unit unit (MapDom A m) (MapDom B m')) -> (MapSubset A B m m').
+ Lemma MapSubset_Dom_2 :
+ forall (m:Map A) (m':Map B),
+ MapSubset unit unit (MapDom A m) (MapDom B m') -> MapSubset A B m m'.
Proof.
- Unfold MapSubset. Intros. Unfold in_dom in H0. Elim (option_sum ? (MapGet A m a)).
- Intro H1. Elim H1. Intros y H2.
- Elim (MapDom_semantics_2 ? ? ? (H a (MapDom_semantics_1 ? ? ? ? H2))). Intros y' H3.
- Unfold in_dom. Rewrite H3. Reflexivity.
- Intro H1. Rewrite H1 in H0. Discriminate H0.
+ unfold MapSubset in |- *. intros. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)).
+ intro H1. elim H1. intros y H2.
+ elim (MapDom_semantics_2 _ _ _ (H a (MapDom_semantics_1 _ _ _ _ H2))). intros y' H3.
+ unfold in_dom in |- *. rewrite H3. reflexivity.
+ intro H1. rewrite H1 in H0. discriminate H0.
Qed.
- Lemma MapSubset_1_Dom : (m:(Map A)) (m':(Map B))
- (MapSubset_1 A B m m')=(MapSubset_1 unit unit (MapDom A m) (MapDom B m')).
+ Lemma MapSubset_1_Dom :
+ forall (m:Map A) (m':Map B),
+ MapSubset_1 A B m m' = MapSubset_1 unit unit (MapDom A m) (MapDom B m').
Proof.
- Intros. Elim (sumbool_of_bool (MapSubset_1 A B m m')). Intro H. Rewrite H.
- Apply sym_eq. Apply MapSubset_imp_1. Apply MapSubset_Dom_1. Exact (MapSubset_1_imp ? ? ? ? H).
- Intro H. Rewrite H. Elim (sumbool_of_bool (MapSubset_1 unit unit (MapDom A m) (MapDom B m'))).
- Intro H0.
- Rewrite (MapSubset_imp_1 ? ? ? ? (MapSubset_Dom_2 ? ? (MapSubset_1_imp ? ? ? ? H0))) in H.
- Discriminate H.
- Intro. Apply sym_eq. Assumption.
+ intros. elim (sumbool_of_bool (MapSubset_1 A B m m')). intro H. rewrite H.
+ apply sym_eq. apply MapSubset_imp_1. apply MapSubset_Dom_1. exact (MapSubset_1_imp _ _ _ _ H).
+ intro H. rewrite H. elim (sumbool_of_bool (MapSubset_1 unit unit (MapDom A m) (MapDom B m'))).
+ intro H0.
+ rewrite
+ (MapSubset_imp_1 _ _ _ _
+ (MapSubset_Dom_2 _ _ (MapSubset_1_imp _ _ _ _ H0)))
+ in H.
+ discriminate H.
+ intro. apply sym_eq. assumption.
Qed.
- Lemma MapSubset_Put : (m:(Map A)) (a:ad) (y:A) (MapSubset A A m (MapPut A m a y)).
+ Lemma MapSubset_Put :
+ forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut A m a y).
Proof.
- Unfold MapSubset. Intros. Rewrite in_dom_put. Rewrite H. Apply orb_b_true.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite H. apply orb_b_true.
Qed.
- Lemma MapSubset_Put_mono : (m:(Map A)) (m':(Map B)) (a:ad) (y:A) (y':B)
- (MapSubset A B m m') -> (MapSubset A B (MapPut A m a y) (MapPut B m' a y')).
+ Lemma MapSubset_Put_mono :
+ forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B),
+ MapSubset A B m m' -> MapSubset A B (MapPut A m a y) (MapPut B m' a y').
Proof.
- Unfold MapSubset. Intros. Rewrite in_dom_put. Rewrite (in_dom_put A m a y a0) in H0.
- Elim (orb_true_elim ? ? H0). Intro H1. Rewrite H1. Reflexivity.
- Intro H1. Rewrite (H ? H1). Apply orb_b_true.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite (in_dom_put A m a y a0) in H0.
+ elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity.
+ intro H1. rewrite (H _ H1). apply orb_b_true.
Qed.
- Lemma MapSubset_Put_behind :
- (m:(Map A)) (a:ad) (y:A) (MapSubset A A m (MapPut_behind A m a y)).
+ Lemma MapSubset_Put_behind :
+ forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut_behind A m a y).
Proof.
- Unfold MapSubset. Intros. Rewrite in_dom_put_behind. Rewrite H. Apply orb_b_true.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put_behind. rewrite H. apply orb_b_true.
Qed.
- Lemma MapSubset_Put_behind_mono : (m:(Map A)) (m':(Map B)) (a:ad) (y:A) (y':B)
- (MapSubset A B m m') ->
- (MapSubset A B (MapPut_behind A m a y) (MapPut_behind B m' a y')).
+ Lemma MapSubset_Put_behind_mono :
+ forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B),
+ MapSubset A B m m' ->
+ MapSubset A B (MapPut_behind A m a y) (MapPut_behind B m' a y').
Proof.
- Unfold MapSubset. Intros. Rewrite in_dom_put_behind.
- Rewrite (in_dom_put_behind A m a y a0) in H0.
- Elim (orb_true_elim ? ? H0). Intro H1. Rewrite H1. Reflexivity.
- Intro H1. Rewrite (H ? H1). Apply orb_b_true.
+ unfold MapSubset in |- *. intros. rewrite in_dom_put_behind.
+ rewrite (in_dom_put_behind A m a y a0) in H0.
+ elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity.
+ intro H1. rewrite (H _ H1). apply orb_b_true.
Qed.
- Lemma MapSubset_Remove : (m:(Map A)) (a:ad) (MapSubset A A (MapRemove A m a) m).
+ Lemma MapSubset_Remove :
+ forall (m:Map A) (a:ad), MapSubset A A (MapRemove A m a) m.
Proof.
- Unfold MapSubset. Intros. Unfold MapSubset. Intros. Rewrite (in_dom_remove ? m a a0) in H.
- Elim (andb_prop ? ? H). Trivial.
+ unfold MapSubset in |- *. intros. unfold MapSubset in |- *. intros. rewrite (in_dom_remove _ m a a0) in H.
+ elim (andb_prop _ _ H). trivial.
Qed.
- Lemma MapSubset_Remove_mono : (m:(Map A)) (m':(Map B)) (a:ad)
- (MapSubset A B m m') -> (MapSubset A B (MapRemove A m a) (MapRemove B m' a)).
+ Lemma MapSubset_Remove_mono :
+ forall (m:Map A) (m':Map B) (a:ad),
+ MapSubset A B m m' -> MapSubset A B (MapRemove A m a) (MapRemove B m' a).
Proof.
- Unfold MapSubset. Intros. Rewrite in_dom_remove. Rewrite (in_dom_remove A m a a0) in H0.
- Elim (andb_prop ? ? H0). Intros. Rewrite H1. Rewrite (H ? H2). Reflexivity.
+ unfold MapSubset in |- *. intros. rewrite in_dom_remove. rewrite (in_dom_remove A m a a0) in H0.
+ elim (andb_prop _ _ H0). intros. rewrite H1. rewrite (H _ H2). reflexivity.
Qed.
- Lemma MapSubset_Merge_l : (m,m':(Map A)) (MapSubset A A m (MapMerge A m m')).
+ Lemma MapSubset_Merge_l :
+ forall m m':Map A, MapSubset A A m (MapMerge A m m').
Proof.
- Unfold MapSubset. Intros. Rewrite in_dom_merge. Rewrite H. Reflexivity.
+ unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. reflexivity.
Qed.
- Lemma MapSubset_Merge_r : (m,m':(Map A)) (MapSubset A A m' (MapMerge A m m')).
+ Lemma MapSubset_Merge_r :
+ forall m m':Map A, MapSubset A A m' (MapMerge A m m').
Proof.
- Unfold MapSubset. Intros. Rewrite in_dom_merge. Rewrite H. Apply orb_b_true.
+ unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. apply orb_b_true.
Qed.
- Lemma MapSubset_Merge_mono : (m,m':(Map A)) (m'',m''':(Map B))
- (MapSubset A B m m'') -> (MapSubset A B m' m''') ->
- (MapSubset A B (MapMerge A m m') (MapMerge B m'' m''')).
+ Lemma MapSubset_Merge_mono :
+ forall (m m':Map A) (m'' m''':Map B),
+ MapSubset A B m m'' ->
+ MapSubset A B m' m''' ->
+ MapSubset A B (MapMerge A m m') (MapMerge B m'' m''').
Proof.
- Unfold MapSubset. Intros. Rewrite in_dom_merge. Rewrite (in_dom_merge A m m' a) in H1.
- Elim (orb_true_elim ? ? H1). Intro H2. Rewrite (H ? H2). Reflexivity.
- Intro H2. Rewrite (H0 ? H2). Apply orb_b_true.
+ unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite (in_dom_merge A m m' a) in H1.
+ elim (orb_true_elim _ _ H1). intro H2. rewrite (H _ H2). reflexivity.
+ intro H2. rewrite (H0 _ H2). apply orb_b_true.
Qed.
- Lemma MapSubset_DomRestrTo_l : (m:(Map A)) (m':(Map B))
- (MapSubset A A (MapDomRestrTo A B m m') m).
+ Lemma MapSubset_DomRestrTo_l :
+ forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrTo A B m m') m.
Proof.
- Unfold MapSubset. Intros. Rewrite (in_dom_restrto ? ? m m' a) in H. Elim (andb_prop ? ? H).
- Trivial.
+ unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H).
+ trivial.
Qed.
- Lemma MapSubset_DomRestrTo_r: (m:(Map A)) (m':(Map B))
- (MapSubset A B (MapDomRestrTo A B m m') m').
+ Lemma MapSubset_DomRestrTo_r :
+ forall (m:Map A) (m':Map B), MapSubset A B (MapDomRestrTo A B m m') m'.
Proof.
- Unfold MapSubset. Intros. Rewrite (in_dom_restrto ? ? m m' a) in H. Elim (andb_prop ? ? H).
- Trivial.
+ unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H).
+ trivial.
Qed.
- Lemma MapSubset_ext : (m0,m1:(Map A)) (m2,m3:(Map B))
- (eqmap A m0 m1) -> (eqmap B m2 m3) ->
- (MapSubset A B m0 m2) -> (MapSubset A B m1 m3).
+ Lemma MapSubset_ext :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ eqmap A m0 m1 ->
+ eqmap B m2 m3 -> MapSubset A B m0 m2 -> MapSubset A B m1 m3.
Proof.
- Intros. Apply MapSubset_2_imp. Unfold MapSubset_2.
- Apply eqmap_trans with m':=(MapDomRestrBy A B m0 m2). Apply MapDomRestrBy_ext. Apply eqmap_sym.
- Assumption.
- Apply eqmap_sym. Assumption.
- Exact (MapSubset_imp_2 ? ? ? ? H1).
+ intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *.
+ apply eqmap_trans with (m' := MapDomRestrBy A B m0 m2). apply MapDomRestrBy_ext. apply eqmap_sym.
+ assumption.
+ apply eqmap_sym. assumption.
+ exact (MapSubset_imp_2 _ _ _ _ H1).
Qed.
- Variable C, D : Set.
+ Variables C D : Set.
- Lemma MapSubset_DomRestrTo_mono :
- (m:(Map A)) (m':(Map B)) (m'':(Map C)) (m''':(Map D))
- (MapSubset ? ? m m'') -> (MapSubset ? ? m' m''') ->
- (MapSubset ? ? (MapDomRestrTo ? ? m m') (MapDomRestrTo ? ? m'' m''')).
+ Lemma MapSubset_DomRestrTo_mono :
+ forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m m'' ->
+ MapSubset _ _ m' m''' ->
+ MapSubset _ _ (MapDomRestrTo _ _ m m') (MapDomRestrTo _ _ m'' m''').
Proof.
- Unfold MapSubset. Intros. Rewrite in_dom_restrto. Rewrite (in_dom_restrto A B m m' a) in H1.
- Elim (andb_prop ? ? H1). Intros. Rewrite (H ? H2). Rewrite (H0 ? H3). Reflexivity.
+ unfold MapSubset in |- *. intros. rewrite in_dom_restrto. rewrite (in_dom_restrto A B m m' a) in H1.
+ elim (andb_prop _ _ H1). intros. rewrite (H _ H2). rewrite (H0 _ H3). reflexivity.
Qed.
- Lemma MapSubset_DomRestrBy_l : (m:(Map A)) (m':(Map B))
- (MapSubset A A (MapDomRestrBy A B m m') m).
+ Lemma MapSubset_DomRestrBy_l :
+ forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrBy A B m m') m.
Proof.
- Unfold MapSubset. Intros. Rewrite (in_dom_restrby ? ? m m' a) in H. Elim (andb_prop ? ? H).
- Trivial.
+ unfold MapSubset in |- *. intros. rewrite (in_dom_restrby _ _ m m' a) in H. elim (andb_prop _ _ H).
+ trivial.
Qed.
- Lemma MapSubset_DomRestrBy_mono :
- (m:(Map A)) (m':(Map B)) (m'':(Map C)) (m''':(Map D))
- (MapSubset ? ? m m'') -> (MapSubset ? ? m''' m') ->
- (MapSubset ? ? (MapDomRestrBy ? ? m m') (MapDomRestrBy ? ? m'' m''')).
+ Lemma MapSubset_DomRestrBy_mono :
+ forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m m'' ->
+ MapSubset _ _ m''' m' ->
+ MapSubset _ _ (MapDomRestrBy _ _ m m') (MapDomRestrBy _ _ m'' m''').
Proof.
- Unfold MapSubset. Intros. Rewrite in_dom_restrby. Rewrite (in_dom_restrby A B m m' a) in H1.
- Elim (andb_prop ? ? H1). Intros. Rewrite (H ? H2). Elim (sumbool_of_bool (in_dom D a m''')).
- Intro H4. Rewrite (H0 ? H4) in H3. Discriminate H3.
- Intro H4. Rewrite H4. Reflexivity.
+ unfold MapSubset in |- *. intros. rewrite in_dom_restrby. rewrite (in_dom_restrby A B m m' a) in H1.
+ elim (andb_prop _ _ H1). intros. rewrite (H _ H2). elim (sumbool_of_bool (in_dom D a m''')).
+ intro H4. rewrite (H0 _ H4) in H3. discriminate H3.
+ intro H4. rewrite H4. reflexivity.
Qed.
End MapSubsetExtra.
Section MapDisjointDef.
- Variable A, B : Set.
+ Variables A B : Set.
- Definition MapDisjoint := [m:(Map A)] [m':(Map B)]
- (a:ad) (in_dom A a m)=true -> (in_dom B a m')=true -> False.
+ Definition MapDisjoint (m:Map A) (m':Map B) :=
+ forall a:ad, in_dom A a m = true -> in_dom B a m' = true -> False.
- Definition MapDisjoint_1 := [m:(Map A)] [m':(Map B)]
- Cases (MapSweep A [a:ad][_:A] (in_dom B a m') m) of
- NONE => true
- | _ => false
- end.
+ Definition MapDisjoint_1 (m:Map A) (m':Map B) :=
+ match MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m with
+ | NONE => true
+ | _ => false
+ end.
- Definition MapDisjoint_2 := [m:(Map A)] [m':(Map B)]
- (eqmap A (MapDomRestrTo A B m m') (M0 A)).
+ Definition MapDisjoint_2 (m:Map A) (m':Map B) :=
+ eqmap A (MapDomRestrTo A B m m') (M0 A).
- Lemma MapDisjoint_imp_1 : (m:(Map A)) (m':(Map B))
- (MapDisjoint m m') -> (MapDisjoint_1 m m')=true.
+ Lemma MapDisjoint_imp_1 :
+ forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_1 m m' = true.
Proof.
- Unfold MapDisjoint MapDisjoint_1. Intros.
- Elim (option_sum ? (MapSweep A [a:ad][_:A](in_dom B a m') m)). Intro H0. Elim H0.
- Intro r. Elim r. Intros a y H1. Cut (in_dom A a m)=true->(in_dom B a m')=true->False.
- Intro. Unfold 1 in_dom in H2. Rewrite (MapSweep_semantics_2 ? ? ? ? ? H1) in H2.
- Rewrite (MapSweep_semantics_1 ? ? ? ? ? H1) in H2. Elim (H2 (refl_equal ? ?) (refl_equal ? ?)).
- Exact (H a).
- Intro H0. Rewrite H0. Reflexivity.
+ unfold MapDisjoint, MapDisjoint_1 in |- *. intros.
+ elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H0. elim H0.
+ intro r. elim r. intros a y H1. cut (in_dom A a m = true -> in_dom B a m' = true -> False).
+ intro. unfold in_dom at 1 in H2. rewrite (MapSweep_semantics_2 _ _ _ _ _ H1) in H2.
+ rewrite (MapSweep_semantics_1 _ _ _ _ _ H1) in H2. elim (H2 (refl_equal _) (refl_equal _)).
+ exact (H a).
+ intro H0. rewrite H0. reflexivity.
Qed.
- Lemma MapDisjoint_1_imp : (m:(Map A)) (m':(Map B))
- (MapDisjoint_1 m m')=true -> (MapDisjoint m m').
+ Lemma MapDisjoint_1_imp :
+ forall (m:Map A) (m':Map B), MapDisjoint_1 m m' = true -> MapDisjoint m m'.
Proof.
- Unfold MapDisjoint MapDisjoint_1. Intros.
- Elim (option_sum ? (MapSweep A [a:ad][_:A](in_dom B a m') m)). Intro H2. Elim H2.
- Intro r. Elim r. Intros a' y' H3. Rewrite H3 in H. Discriminate H.
- Intro H2. Unfold in_dom in H0. Elim (option_sum ? (MapGet A m a)). Intro H3. Elim H3.
- Intros y H4. Rewrite (MapSweep_semantics_3 ? ? ? H2 a y H4) in H1. Discriminate H1.
- Intro H3. Rewrite H3 in H0. Discriminate H0.
+ unfold MapDisjoint, MapDisjoint_1 in |- *. intros.
+ elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H2. elim H2.
+ intro r. elim r. intros a' y' H3. rewrite H3 in H. discriminate H.
+ intro H2. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)). intro H3. elim H3.
+ intros y H4. rewrite (MapSweep_semantics_3 _ _ _ H2 a y H4) in H1. discriminate H1.
+ intro H3. rewrite H3 in H0. discriminate H0.
Qed.
- Lemma MapDisjoint_imp_2 : (m:(Map A)) (m':(Map B)) (MapDisjoint m m') ->
- (MapDisjoint_2 m m').
+ Lemma MapDisjoint_imp_2 :
+ forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_2 m m'.
Proof.
- Unfold MapDisjoint MapDisjoint_2. Unfold eqmap eqm. Intros.
- Rewrite (MapDomRestrTo_semantics A B m m' a).
- Cut (in_dom A a m)=true->(in_dom B a m')=true->False. Intro.
- Elim (option_sum ? (MapGet A m a)). Intro H1. Elim H1. Intros y H2. Unfold 1 in_dom in H0.
- Elim (option_sum ? (MapGet B m' a)). Intro H3. Elim H3. Intros y' H4. Unfold 1 in_dom in H0.
- Rewrite H4 in H0. Rewrite H2 in H0. Elim (H0 (refl_equal ? ?) (refl_equal ? ?)).
- Intro H3. Rewrite H3. Reflexivity.
- Intro H1. Rewrite H1. Case (MapGet B m' a); Reflexivity.
- Exact (H a).
+ unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros.
+ rewrite (MapDomRestrTo_semantics A B m m' a).
+ cut (in_dom A a m = true -> in_dom B a m' = true -> False). intro.
+ elim (option_sum _ (MapGet A m a)). intro H1. elim H1. intros y H2. unfold in_dom at 1 in H0.
+ elim (option_sum _ (MapGet B m' a)). intro H3. elim H3. intros y' H4. unfold in_dom at 1 in H0.
+ rewrite H4 in H0. rewrite H2 in H0. elim (H0 (refl_equal _) (refl_equal _)).
+ intro H3. rewrite H3. reflexivity.
+ intro H1. rewrite H1. case (MapGet B m' a); reflexivity.
+ exact (H a).
Qed.
- Lemma MapDisjoint_2_imp : (m:(Map A)) (m':(Map B)) (MapDisjoint_2 m m') ->
- (MapDisjoint m m').
+ Lemma MapDisjoint_2_imp :
+ forall (m:Map A) (m':Map B), MapDisjoint_2 m m' -> MapDisjoint m m'.
Proof.
- Unfold MapDisjoint MapDisjoint_2. Unfold eqmap eqm. Intros. Elim (in_dom_some ? ? ? H0).
- Intros y H2. Elim (in_dom_some ? ? ? H1). Intros y' H3.
- Cut (MapGet A (MapDomRestrTo A B m m') a)=(NONE A). Intro.
- Rewrite (MapDomRestrTo_semantics ? ? m m' a) in H4. Rewrite H3 in H4. Rewrite H2 in H4.
- Discriminate H4.
- Exact (H a).
+ unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros. elim (in_dom_some _ _ _ H0).
+ intros y H2. elim (in_dom_some _ _ _ H1). intros y' H3.
+ cut (MapGet A (MapDomRestrTo A B m m') a = NONE A). intro.
+ rewrite (MapDomRestrTo_semantics _ _ m m' a) in H4. rewrite H3 in H4. rewrite H2 in H4.
+ discriminate H4.
+ exact (H a).
Qed.
- Lemma Map_M0_disjoint : (m:(Map B)) (MapDisjoint (M0 A) m).
+ Lemma Map_M0_disjoint : forall m:Map B, MapDisjoint (M0 A) m.
Proof.
- Unfold MapDisjoint in_dom. Intros. Discriminate H.
+ unfold MapDisjoint, in_dom in |- *. intros. discriminate H.
Qed.
- Lemma Map_disjoint_M0 : (m:(Map A)) (MapDisjoint m (M0 B)).
+ Lemma Map_disjoint_M0 : forall m:Map A, MapDisjoint m (M0 B).
Proof.
- Unfold MapDisjoint in_dom. Intros. Discriminate H0.
+ unfold MapDisjoint, in_dom in |- *. intros. discriminate H0.
Qed.
End MapDisjointDef.
Section MapDisjointExtra.
- Variable A, B : Set.
+ Variables A B : Set.
- Lemma MapDisjoint_ext : (m0,m1:(Map A)) (m2,m3:(Map B))
- (eqmap A m0 m1) -> (eqmap B m2 m3) ->
- (MapDisjoint A B m0 m2) -> (MapDisjoint A B m1 m3).
+ Lemma MapDisjoint_ext :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ eqmap A m0 m1 ->
+ eqmap B m2 m3 -> MapDisjoint A B m0 m2 -> MapDisjoint A B m1 m3.
Proof.
- Intros. Apply MapDisjoint_2_imp. Unfold MapDisjoint_2.
- Apply eqmap_trans with m':=(MapDomRestrTo A B m0 m2). Apply eqmap_sym. Apply MapDomRestrTo_ext.
- Assumption.
- Assumption.
- Exact (MapDisjoint_imp_2 ? ? ? ? H1).
+ intros. apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *.
+ apply eqmap_trans with (m' := MapDomRestrTo A B m0 m2). apply eqmap_sym. apply MapDomRestrTo_ext.
+ assumption.
+ assumption.
+ exact (MapDisjoint_imp_2 _ _ _ _ H1).
Qed.
- Lemma MapMerge_disjoint : (m,m':(Map A)) (MapDisjoint A A m m') ->
- (a:ad) (in_dom A a (MapMerge A m m'))=
- (orb (andb (in_dom A a m) (negb (in_dom A a m')))
- (andb (in_dom A a m') (negb (in_dom A a m)))).
+ Lemma MapMerge_disjoint :
+ forall m m':Map A,
+ MapDisjoint A A m m' ->
+ forall a:ad,
+ in_dom A a (MapMerge A m m') =
+ orb (andb (in_dom A a m) (negb (in_dom A a m')))
+ (andb (in_dom A a m') (negb (in_dom A a m))).
Proof.
- Unfold MapDisjoint. Intros. Rewrite in_dom_merge. Elim (sumbool_of_bool (in_dom A a m)).
- Intro H0. Rewrite H0. Elim (sumbool_of_bool (in_dom A a m')). Intro H1. Elim (H a H0 H1).
- Intro H1. Rewrite H1. Reflexivity.
- Intro H0. Rewrite H0. Simpl. Rewrite andb_b_true. Reflexivity.
+ unfold MapDisjoint in |- *. intros. rewrite in_dom_merge. elim (sumbool_of_bool (in_dom A a m)).
+ intro H0. rewrite H0. elim (sumbool_of_bool (in_dom A a m')). intro H1. elim (H a H0 H1).
+ intro H1. rewrite H1. reflexivity.
+ intro H0. rewrite H0. simpl in |- *. rewrite andb_b_true. reflexivity.
Qed.
- Lemma MapDisjoint_M2_l : (m0,m1:(Map A)) (m2,m3:(Map B))
- (MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3)) -> (MapDisjoint A B m0 m2).
+ Lemma MapDisjoint_M2_l :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m0 m2.
Proof.
- Unfold MapDisjoint in_dom. Intros. Elim (option_sum ? (MapGet A m0 a)). Intro H2.
- Elim H2. Intros y H3. Elim (option_sum ? (MapGet B m2 a)). Intro H4. Elim H4.
- Intros y' H5. Apply (H (ad_double a)).
- Rewrite (MapGet_M2_bit_0_0 ? (ad_double a) (ad_double_bit_0 a) m0 m1).
- Rewrite (ad_double_div_2 a). Rewrite H3. Reflexivity.
- Rewrite (MapGet_M2_bit_0_0 ? (ad_double a) (ad_double_bit_0 a) m2 m3).
- Rewrite (ad_double_div_2 a). Rewrite H5. Reflexivity.
- Intro H4. Rewrite H4 in H1. Discriminate H1.
- Intro H2. Rewrite H2 in H0. Discriminate H0.
+ unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m0 a)). intro H2.
+ elim H2. intros y H3. elim (option_sum _ (MapGet B m2 a)). intro H4. elim H4.
+ intros y' H5. apply (H (ad_double a)).
+ rewrite (MapGet_M2_bit_0_0 _ (ad_double a) (ad_double_bit_0 a) m0 m1).
+ rewrite (ad_double_div_2 a). rewrite H3. reflexivity.
+ rewrite (MapGet_M2_bit_0_0 _ (ad_double a) (ad_double_bit_0 a) m2 m3).
+ rewrite (ad_double_div_2 a). rewrite H5. reflexivity.
+ intro H4. rewrite H4 in H1. discriminate H1.
+ intro H2. rewrite H2 in H0. discriminate H0.
Qed.
- Lemma MapDisjoint_M2_r : (m0,m1:(Map A)) (m2,m3:(Map B))
- (MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3)) -> (MapDisjoint A B m1 m3).
+ Lemma MapDisjoint_M2_r :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m1 m3.
Proof.
- Unfold MapDisjoint in_dom. Intros. Elim (option_sum ? (MapGet A m1 a)). Intro H2.
- Elim H2. Intros y H3. Elim (option_sum ? (MapGet B m3 a)). Intro H4. Elim H4.
- Intros y' H5. Apply (H (ad_double_plus_un a)).
- Rewrite (MapGet_M2_bit_0_1 ? (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) m0 m1).
- Rewrite (ad_double_plus_un_div_2 a). Rewrite H3. Reflexivity.
- Rewrite (MapGet_M2_bit_0_1 ? (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) m2 m3).
- Rewrite (ad_double_plus_un_div_2 a). Rewrite H5. Reflexivity.
- Intro H4. Rewrite H4 in H1. Discriminate H1.
- Intro H2. Rewrite H2 in H0. Discriminate H0.
+ unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m1 a)). intro H2.
+ elim H2. intros y H3. elim (option_sum _ (MapGet B m3 a)). intro H4. elim H4.
+ intros y' H5. apply (H (ad_double_plus_un a)).
+ rewrite
+ (MapGet_M2_bit_0_1 _ (ad_double_plus_un a) (ad_double_plus_un_bit_0 a)
+ m0 m1).
+ rewrite (ad_double_plus_un_div_2 a). rewrite H3. reflexivity.
+ rewrite
+ (MapGet_M2_bit_0_1 _ (ad_double_plus_un a) (ad_double_plus_un_bit_0 a)
+ m2 m3).
+ rewrite (ad_double_plus_un_div_2 a). rewrite H5. reflexivity.
+ intro H4. rewrite H4 in H1. discriminate H1.
+ intro H2. rewrite H2 in H0. discriminate H0.
Qed.
- Lemma MapDisjoint_M2 : (m0,m1:(Map A)) (m2,m3:(Map B))
- (MapDisjoint A B m0 m2) -> (MapDisjoint A B m1 m3) ->
- (MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3)).
+ Lemma MapDisjoint_M2 :
+ forall (m0 m1:Map A) (m2 m3:Map B),
+ MapDisjoint A B m0 m2 ->
+ MapDisjoint A B m1 m3 -> MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3).
Proof.
- Unfold MapDisjoint in_dom. Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H3.
- Rewrite (MapGet_M2_bit_0_1 A a H3 m0 m1) in H1.
- Rewrite (MapGet_M2_bit_0_1 B a H3 m2 m3) in H2. Exact (H0 (ad_div_2 a) H1 H2).
- Intro H3. Rewrite (MapGet_M2_bit_0_0 A a H3 m0 m1) in H1.
- Rewrite (MapGet_M2_bit_0_0 B a H3 m2 m3) in H2. Exact (H (ad_div_2 a) H1 H2).
+ unfold MapDisjoint, in_dom in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H3.
+ rewrite (MapGet_M2_bit_0_1 A a H3 m0 m1) in H1.
+ rewrite (MapGet_M2_bit_0_1 B a H3 m2 m3) in H2. exact (H0 (ad_div_2 a) H1 H2).
+ intro H3. rewrite (MapGet_M2_bit_0_0 A a H3 m0 m1) in H1.
+ rewrite (MapGet_M2_bit_0_0 B a H3 m2 m3) in H2. exact (H (ad_div_2 a) H1 H2).
Qed.
- Lemma MapDisjoint_M1_l : (m:(Map A)) (a:ad) (y:B)
- (MapDisjoint B A (M1 B a y) m) -> (in_dom A a m)=false.
+ Lemma MapDisjoint_M1_l :
+ forall (m:Map A) (a:ad) (y:B),
+ MapDisjoint B A (M1 B a y) m -> in_dom A a m = false.
Proof.
- Unfold MapDisjoint. Intros. Elim (sumbool_of_bool (in_dom A a m)). Intro H0.
- Elim (H a (in_dom_M1_1 B a y) H0).
- Trivial.
+ unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0.
+ elim (H a (in_dom_M1_1 B a y) H0).
+ trivial.
Qed.
- Lemma MapDisjoint_M1_r : (m:(Map A)) (a:ad) (y:B)
- (MapDisjoint A B m (M1 B a y)) -> (in_dom A a m)=false.
+ Lemma MapDisjoint_M1_r :
+ forall (m:Map A) (a:ad) (y:B),
+ MapDisjoint A B m (M1 B a y) -> in_dom A a m = false.
Proof.
- Unfold MapDisjoint. Intros. Elim (sumbool_of_bool (in_dom A a m)). Intro H0.
- Elim (H a H0 (in_dom_M1_1 B a y)).
- Trivial.
+ unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0.
+ elim (H a H0 (in_dom_M1_1 B a y)).
+ trivial.
Qed.
- Lemma MapDisjoint_M1_conv_l : (m:(Map A)) (a:ad) (y:B)
- (in_dom A a m)=false -> (MapDisjoint B A (M1 B a y) m).
+ Lemma MapDisjoint_M1_conv_l :
+ forall (m:Map A) (a:ad) (y:B),
+ in_dom A a m = false -> MapDisjoint B A (M1 B a y) m.
Proof.
- Unfold MapDisjoint. Intros. Rewrite (in_dom_M1_2 B a a0 y H0) in H. Rewrite H1 in H.
- Discriminate H.
+ unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H0) in H. rewrite H1 in H.
+ discriminate H.
Qed.
- Lemma MapDisjoint_M1_conv_r : (m:(Map A)) (a:ad) (y:B)
- (in_dom A a m)=false -> (MapDisjoint A B m (M1 B a y)).
+ Lemma MapDisjoint_M1_conv_r :
+ forall (m:Map A) (a:ad) (y:B),
+ in_dom A a m = false -> MapDisjoint A B m (M1 B a y).
Proof.
- Unfold MapDisjoint. Intros. Rewrite (in_dom_M1_2 B a a0 y H1) in H. Rewrite H0 in H.
- Discriminate H.
+ unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H1) in H. rewrite H0 in H.
+ discriminate H.
Qed.
- Lemma MapDisjoint_sym : (m:(Map A)) (m':(Map B))
- (MapDisjoint A B m m') -> (MapDisjoint B A m' m).
+ Lemma MapDisjoint_sym :
+ forall (m:Map A) (m':Map B), MapDisjoint A B m m' -> MapDisjoint B A m' m.
Proof.
- Unfold MapDisjoint. Intros. Exact (H ? H1 H0).
+ unfold MapDisjoint in |- *. intros. exact (H _ H1 H0).
Qed.
- Lemma MapDisjoint_empty : (m:(Map A)) (MapDisjoint A A m m) -> (eqmap A m (M0 A)).
+ Lemma MapDisjoint_empty :
+ forall m:Map A, MapDisjoint A A m m -> eqmap A m (M0 A).
Proof.
- Unfold eqmap eqm. Intros. Rewrite <- (MapDomRestrTo_idempotent A m a).
- Exact (MapDisjoint_imp_2 A A m m H a).
+ unfold eqmap, eqm in |- *. intros. rewrite <- (MapDomRestrTo_idempotent A m a).
+ exact (MapDisjoint_imp_2 A A m m H a).
Qed.
- Lemma MapDelta_disjoint : (m,m':(Map A)) (MapDisjoint A A m m') ->
- (eqmap A (MapDelta A m m') (MapMerge A m m')).
+ Lemma MapDelta_disjoint :
+ forall m m':Map A,
+ MapDisjoint A A m m' -> eqmap A (MapDelta A m m') (MapMerge A m m').
Proof.
- Intros.
- Apply eqmap_trans with m':=(MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')).
- Apply MapDelta_as_DomRestrBy.
- Apply eqmap_trans with m':=(MapDomRestrBy A A (MapMerge A m m') (M0 A)).
- Apply MapDomRestrBy_ext. Apply eqmap_refl.
- Exact (MapDisjoint_imp_2 A A m m' H).
- Apply MapDomRestrBy_m_empty.
+ intros.
+ apply eqmap_trans with
+ (m' := MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')).
+ apply MapDelta_as_DomRestrBy.
+ apply eqmap_trans with (m' := MapDomRestrBy A A (MapMerge A m m') (M0 A)).
+ apply MapDomRestrBy_ext. apply eqmap_refl.
+ exact (MapDisjoint_imp_2 A A m m' H).
+ apply MapDomRestrBy_m_empty.
Qed.
Variable C : Set.
- Lemma MapDomRestr_disjoint : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (MapDisjoint A B (MapDomRestrTo A C m m'') (MapDomRestrBy B C m' m'')).
+ Lemma MapDomRestr_disjoint :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ MapDisjoint A B (MapDomRestrTo A C m m'') (MapDomRestrBy B C m' m'').
Proof.
- Unfold MapDisjoint. Intros m m' m'' a. Rewrite in_dom_restrto. Rewrite in_dom_restrby.
- Intros. Elim (andb_prop ? ? H). Elim (andb_prop ? ? H0). Intros. Rewrite H4 in H2.
- Discriminate H2.
+ unfold MapDisjoint in |- *. intros m m' m'' a. rewrite in_dom_restrto. rewrite in_dom_restrby.
+ intros. elim (andb_prop _ _ H). elim (andb_prop _ _ H0). intros. rewrite H4 in H2.
+ discriminate H2.
Qed.
- Lemma MapDelta_RestrTo_disjoint : (m,m':(Map A))
- (MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m m')).
+ Lemma MapDelta_RestrTo_disjoint :
+ forall m m':Map A,
+ MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m m').
Proof.
- Unfold MapDisjoint. Intros m m' a. Rewrite in_dom_delta. Rewrite in_dom_restrto.
- Intros. Elim (andb_prop ? ? H0). Intros. Rewrite H1 in H. Rewrite H2 in H. Discriminate H.
+ unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto.
+ intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H.
Qed.
- Lemma MapDelta_RestrTo_disjoint_2 : (m,m':(Map A))
- (MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m' m)).
+ Lemma MapDelta_RestrTo_disjoint_2 :
+ forall m m':Map A,
+ MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m' m).
Proof.
- Unfold MapDisjoint. Intros m m' a. Rewrite in_dom_delta. Rewrite in_dom_restrto.
- Intros. Elim (andb_prop ? ? H0). Intros. Rewrite H1 in H. Rewrite H2 in H. Discriminate H.
+ unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto.
+ intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H.
Qed.
Variable D : Set.
- Lemma MapSubset_Disjoint : (m:(Map A)) (m':(Map B)) (m'':(Map C)) (m''':(Map D))
- (MapSubset ? ? m m') -> (MapSubset ? ? m'' m''') -> (MapDisjoint ? ? m' m''') ->
- (MapDisjoint ? ? m m'').
+ Lemma MapSubset_Disjoint :
+ forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m m' ->
+ MapSubset _ _ m'' m''' ->
+ MapDisjoint _ _ m' m''' -> MapDisjoint _ _ m m''.
Proof.
- Unfold MapSubset MapDisjoint. Intros. Exact (H1 ? (H ? H2) (H0 ? H3)).
+ unfold MapSubset, MapDisjoint in |- *. intros. exact (H1 _ (H _ H2) (H0 _ H3)).
Qed.
- Lemma MapSubset_Disjoint_l : (m:(Map A)) (m':(Map B)) (m'':(Map C))
- (MapSubset ? ? m m') -> (MapDisjoint ? ? m' m'') ->
- (MapDisjoint ? ? m m'').
+ Lemma MapSubset_Disjoint_l :
+ forall (m:Map A) (m':Map B) (m'':Map C),
+ MapSubset _ _ m m' -> MapDisjoint _ _ m' m'' -> MapDisjoint _ _ m m''.
Proof.
- Unfold MapSubset MapDisjoint. Intros. Exact (H0 ? (H ? H1) H2).
+ unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ (H _ H1) H2).
Qed.
- Lemma MapSubset_Disjoint_r : (m:(Map A)) (m'':(Map C)) (m''':(Map D))
- (MapSubset ? ? m'' m''') -> (MapDisjoint ? ? m m''') ->
- (MapDisjoint ? ? m m'').
+ Lemma MapSubset_Disjoint_r :
+ forall (m:Map A) (m'':Map C) (m''':Map D),
+ MapSubset _ _ m'' m''' ->
+ MapDisjoint _ _ m m''' -> MapDisjoint _ _ m m''.
Proof.
- Unfold MapSubset MapDisjoint. Intros. Exact (H0 ? H1 (H ? H2)).
+ unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ H1 (H _ H2)).
Qed.
-End MapDisjointExtra.
+End MapDisjointExtra. \ No newline at end of file