diff options
Diffstat (limited to 'theories/IntMap/Mapaxioms.v')
| -rw-r--r-- | theories/IntMap/Mapaxioms.v | 909 |
1 files changed, 501 insertions, 408 deletions
diff --git a/theories/IntMap/Mapaxioms.v b/theories/IntMap/Mapaxioms.v index 7ab131c77b..874a4b9ef3 100644 --- a/theories/IntMap/Mapaxioms.v +++ b/theories/IntMap/Mapaxioms.v @@ -7,664 +7,757 @@ (***********************************************************************) (*i $Id$ i*) -Require Bool. -Require Sumbool. -Require ZArith. -Require Addr. -Require Adist. -Require Addec. -Require Map. -Require Fset. +Require Import Bool. +Require Import Sumbool. +Require Import ZArith. +Require Import Addr. +Require Import Adist. +Require Import Addec. +Require Import Map. +Require Import Fset. Section MapAxioms. - Variable A, B, C : Set. + Variables A B C : Set. - Lemma eqm_sym : (f,f':ad->(option A)) (eqm A f f') -> (eqm A f' f). + Lemma eqm_sym : forall f f':ad -> option A, eqm A f f' -> eqm A f' f. Proof. - Unfold eqm. Intros. Rewrite H. Reflexivity. + unfold eqm in |- *. intros. rewrite H. reflexivity. Qed. - Lemma eqm_refl : (f:ad->(option A)) (eqm A f f). + Lemma eqm_refl : forall f:ad -> option A, eqm A f f. Proof. - Unfold eqm. Trivial. + unfold eqm in |- *. trivial. Qed. - Lemma eqm_trans : (f,f',f'':ad->(option A)) (eqm A f f') -> (eqm A f' f'') -> (eqm A f f''). + Lemma eqm_trans : + forall f f' f'':ad -> option A, eqm A f f' -> eqm A f' f'' -> eqm A f f''. Proof. - Unfold eqm. Intros. Rewrite H. Exact (H0 a). + unfold eqm in |- *. intros. rewrite H. exact (H0 a). Qed. - Definition eqmap := [m,m':(Map A)] (eqm A (MapGet A m) (MapGet A m')). + Definition eqmap (m m':Map A) := eqm A (MapGet A m) (MapGet A m'). - Lemma eqmap_sym : (m,m':(Map A)) (eqmap m m') -> (eqmap m' m). + Lemma eqmap_sym : forall m m':Map A, eqmap m m' -> eqmap m' m. Proof. - Intros. Unfold eqmap. Apply eqm_sym. Assumption. + intros. unfold eqmap in |- *. apply eqm_sym. assumption. Qed. - Lemma eqmap_refl : (m:(Map A)) (eqmap m m). + Lemma eqmap_refl : forall m:Map A, eqmap m m. Proof. - Intros. Unfold eqmap. Apply eqm_refl. + intros. unfold eqmap in |- *. apply eqm_refl. Qed. - Lemma eqmap_trans : (m,m',m'':(Map A)) (eqmap m m') -> (eqmap m' m'') -> (eqmap m m''). + Lemma eqmap_trans : + forall m m' m'':Map A, eqmap m m' -> eqmap m' m'' -> eqmap m m''. Proof. - Intros. Exact (eqm_trans (MapGet A m) (MapGet A m') (MapGet A m'') H H0). + intros. exact (eqm_trans (MapGet A m) (MapGet A m') (MapGet A m'') H H0). Qed. - Lemma MapPut_as_Merge : (m:(Map A)) (a:ad) (y:A) - (eqmap (MapPut A m a y) (MapMerge A m (M1 A a y))). + Lemma MapPut_as_Merge : + forall (m:Map A) (a:ad) (y:A), + eqmap (MapPut A m a y) (MapMerge A m (M1 A a y)). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapPut_semantics A m a y a0). - Rewrite (MapMerge_semantics A m (M1 A a y) a0). Unfold 2 MapGet. - Elim (sumbool_of_bool (ad_eq a a0)); Intro H; Rewrite H; Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapPut_semantics A m a y a0). + rewrite (MapMerge_semantics A m (M1 A a y) a0). unfold MapGet at 2 in |- *. + elim (sumbool_of_bool (ad_eq a a0)); intro H; rewrite H; reflexivity. Qed. - Lemma MapPut_ext : (m,m':(Map A)) (eqmap m m') -> - (a:ad) (y:A) (eqmap (MapPut A m a y) (MapPut A m' a y)). + Lemma MapPut_ext : + forall m m':Map A, + eqmap m m' -> + forall (a:ad) (y:A), eqmap (MapPut A m a y) (MapPut A m' a y). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapPut_semantics A m' a y a0). - Rewrite (MapPut_semantics A m a y a0). - Case (ad_eq a a0); [ Reflexivity | Apply H ]. + unfold eqmap, eqm in |- *. intros. rewrite (MapPut_semantics A m' a y a0). + rewrite (MapPut_semantics A m a y a0). + case (ad_eq a a0); [ reflexivity | apply H ]. Qed. - Lemma MapPut_behind_as_Merge : (m:(Map A)) (a:ad) (y:A) - (eqmap (MapPut_behind A m a y) (MapMerge A (M1 A a y) m)). + Lemma MapPut_behind_as_Merge : + forall (m:Map A) (a:ad) (y:A), + eqmap (MapPut_behind A m a y) (MapMerge A (M1 A a y) m). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapPut_behind_semantics A m a y a0). - Rewrite (MapMerge_semantics A (M1 A a y) m a0). Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapPut_behind_semantics A m a y a0). + rewrite (MapMerge_semantics A (M1 A a y) m a0). reflexivity. Qed. - Lemma MapPut_behind_ext : (m,m':(Map A)) (eqmap m m') -> - (a:ad) (y:A) (eqmap (MapPut_behind A m a y) (MapPut_behind A m' a y)). + Lemma MapPut_behind_ext : + forall m m':Map A, + eqmap m m' -> + forall (a:ad) (y:A), + eqmap (MapPut_behind A m a y) (MapPut_behind A m' a y). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapPut_behind_semantics A m' a y a0). - Rewrite (MapPut_behind_semantics A m a y a0). Rewrite (H a0). Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapPut_behind_semantics A m' a y a0). + rewrite (MapPut_behind_semantics A m a y a0). rewrite (H a0). reflexivity. Qed. - Lemma MapMerge_empty_m_1 : (m:(Map A)) (MapMerge A (M0 A) m)=m. + Lemma MapMerge_empty_m_1 : forall m:Map A, MapMerge A (M0 A) m = m. Proof. - Trivial. + trivial. Qed. - Lemma MapMerge_empty_m : (m:(Map A)) (eqmap (MapMerge A (M0 A) m) m). + Lemma MapMerge_empty_m : forall m:Map A, eqmap (MapMerge A (M0 A) m) m. Proof. - Unfold eqmap eqm. Trivial. + unfold eqmap, eqm in |- *. trivial. Qed. - Lemma MapMerge_m_empty_1 : (m:(Map A)) (MapMerge A m (M0 A))=m. + Lemma MapMerge_m_empty_1 : forall m:Map A, MapMerge A m (M0 A) = m. Proof. - Induction m;Trivial. + simple induction m; trivial. Qed. - Lemma MapMerge_m_empty : (m:(Map A)) (eqmap (MapMerge A m (M0 A)) m). + Lemma MapMerge_m_empty : forall m:Map A, eqmap (MapMerge A m (M0 A)) m. Proof. - Unfold eqmap eqm. Intros. Rewrite MapMerge_m_empty_1. Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite MapMerge_m_empty_1. reflexivity. Qed. - Lemma MapMerge_empty_l : (m,m':(Map A)) (eqmap (MapMerge A m m') (M0 A)) -> - (eqmap m (M0 A)). + Lemma MapMerge_empty_l : + forall m m':Map A, eqmap (MapMerge A m m') (M0 A) -> eqmap m (M0 A). Proof. - Unfold eqmap eqm. Intros. Cut (MapGet A (MapMerge A m m') a)=(MapGet A (M0 A) a). - Rewrite (MapMerge_semantics A m m' a). Case (MapGet A m' a). Trivial. - Intros. Discriminate H0. - Exact (H a). + unfold eqmap, eqm in |- *. intros. cut (MapGet A (MapMerge A m m') a = MapGet A (M0 A) a). + rewrite (MapMerge_semantics A m m' a). case (MapGet A m' a). trivial. + intros. discriminate H0. + exact (H a). Qed. - Lemma MapMerge_empty_r : (m,m':(Map A)) (eqmap (MapMerge A m m') (M0 A)) -> - (eqmap m' (M0 A)). + Lemma MapMerge_empty_r : + forall m m':Map A, eqmap (MapMerge A m m') (M0 A) -> eqmap m' (M0 A). Proof. - Unfold eqmap eqm. Intros. Cut (MapGet A (MapMerge A m m') a)=(MapGet A (M0 A) a). - Rewrite (MapMerge_semantics A m m' a). Case (MapGet A m' a). Trivial. - Intros. Discriminate H0. - Exact (H a). + unfold eqmap, eqm in |- *. intros. cut (MapGet A (MapMerge A m m') a = MapGet A (M0 A) a). + rewrite (MapMerge_semantics A m m' a). case (MapGet A m' a). trivial. + intros. discriminate H0. + exact (H a). Qed. - Lemma MapMerge_assoc : (m,m',m'':(Map A)) (eqmap - (MapMerge A (MapMerge A m m') m'') - (MapMerge A m (MapMerge A m' m''))). + Lemma MapMerge_assoc : + forall m m' m'':Map A, + eqmap (MapMerge A (MapMerge A m m') m'') + (MapMerge A m (MapMerge A m' m'')). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A (MapMerge A m m') m'' a). - Rewrite (MapMerge_semantics A m (MapMerge A m' m'') a). Rewrite (MapMerge_semantics A m m' a). - Rewrite (MapMerge_semantics A m' m'' a). - Case (MapGet A m'' a); Case (MapGet A m' a); Trivial. + unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapMerge A m m') m'' a). + rewrite (MapMerge_semantics A m (MapMerge A m' m'') a). rewrite (MapMerge_semantics A m m' a). + rewrite (MapMerge_semantics A m' m'' a). + case (MapGet A m'' a); case (MapGet A m' a); trivial. Qed. - Lemma MapMerge_idempotent : (m:(Map A)) (eqmap (MapMerge A m m) m). + Lemma MapMerge_idempotent : forall m:Map A, eqmap (MapMerge A m m) m. Proof. - Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A m m a). - Case (MapGet A m a); Trivial. + unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A m m a). + case (MapGet A m a); trivial. Qed. - Lemma MapMerge_ext : (m1,m2,m'1,m'2:(Map A)) - (eqmap m1 m'1) -> (eqmap m2 m'2) -> - (eqmap (MapMerge A m1 m2) (MapMerge A m'1 m'2)). + Lemma MapMerge_ext : + forall m1 m2 m'1 m'2:Map A, + eqmap m1 m'1 -> + eqmap m2 m'2 -> eqmap (MapMerge A m1 m2) (MapMerge A m'1 m'2). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A m1 m2 a). - Rewrite (MapMerge_semantics A m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A m1 m2 a). + rewrite (MapMerge_semantics A m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity. Qed. - Lemma MapMerge_ext_l : (m1,m'1,m2:(Map A)) - (eqmap m1 m'1) -> (eqmap (MapMerge A m1 m2) (MapMerge A m'1 m2)). + Lemma MapMerge_ext_l : + forall m1 m'1 m2:Map A, + eqmap m1 m'1 -> eqmap (MapMerge A m1 m2) (MapMerge A m'1 m2). Proof. - Intros. Apply MapMerge_ext. Assumption. - Apply eqmap_refl. + intros. apply MapMerge_ext. assumption. + apply eqmap_refl. Qed. - Lemma MapMerge_ext_r : (m1,m2,m'2:(Map A)) - (eqmap m2 m'2) -> (eqmap (MapMerge A m1 m2) (MapMerge A m1 m'2)). + Lemma MapMerge_ext_r : + forall m1 m2 m'2:Map A, + eqmap m2 m'2 -> eqmap (MapMerge A m1 m2) (MapMerge A m1 m'2). Proof. - Intros. Apply MapMerge_ext. Apply eqmap_refl. - Assumption. + intros. apply MapMerge_ext. apply eqmap_refl. + assumption. Qed. - Lemma MapMerge_RestrTo_l : (m,m',m'':(Map A)) - (eqmap (MapMerge A (MapDomRestrTo A A m m') m'') - (MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m''))). + Lemma MapMerge_RestrTo_l : + forall m m' m'':Map A, + eqmap (MapMerge A (MapDomRestrTo A A m m') m'') + (MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m'')). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A (MapDomRestrTo A A m m') m'' a). - Rewrite (MapDomRestrTo_semantics A A m m' a). - Rewrite (MapDomRestrTo_semantics A A (MapMerge A m m'') (MapMerge A m' m'') a). - Rewrite (MapMerge_semantics A m' m'' a). Rewrite (MapMerge_semantics A m m'' a). - Case (MapGet A m'' a); Case (MapGet A m' a); Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapDomRestrTo A A m m') m'' a). + rewrite (MapDomRestrTo_semantics A A m m' a). + rewrite + (MapDomRestrTo_semantics A A (MapMerge A m m'') (MapMerge A m' m'') a) + . + rewrite (MapMerge_semantics A m' m'' a). rewrite (MapMerge_semantics A m m'' a). + case (MapGet A m'' a); case (MapGet A m' a); reflexivity. Qed. - Lemma MapRemove_as_RestrBy : (m:(Map A)) (a:ad) (y:B) - (eqmap (MapRemove A m a) (MapDomRestrBy A B m (M1 B a y))). + Lemma MapRemove_as_RestrBy : + forall (m:Map A) (a:ad) (y:B), + eqmap (MapRemove A m a) (MapDomRestrBy A B m (M1 B a y)). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapRemove_semantics A m a a0). - Rewrite (MapDomRestrBy_semantics A B m (M1 B a y) a0). Elim (sumbool_of_bool (ad_eq a a0)). - Intro H. Rewrite H. Rewrite (ad_eq_complete a a0 H). Rewrite (M1_semantics_1 B a0 y). - Reflexivity. - Intro H. Rewrite H. Rewrite (M1_semantics_2 B a a0 y H). Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapRemove_semantics A m a a0). + rewrite (MapDomRestrBy_semantics A B m (M1 B a y) a0). elim (sumbool_of_bool (ad_eq a a0)). + intro H. rewrite H. rewrite (ad_eq_complete a a0 H). rewrite (M1_semantics_1 B a0 y). + reflexivity. + intro H. rewrite H. rewrite (M1_semantics_2 B a a0 y H). reflexivity. Qed. - Lemma MapRemove_ext : (m,m':(Map A)) (eqmap m m') -> - (a:ad) (eqmap (MapRemove A m a) (MapRemove A m' a)). + Lemma MapRemove_ext : + forall m m':Map A, + eqmap m m' -> forall a:ad, eqmap (MapRemove A m a) (MapRemove A m' a). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapRemove_semantics A m' a a0). - Rewrite (MapRemove_semantics A m a a0). - Case (ad_eq a a0); [ Reflexivity | Apply H ]. + unfold eqmap, eqm in |- *. intros. rewrite (MapRemove_semantics A m' a a0). + rewrite (MapRemove_semantics A m a a0). + case (ad_eq a a0); [ reflexivity | apply H ]. Qed. - Lemma MapDomRestrTo_empty_m_1 : - (m:(Map B)) (MapDomRestrTo A B (M0 A) m)=(M0 A). + Lemma MapDomRestrTo_empty_m_1 : + forall m:Map B, MapDomRestrTo A B (M0 A) m = M0 A. Proof. - Trivial. + trivial. Qed. - Lemma MapDomRestrTo_empty_m : - (m:(Map B)) (eqmap (MapDomRestrTo A B (M0 A) m) (M0 A)). + Lemma MapDomRestrTo_empty_m : + forall m:Map B, eqmap (MapDomRestrTo A B (M0 A) m) (M0 A). Proof. - Unfold eqmap eqm. Trivial. + unfold eqmap, eqm in |- *. trivial. Qed. - Lemma MapDomRestrTo_m_empty_1 : - (m:(Map A)) (MapDomRestrTo A B m (M0 B))=(M0 A). + Lemma MapDomRestrTo_m_empty_1 : + forall m:Map A, MapDomRestrTo A B m (M0 B) = M0 A. Proof. - Induction m;Trivial. + simple induction m; trivial. Qed. - Lemma MapDomRestrTo_m_empty : - (m:(Map A)) (eqmap (MapDomRestrTo A B m (M0 B)) (M0 A)). + Lemma MapDomRestrTo_m_empty : + forall m:Map A, eqmap (MapDomRestrTo A B m (M0 B)) (M0 A). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_m_empty_1 m). Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_m_empty_1 m). reflexivity. Qed. - Lemma MapDomRestrTo_assoc : (m:(Map A)) (m':(Map B)) (m'':(Map C)) - (eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'') - (MapDomRestrTo A B m (MapDomRestrTo B C m' m''))). + Lemma MapDomRestrTo_assoc : + forall (m:Map A) (m':Map B) (m'':Map C), + eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'') + (MapDomRestrTo A B m (MapDomRestrTo B C m' m'')). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a). - Rewrite (MapDomRestrTo_semantics A B m m' a). - Rewrite (MapDomRestrTo_semantics A B m (MapDomRestrTo B C m' m'') a). - Rewrite (MapDomRestrTo_semantics B C m' m'' a). - Case (MapGet C m'' a); Case (MapGet B m' a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a). + rewrite (MapDomRestrTo_semantics A B m m' a). + rewrite (MapDomRestrTo_semantics A B m (MapDomRestrTo B C m' m'') a). + rewrite (MapDomRestrTo_semantics B C m' m'' a). + case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. - Lemma MapDomRestrTo_idempotent : (m:(Map A)) (eqmap (MapDomRestrTo A A m m) m). + Lemma MapDomRestrTo_idempotent : + forall m:Map A, eqmap (MapDomRestrTo A A m m) m. Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_semantics A A m m a). - Case (MapGet A m a); Trivial. + unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A A m m a). + case (MapGet A m a); trivial. Qed. - Lemma MapDomRestrTo_Dom : (m:(Map A)) (m':(Map B)) - (eqmap (MapDomRestrTo A B m m') (MapDomRestrTo A unit m (MapDom B m'))). + Lemma MapDomRestrTo_Dom : + forall (m:Map A) (m':Map B), + eqmap (MapDomRestrTo A B m m') (MapDomRestrTo A unit m (MapDom B m')). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_semantics A B m m' a). - Rewrite (MapDomRestrTo_semantics A unit m (MapDom B m') a). - Elim (sumbool_of_bool (in_FSet a (MapDom B m'))). Intro H. - Elim (MapDom_semantics_2 B m' a H). Intros y H0. Rewrite H0. Unfold in_FSet in_dom in H. - Generalize H. Case (MapGet unit (MapDom B m') a); Trivial. Intro H1. Discriminate H1. - Intro H. Rewrite (MapDom_semantics_4 B m' a H). Unfold in_FSet in_dom in H. - Generalize H. Case (MapGet unit (MapDom B m') a). Trivial. - Intros H0 H1. Discriminate H1. + unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B m m' a). + rewrite (MapDomRestrTo_semantics A unit m (MapDom B m') a). + elim (sumbool_of_bool (in_FSet a (MapDom B m'))). intro H. + elim (MapDom_semantics_2 B m' a H). intros y H0. rewrite H0. unfold in_FSet, in_dom in H. + generalize H. case (MapGet unit (MapDom B m') a); trivial. intro H1. discriminate H1. + intro H. rewrite (MapDom_semantics_4 B m' a H). unfold in_FSet, in_dom in H. + generalize H. case (MapGet unit (MapDom B m') a). trivial. + intros H0 H1. discriminate H1. Qed. - Lemma MapDomRestrBy_empty_m_1 : - (m:(Map B)) (MapDomRestrBy A B (M0 A) m)=(M0 A). + Lemma MapDomRestrBy_empty_m_1 : + forall m:Map B, MapDomRestrBy A B (M0 A) m = M0 A. Proof. - Trivial. + trivial. Qed. - Lemma MapDomRestrBy_empty_m : - (m:(Map B)) (eqmap (MapDomRestrBy A B (M0 A) m) (M0 A)). + Lemma MapDomRestrBy_empty_m : + forall m:Map B, eqmap (MapDomRestrBy A B (M0 A) m) (M0 A). Proof. - Unfold eqmap eqm. Trivial. + unfold eqmap, eqm in |- *. trivial. Qed. - Lemma MapDomRestrBy_m_empty_1 : (m:(Map A)) (MapDomRestrBy A B m (M0 B))=m. + Lemma MapDomRestrBy_m_empty_1 : + forall m:Map A, MapDomRestrBy A B m (M0 B) = m. Proof. - Induction m;Trivial. + simple induction m; trivial. Qed. - Lemma MapDomRestrBy_m_empty : (m:(Map A)) (eqmap (MapDomRestrBy A B m (M0 B)) m). + Lemma MapDomRestrBy_m_empty : + forall m:Map A, eqmap (MapDomRestrBy A B m (M0 B)) m. Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_m_empty_1 m). Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_m_empty_1 m). reflexivity. Qed. - Lemma MapDomRestrBy_Dom : (m:(Map A)) (m':(Map B)) - (eqmap (MapDomRestrBy A B m m') (MapDomRestrBy A unit m (MapDom B m'))). + Lemma MapDomRestrBy_Dom : + forall (m:Map A) (m':Map B), + eqmap (MapDomRestrBy A B m m') (MapDomRestrBy A unit m (MapDom B m')). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_semantics A B m m' a). - Rewrite (MapDomRestrBy_semantics A unit m (MapDom B m') a). - Elim (sumbool_of_bool (in_FSet a (MapDom B m'))). Intro H. - Elim (MapDom_semantics_2 B m' a H). Intros y H0. Rewrite H0. - Unfold in_FSet in_dom in H. Generalize H. Case (MapGet unit (MapDom B m') a); Trivial. - Intro H1. Discriminate H1. - Intro H. Rewrite (MapDom_semantics_4 B m' a H). Unfold in_FSet in_dom in H. - Generalize H. Case (MapGet unit (MapDom B m') a). Trivial. - Intros H0 H1. Discriminate H1. + unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B m m' a). + rewrite (MapDomRestrBy_semantics A unit m (MapDom B m') a). + elim (sumbool_of_bool (in_FSet a (MapDom B m'))). intro H. + elim (MapDom_semantics_2 B m' a H). intros y H0. rewrite H0. + unfold in_FSet, in_dom in H. generalize H. case (MapGet unit (MapDom B m') a); trivial. + intro H1. discriminate H1. + intro H. rewrite (MapDom_semantics_4 B m' a H). unfold in_FSet, in_dom in H. + generalize H. case (MapGet unit (MapDom B m') a). trivial. + intros H0 H1. discriminate H1. Qed. - Lemma MapDomRestrBy_m_m_1 : (m:(Map A)) (eqmap (MapDomRestrBy A A m m) (M0 A)). + Lemma MapDomRestrBy_m_m_1 : + forall m:Map A, eqmap (MapDomRestrBy A A m m) (M0 A). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_semantics A A m m a). - Case (MapGet A m a); Trivial. + unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A A m m a). + case (MapGet A m a); trivial. Qed. - Lemma MapDomRestrBy_By : (m:(Map A)) (m':(Map B)) (m'':(Map B)) - (eqmap (MapDomRestrBy A B (MapDomRestrBy A B m m') m'') - (MapDomRestrBy A B m (MapMerge B m' m''))). + Lemma MapDomRestrBy_By : + forall (m:Map A) (m' m'':Map B), + eqmap (MapDomRestrBy A B (MapDomRestrBy A B m m') m'') + (MapDomRestrBy A B m (MapMerge B m' m'')). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A B m m') m'' a). - Rewrite (MapDomRestrBy_semantics A B m m' a). - Rewrite (MapDomRestrBy_semantics A B m (MapMerge B m' m'') a). - Rewrite (MapMerge_semantics B m' m'' a). - Case (MapGet B m'' a); Case (MapGet B m' a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A B m m') m'' a). + rewrite (MapDomRestrBy_semantics A B m m' a). + rewrite (MapDomRestrBy_semantics A B m (MapMerge B m' m'') a). + rewrite (MapMerge_semantics B m' m'' a). + case (MapGet B m'' a); case (MapGet B m' a); trivial. Qed. - Lemma MapDomRestrBy_By_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C)) - (eqmap (MapDomRestrBy A C (MapDomRestrBy A B m m') m'') - (MapDomRestrBy A B (MapDomRestrBy A C m m'') m')). + Lemma MapDomRestrBy_By_comm : + forall (m:Map A) (m':Map B) (m'':Map C), + eqmap (MapDomRestrBy A C (MapDomRestrBy A B m m') m'') + (MapDomRestrBy A B (MapDomRestrBy A C m m'') m'). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrBy_semantics A C (MapDomRestrBy A B m m') m'' a). - Rewrite (MapDomRestrBy_semantics A B m m' a). - Rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A C m m'') m' a). - Rewrite (MapDomRestrBy_semantics A C m m'' a). - Case (MapGet C m'' a); Case (MapGet B m' a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite (MapDomRestrBy_semantics A C (MapDomRestrBy A B m m') m'' a). + rewrite (MapDomRestrBy_semantics A B m m' a). + rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A C m m'') m' a). + rewrite (MapDomRestrBy_semantics A C m m'' a). + case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. - Lemma MapDomRestrBy_To : (m:(Map A)) (m':(Map B)) (m'':(Map C)) - (eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'') - (MapDomRestrTo A B m (MapDomRestrBy B C m' m''))). + Lemma MapDomRestrBy_To : + forall (m:Map A) (m':Map B) (m'':Map C), + eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'') + (MapDomRestrTo A B m (MapDomRestrBy B C m' m'')). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a). - Rewrite (MapDomRestrTo_semantics A B m m' a). - Rewrite (MapDomRestrTo_semantics A B m (MapDomRestrBy B C m' m'') a). - Rewrite (MapDomRestrBy_semantics B C m' m'' a). - Case (MapGet C m'' a); Case (MapGet B m' a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a). + rewrite (MapDomRestrTo_semantics A B m m' a). + rewrite (MapDomRestrTo_semantics A B m (MapDomRestrBy B C m' m'') a). + rewrite (MapDomRestrBy_semantics B C m' m'' a). + case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. - Lemma MapDomRestrBy_To_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C)) - (eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'') - (MapDomRestrTo A B (MapDomRestrBy A C m m'') m')). + Lemma MapDomRestrBy_To_comm : + forall (m:Map A) (m':Map B) (m'':Map C), + eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'') + (MapDomRestrTo A B (MapDomRestrBy A C m m'') m'). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a). - Rewrite (MapDomRestrTo_semantics A B m m' a). - Rewrite (MapDomRestrTo_semantics A B (MapDomRestrBy A C m m'') m' a). - Rewrite (MapDomRestrBy_semantics A C m m'' a). - Case (MapGet C m'' a); Case (MapGet B m' a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a). + rewrite (MapDomRestrTo_semantics A B m m' a). + rewrite (MapDomRestrTo_semantics A B (MapDomRestrBy A C m m'') m' a). + rewrite (MapDomRestrBy_semantics A C m m'' a). + case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. - Lemma MapDomRestrTo_By : (m:(Map A)) (m':(Map B)) (m'':(Map C)) - (eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'') - (MapDomRestrTo A C m (MapDomRestrBy C B m'' m'))). + Lemma MapDomRestrTo_By : + forall (m:Map A) (m':Map B) (m'':Map C), + eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'') + (MapDomRestrTo A C m (MapDomRestrBy C B m'' m')). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a). - Rewrite (MapDomRestrBy_semantics A B m m' a). - Rewrite (MapDomRestrTo_semantics A C m (MapDomRestrBy C B m'' m') a). - Rewrite (MapDomRestrBy_semantics C B m'' m' a). - Case (MapGet C m'' a); Case (MapGet B m' a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a). + rewrite (MapDomRestrBy_semantics A B m m' a). + rewrite (MapDomRestrTo_semantics A C m (MapDomRestrBy C B m'' m') a). + rewrite (MapDomRestrBy_semantics C B m'' m' a). + case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. - Lemma MapDomRestrTo_By_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C)) - (eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'') - (MapDomRestrBy A B (MapDomRestrTo A C m m'') m')). + Lemma MapDomRestrTo_By_comm : + forall (m:Map A) (m':Map B) (m'':Map C), + eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'') + (MapDomRestrBy A B (MapDomRestrTo A C m m'') m'). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a). - Rewrite (MapDomRestrBy_semantics A B m m' a). - Rewrite (MapDomRestrBy_semantics A B (MapDomRestrTo A C m m'') m' a). - Rewrite (MapDomRestrTo_semantics A C m m'' a). - Case (MapGet C m'' a); Case (MapGet B m' a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a). + rewrite (MapDomRestrBy_semantics A B m m' a). + rewrite (MapDomRestrBy_semantics A B (MapDomRestrTo A C m m'') m' a). + rewrite (MapDomRestrTo_semantics A C m m'' a). + case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. - Lemma MapDomRestrTo_To_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C)) - (eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'') - (MapDomRestrTo A B (MapDomRestrTo A C m m'') m')). + Lemma MapDomRestrTo_To_comm : + forall (m:Map A) (m':Map B) (m'':Map C), + eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'') + (MapDomRestrTo A B (MapDomRestrTo A C m m'') m'). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a). - Rewrite (MapDomRestrTo_semantics A B m m' a). - Rewrite (MapDomRestrTo_semantics A B (MapDomRestrTo A C m m'') m' a). - Rewrite (MapDomRestrTo_semantics A C m m'' a). - Case (MapGet C m'' a); Case (MapGet B m' a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a). + rewrite (MapDomRestrTo_semantics A B m m' a). + rewrite (MapDomRestrTo_semantics A B (MapDomRestrTo A C m m'') m' a). + rewrite (MapDomRestrTo_semantics A C m m'' a). + case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. - Lemma MapMerge_DomRestrTo : (m,m':(Map A)) (m'':(Map B)) - (eqmap (MapDomRestrTo A B (MapMerge A m m') m'') - (MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m''))). + Lemma MapMerge_DomRestrTo : + forall (m m':Map A) (m'':Map B), + eqmap (MapDomRestrTo A B (MapMerge A m m') m'') + (MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'')). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrTo_semantics A B (MapMerge A m m') m'' a). - Rewrite (MapMerge_semantics A m m' a). - Rewrite (MapMerge_semantics A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'') a). - Rewrite (MapDomRestrTo_semantics A B m' m'' a). - Rewrite (MapDomRestrTo_semantics A B m m'' a). - Case (MapGet B m'' a); Case (MapGet A m' a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite (MapDomRestrTo_semantics A B (MapMerge A m m') m'' a). + rewrite (MapMerge_semantics A m m' a). + rewrite + (MapMerge_semantics A (MapDomRestrTo A B m m'') + (MapDomRestrTo A B m' m'') a). + rewrite (MapDomRestrTo_semantics A B m' m'' a). + rewrite (MapDomRestrTo_semantics A B m m'' a). + case (MapGet B m'' a); case (MapGet A m' a); trivial. Qed. - Lemma MapMerge_DomRestrBy : (m,m':(Map A)) (m'':(Map B)) - (eqmap (MapDomRestrBy A B (MapMerge A m m') m'') - (MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m''))). + Lemma MapMerge_DomRestrBy : + forall (m m':Map A) (m'':Map B), + eqmap (MapDomRestrBy A B (MapMerge A m m') m'') + (MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'')). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrBy_semantics A B (MapMerge A m m') m'' a). - Rewrite (MapMerge_semantics A m m' a). - Rewrite (MapMerge_semantics A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'') a). - Rewrite (MapDomRestrBy_semantics A B m' m'' a). - Rewrite (MapDomRestrBy_semantics A B m m'' a). - Case (MapGet B m'' a); Case (MapGet A m' a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite (MapDomRestrBy_semantics A B (MapMerge A m m') m'' a). + rewrite (MapMerge_semantics A m m' a). + rewrite + (MapMerge_semantics A (MapDomRestrBy A B m m'') + (MapDomRestrBy A B m' m'') a). + rewrite (MapDomRestrBy_semantics A B m' m'' a). + rewrite (MapDomRestrBy_semantics A B m m'' a). + case (MapGet B m'' a); case (MapGet A m' a); trivial. Qed. - Lemma MapDelta_empty_m_1 : (m:(Map A)) (MapDelta A (M0 A) m)=m. + Lemma MapDelta_empty_m_1 : forall m:Map A, MapDelta A (M0 A) m = m. Proof. - Trivial. + trivial. Qed. - Lemma MapDelta_empty_m : (m:(Map A)) (eqmap (MapDelta A (M0 A) m) m). + Lemma MapDelta_empty_m : forall m:Map A, eqmap (MapDelta A (M0 A) m) m. Proof. - Unfold eqmap eqm. Trivial. + unfold eqmap, eqm in |- *. trivial. Qed. - Lemma MapDelta_m_empty_1 : (m:(Map A)) (MapDelta A m (M0 A))=m. + Lemma MapDelta_m_empty_1 : forall m:Map A, MapDelta A m (M0 A) = m. Proof. - Induction m;Trivial. + simple induction m; trivial. Qed. - Lemma MapDelta_m_empty : (m:(Map A)) (eqmap (MapDelta A m (M0 A)) m). + Lemma MapDelta_m_empty : forall m:Map A, eqmap (MapDelta A m (M0 A)) m. Proof. - Unfold eqmap eqm. Intros. Rewrite MapDelta_m_empty_1. Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite MapDelta_m_empty_1. reflexivity. Qed. - Lemma MapDelta_nilpotent : (m:(Map A)) (eqmap (MapDelta A m m) (M0 A)). + Lemma MapDelta_nilpotent : forall m:Map A, eqmap (MapDelta A m m) (M0 A). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m a). - Case (MapGet A m a); Trivial. + unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m a). + case (MapGet A m a); trivial. Qed. - Lemma MapDelta_as_Merge : (m,m':(Map A)) (eqmap (MapDelta A m m') - (MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m))). + Lemma MapDelta_as_Merge : + forall m m':Map A, + eqmap (MapDelta A m m') + (MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m)). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDelta_semantics A m m' a). - Rewrite (MapMerge_semantics A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m) a). - Rewrite (MapDomRestrBy_semantics A A m' m a). - Rewrite (MapDomRestrBy_semantics A A m m' a). - Case (MapGet A m a); Case (MapGet A m' a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite (MapDelta_semantics A m m' a). + rewrite + (MapMerge_semantics A (MapDomRestrBy A A m m') ( + MapDomRestrBy A A m' m) a). + rewrite (MapDomRestrBy_semantics A A m' m a). + rewrite (MapDomRestrBy_semantics A A m m' a). + case (MapGet A m a); case (MapGet A m' a); trivial. Qed. - Lemma MapDelta_as_DomRestrBy : (m,m':(Map A)) (eqmap (MapDelta A m m') - (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m'))). + Lemma MapDelta_as_DomRestrBy : + forall m m':Map A, + eqmap (MapDelta A m m') + (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m' a). - Rewrite (MapDomRestrBy_semantics A A (MapMerge A m m') (MapDomRestrTo A A m m') a). - Rewrite (MapDomRestrTo_semantics A A m m' a). Rewrite (MapMerge_semantics A m m' a). - Case (MapGet A m a); Case (MapGet A m' a); Trivial. + unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a). + rewrite + (MapDomRestrBy_semantics A A (MapMerge A m m') ( + MapDomRestrTo A A m m') a). + rewrite (MapDomRestrTo_semantics A A m m' a). rewrite (MapMerge_semantics A m m' a). + case (MapGet A m a); case (MapGet A m' a); trivial. Qed. - Lemma MapDelta_as_DomRestrBy_2 : (m,m':(Map A)) (eqmap (MapDelta A m m') - (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m))). + Lemma MapDelta_as_DomRestrBy_2 : + forall m m':Map A, + eqmap (MapDelta A m m') + (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m)). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m' a). - Rewrite (MapDomRestrBy_semantics A A (MapMerge A m m') (MapDomRestrTo A A m' m) a). - Rewrite (MapDomRestrTo_semantics A A m' m a). Rewrite (MapMerge_semantics A m m' a). - Case (MapGet A m a); Case (MapGet A m' a); Trivial. + unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a). + rewrite + (MapDomRestrBy_semantics A A (MapMerge A m m') ( + MapDomRestrTo A A m' m) a). + rewrite (MapDomRestrTo_semantics A A m' m a). rewrite (MapMerge_semantics A m m' a). + case (MapGet A m a); case (MapGet A m' a); trivial. Qed. - Lemma MapDelta_sym : (m,m':(Map A)) (eqmap (MapDelta A m m') (MapDelta A m' m)). + Lemma MapDelta_sym : + forall m m':Map A, eqmap (MapDelta A m m') (MapDelta A m' m). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m' a). - Rewrite (MapDelta_semantics A m' m a). - Case (MapGet A m a); Case (MapGet A m' a); Trivial. + unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a). + rewrite (MapDelta_semantics A m' m a). + case (MapGet A m a); case (MapGet A m' a); trivial. Qed. - Lemma MapDelta_ext : (m1,m2,m'1,m'2:(Map A)) - (eqmap m1 m'1) -> (eqmap m2 m'2) -> - (eqmap (MapDelta A m1 m2) (MapDelta A m'1 m'2)). + Lemma MapDelta_ext : + forall m1 m2 m'1 m'2:Map A, + eqmap m1 m'1 -> + eqmap m2 m'2 -> eqmap (MapDelta A m1 m2) (MapDelta A m'1 m'2). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m1 m2 a). - Rewrite (MapDelta_semantics A m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m1 m2 a). + rewrite (MapDelta_semantics A m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity. Qed. - Lemma MapDelta_ext_l : (m1,m'1,m2:(Map A)) - (eqmap m1 m'1) -> (eqmap (MapDelta A m1 m2) (MapDelta A m'1 m2)). + Lemma MapDelta_ext_l : + forall m1 m'1 m2:Map A, + eqmap m1 m'1 -> eqmap (MapDelta A m1 m2) (MapDelta A m'1 m2). Proof. - Intros. Apply MapDelta_ext. Assumption. - Apply eqmap_refl. + intros. apply MapDelta_ext. assumption. + apply eqmap_refl. Qed. - Lemma MapDelta_ext_r : (m1,m2,m'2:(Map A)) - (eqmap m2 m'2) -> (eqmap (MapDelta A m1 m2) (MapDelta A m1 m'2)). + Lemma MapDelta_ext_r : + forall m1 m2 m'2:Map A, + eqmap m2 m'2 -> eqmap (MapDelta A m1 m2) (MapDelta A m1 m'2). Proof. - Intros. Apply MapDelta_ext. Apply eqmap_refl. - Assumption. + intros. apply MapDelta_ext. apply eqmap_refl. + assumption. Qed. - Lemma MapDom_Split_1 : (m:(Map A)) (m':(Map B)) - (eqmap m (MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m'))). + Lemma MapDom_Split_1 : + forall (m:Map A) (m':Map B), + eqmap m (MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m')). Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapMerge_semantics A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') a). - Rewrite (MapDomRestrBy_semantics A B m m' a). - Rewrite (MapDomRestrTo_semantics A B m m' a). - Case (MapGet B m' a); Case (MapGet A m a); Trivial. + unfold eqmap, eqm in |- *. intros. + rewrite + (MapMerge_semantics A (MapDomRestrTo A B m m') ( + MapDomRestrBy A B m m') a). + rewrite (MapDomRestrBy_semantics A B m m' a). + rewrite (MapDomRestrTo_semantics A B m m' a). + case (MapGet B m' a); case (MapGet A m a); trivial. Qed. - Lemma MapDom_Split_2 : (m:(Map A)) (m':(Map B)) - (eqmap m (MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m'))). - Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapMerge_semantics A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m') a). - Rewrite (MapDomRestrBy_semantics A B m m' a). - Rewrite (MapDomRestrTo_semantics A B m m' a). - Case (MapGet B m' a); Case (MapGet A m a); Trivial. - Qed. - - Lemma MapDom_Split_3 : (m:(Map A)) (m':(Map B)) - (eqmap (MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m')) - (M0 A)). - Proof. - Unfold eqmap eqm. Intros. - Rewrite (MapDomRestrTo_semantics A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') a). - Rewrite (MapDomRestrBy_semantics A B m m' a). - Rewrite (MapDomRestrTo_semantics A B m m' a). - Case (MapGet B m' a); Case (MapGet A m a); Trivial. + Lemma MapDom_Split_2 : + forall (m:Map A) (m':Map B), + eqmap m (MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m')). + Proof. + unfold eqmap, eqm in |- *. intros. + rewrite + (MapMerge_semantics A (MapDomRestrBy A B m m') ( + MapDomRestrTo A B m m') a). + rewrite (MapDomRestrBy_semantics A B m m' a). + rewrite (MapDomRestrTo_semantics A B m m' a). + case (MapGet B m' a); case (MapGet A m a); trivial. + Qed. + + Lemma MapDom_Split_3 : + forall (m:Map A) (m':Map B), + eqmap + (MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m')) + (M0 A). + Proof. + unfold eqmap, eqm in |- *. intros. + rewrite + (MapDomRestrTo_semantics A A (MapDomRestrTo A B m m') + (MapDomRestrBy A B m m') a). + rewrite (MapDomRestrBy_semantics A B m m' a). + rewrite (MapDomRestrTo_semantics A B m m' a). + case (MapGet B m' a); case (MapGet A m a); trivial. Qed. End MapAxioms. -Lemma MapDomRestrTo_ext : (A,B:Set) - (m1:(Map A)) (m2:(Map B)) (m'1:(Map A)) (m'2:(Map B)) - (eqmap A m1 m'1) -> (eqmap B m2 m'2) -> - (eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m'2)). +Lemma MapDomRestrTo_ext : + forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A) + (m'2:Map B), + eqmap A m1 m'1 -> + eqmap B m2 m'2 -> + eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m'2). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_semantics A B m1 m2 a). - Rewrite (MapDomRestrTo_semantics A B m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B m1 m2 a). + rewrite (MapDomRestrTo_semantics A B m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity. Qed. -Lemma MapDomRestrTo_ext_l : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'1:(Map A)) - (eqmap A m1 m'1) -> - (eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m2)). +Lemma MapDomRestrTo_ext_l : + forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A), + eqmap A m1 m'1 -> + eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m2). Proof. - Intros. Apply MapDomRestrTo_ext; [ Assumption | Apply eqmap_refl ]. + intros. apply MapDomRestrTo_ext; [ assumption | apply eqmap_refl ]. Qed. -Lemma MapDomRestrTo_ext_r : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'2:(Map B)) - (eqmap B m2 m'2) -> - (eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m1 m'2)). +Lemma MapDomRestrTo_ext_r : + forall (A B:Set) (m1:Map A) (m2 m'2:Map B), + eqmap B m2 m'2 -> + eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m1 m'2). Proof. - Intros. Apply MapDomRestrTo_ext; [ Apply eqmap_refl | Assumption ]. + intros. apply MapDomRestrTo_ext; [ apply eqmap_refl | assumption ]. Qed. -Lemma MapDomRestrBy_ext : (A,B:Set) - (m1:(Map A)) (m2:(Map B)) (m'1:(Map A)) (m'2:(Map B)) - (eqmap A m1 m'1) -> (eqmap B m2 m'2) -> - (eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m'2)). +Lemma MapDomRestrBy_ext : + forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A) + (m'2:Map B), + eqmap A m1 m'1 -> + eqmap B m2 m'2 -> + eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m'2). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_semantics A B m1 m2 a). - Rewrite (MapDomRestrBy_semantics A B m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B m1 m2 a). + rewrite (MapDomRestrBy_semantics A B m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity. Qed. -Lemma MapDomRestrBy_ext_l : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'1:(Map A)) - (eqmap A m1 m'1) -> - (eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m2)). +Lemma MapDomRestrBy_ext_l : + forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A), + eqmap A m1 m'1 -> + eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m2). Proof. - Intros. Apply MapDomRestrBy_ext; [ Assumption | Apply eqmap_refl ]. + intros. apply MapDomRestrBy_ext; [ assumption | apply eqmap_refl ]. Qed. -Lemma MapDomRestrBy_ext_r : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'2:(Map B)) - (eqmap B m2 m'2) -> - (eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m1 m'2)). +Lemma MapDomRestrBy_ext_r : + forall (A B:Set) (m1:Map A) (m2 m'2:Map B), + eqmap B m2 m'2 -> + eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m1 m'2). Proof. - Intros. Apply MapDomRestrBy_ext; [ Apply eqmap_refl | Assumption ]. + intros. apply MapDomRestrBy_ext; [ apply eqmap_refl | assumption ]. Qed. -Lemma MapDomRestrBy_m_m : (A:Set) (m:(Map A)) - (eqmap A (MapDomRestrBy A unit m (MapDom A m)) (M0 A)). +Lemma MapDomRestrBy_m_m : + forall (A:Set) (m:Map A), + eqmap A (MapDomRestrBy A unit m (MapDom A m)) (M0 A). Proof. - Intros. Apply eqmap_trans with m':=(MapDomRestrBy A A m m). Apply eqmap_sym. - Apply MapDomRestrBy_Dom. - Apply MapDomRestrBy_m_m_1. + intros. apply eqmap_trans with (m' := MapDomRestrBy A A m m). apply eqmap_sym. + apply MapDomRestrBy_Dom. + apply MapDomRestrBy_m_m_1. Qed. -Lemma FSetDelta_assoc : (s,s',s'':FSet) - (eqmap unit (MapDelta ? (MapDelta ? s s') s'') (MapDelta ? s (MapDelta ? s' s''))). +Lemma FSetDelta_assoc : + forall s s' s'':FSet, + eqmap unit (MapDelta _ (MapDelta _ s s') s'') + (MapDelta _ s (MapDelta _ s' s'')). Proof. - Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics unit (MapDelta unit s s') s'' a). - Rewrite (MapDelta_semantics unit s s' a). - Rewrite (MapDelta_semantics unit s (MapDelta unit s' s'') a). - Rewrite (MapDelta_semantics unit s' s'' a). - Case (MapGet ? s a); Case (MapGet ? s' a); Case (MapGet ? s'' a); Trivial. - Intros. Elim u. Elim u1. Reflexivity. + unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics unit (MapDelta unit s s') s'' a). + rewrite (MapDelta_semantics unit s s' a). + rewrite (MapDelta_semantics unit s (MapDelta unit s' s'') a). + rewrite (MapDelta_semantics unit s' s'' a). + case (MapGet _ s a); case (MapGet _ s' a); case (MapGet _ s'' a); trivial. + intros. elim u. elim u1. reflexivity. Qed. -Lemma FSet_ext : (s,s':FSet) ((a:ad) (in_FSet a s)=(in_FSet a s')) -> (eqmap unit s s'). +Lemma FSet_ext : + forall s s':FSet, + (forall a:ad, in_FSet a s = in_FSet a s') -> eqmap unit s s'. Proof. - Unfold in_FSet eqmap eqm. Intros. Elim (sumbool_of_bool (in_dom ? a s)). Intro H0. - Elim (in_dom_some ? s a H0). Intros y H1. Rewrite (H a) in H0. Elim (in_dom_some ? s' a H0). - Intros y' H2. Rewrite H1. Rewrite H2. Elim y. Elim y'. Reflexivity. - Intro H0. Rewrite (in_dom_none ? s a H0). Rewrite (H a) in H0. Rewrite (in_dom_none ? s' a H0). - Reflexivity. + unfold in_FSet, eqmap, eqm in |- *. intros. elim (sumbool_of_bool (in_dom _ a s)). intro H0. + elim (in_dom_some _ s a H0). intros y H1. rewrite (H a) in H0. elim (in_dom_some _ s' a H0). + intros y' H2. rewrite H1. rewrite H2. elim y. elim y'. reflexivity. + intro H0. rewrite (in_dom_none _ s a H0). rewrite (H a) in H0. rewrite (in_dom_none _ s' a H0). + reflexivity. Qed. -Lemma FSetUnion_comm : (s,s':FSet) (eqmap unit (FSetUnion s s') (FSetUnion s' s)). +Lemma FSetUnion_comm : + forall s s':FSet, eqmap unit (FSetUnion s s') (FSetUnion s' s). Proof. - Intros. Apply FSet_ext. Intro. Rewrite in_FSet_union. Rewrite in_FSet_union. Apply orb_sym. + intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_union. apply orb_comm. Qed. -Lemma FSetUnion_assoc : (s,s',s'':FSet) (eqmap unit - (FSetUnion (FSetUnion s s') s'') (FSetUnion s (FSetUnion s' s''))). +Lemma FSetUnion_assoc : + forall s s' s'':FSet, + eqmap unit (FSetUnion (FSetUnion s s') s'') + (FSetUnion s (FSetUnion s' s'')). Proof. - Exact (MapMerge_assoc unit). + exact (MapMerge_assoc unit). Qed. -Lemma FSetUnion_M0_s : (s:FSet) (eqmap unit (FSetUnion (M0 unit) s) s). +Lemma FSetUnion_M0_s : forall s:FSet, eqmap unit (FSetUnion (M0 unit) s) s. Proof. - Exact (MapMerge_empty_m unit). + exact (MapMerge_empty_m unit). Qed. -Lemma FSetUnion_s_M0 : (s:FSet) (eqmap unit (FSetUnion s (M0 unit)) s). +Lemma FSetUnion_s_M0 : forall s:FSet, eqmap unit (FSetUnion s (M0 unit)) s. Proof. - Exact (MapMerge_m_empty unit). + exact (MapMerge_m_empty unit). Qed. -Lemma FSetUnion_idempotent : (s:FSet) (eqmap unit (FSetUnion s s) s). +Lemma FSetUnion_idempotent : forall s:FSet, eqmap unit (FSetUnion s s) s. Proof. - Exact (MapMerge_idempotent unit). + exact (MapMerge_idempotent unit). Qed. -Lemma FSetInter_comm : (s,s':FSet) (eqmap unit (FSetInter s s') (FSetInter s' s)). +Lemma FSetInter_comm : + forall s s':FSet, eqmap unit (FSetInter s s') (FSetInter s' s). Proof. - Intros. Apply FSet_ext. Intro. Rewrite in_FSet_inter. Rewrite in_FSet_inter. Apply andb_sym. + intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_inter. apply andb_comm. Qed. -Lemma FSetInter_assoc : (s,s',s'':FSet) (eqmap unit - (FSetInter (FSetInter s s') s'') (FSetInter s (FSetInter s' s''))). +Lemma FSetInter_assoc : + forall s s' s'':FSet, + eqmap unit (FSetInter (FSetInter s s') s'') + (FSetInter s (FSetInter s' s'')). Proof. - Exact (MapDomRestrTo_assoc unit unit unit). + exact (MapDomRestrTo_assoc unit unit unit). Qed. -Lemma FSetInter_M0_s : (s:FSet) (eqmap unit (FSetInter (M0 unit) s) (M0 unit)). +Lemma FSetInter_M0_s : + forall s:FSet, eqmap unit (FSetInter (M0 unit) s) (M0 unit). Proof. - Exact (MapDomRestrTo_empty_m unit unit). + exact (MapDomRestrTo_empty_m unit unit). Qed. -Lemma FSetInter_s_M0 : (s:FSet) (eqmap unit (FSetInter s (M0 unit)) (M0 unit)). +Lemma FSetInter_s_M0 : + forall s:FSet, eqmap unit (FSetInter s (M0 unit)) (M0 unit). Proof. - Exact (MapDomRestrTo_m_empty unit unit). + exact (MapDomRestrTo_m_empty unit unit). Qed. -Lemma FSetInter_idempotent : (s:FSet) (eqmap unit (FSetInter s s) s). +Lemma FSetInter_idempotent : forall s:FSet, eqmap unit (FSetInter s s) s. Proof. - Exact (MapDomRestrTo_idempotent unit). + exact (MapDomRestrTo_idempotent unit). Qed. -Lemma FSetUnion_Inter_l : (s,s',s'':FSet) (eqmap unit - (FSetUnion (FSetInter s s') s'') (FSetInter (FSetUnion s s'') (FSetUnion s' s''))). +Lemma FSetUnion_Inter_l : + forall s s' s'':FSet, + eqmap unit (FSetUnion (FSetInter s s') s'') + (FSetInter (FSetUnion s s'') (FSetUnion s' s'')). Proof. - Intros. Apply FSet_ext. Intro. Rewrite in_FSet_union. Rewrite in_FSet_inter. - Rewrite in_FSet_inter. Rewrite in_FSet_union. Rewrite in_FSet_union. - Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity. + intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_inter. + rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union. + case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity. Qed. -Lemma FSetUnion_Inter_r : (s,s',s'':FSet) (eqmap unit - (FSetUnion s (FSetInter s' s'')) (FSetInter (FSetUnion s s') (FSetUnion s s''))). +Lemma FSetUnion_Inter_r : + forall s s' s'':FSet, + eqmap unit (FSetUnion s (FSetInter s' s'')) + (FSetInter (FSetUnion s s') (FSetUnion s s'')). Proof. - Intros. Apply FSet_ext. Intro. Rewrite in_FSet_union. Rewrite in_FSet_inter. - Rewrite in_FSet_inter. Rewrite in_FSet_union. Rewrite in_FSet_union. - Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity. + intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_inter. + rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union. + case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity. Qed. -Lemma FSetInter_Union_l : (s,s',s'':FSet) (eqmap unit - (FSetInter (FSetUnion s s') s'') (FSetUnion (FSetInter s s'') (FSetInter s' s''))). +Lemma FSetInter_Union_l : + forall s s' s'':FSet, + eqmap unit (FSetInter (FSetUnion s s') s'') + (FSetUnion (FSetInter s s'') (FSetInter s' s'')). Proof. - Intros. Apply FSet_ext. Intro. Rewrite in_FSet_inter. Rewrite in_FSet_union. - Rewrite in_FSet_union. Rewrite in_FSet_inter. Rewrite in_FSet_inter. - Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity. + intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_union. + rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter. + case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity. Qed. -Lemma FSetInter_Union_r : (s,s',s'':FSet) (eqmap unit - (FSetInter s (FSetUnion s' s'')) (FSetUnion (FSetInter s s') (FSetInter s s''))). +Lemma FSetInter_Union_r : + forall s s' s'':FSet, + eqmap unit (FSetInter s (FSetUnion s' s'')) + (FSetUnion (FSetInter s s') (FSetInter s s'')). Proof. - Intros. Apply FSet_ext. Intro. Rewrite in_FSet_inter. Rewrite in_FSet_union. - Rewrite in_FSet_union. Rewrite in_FSet_inter. Rewrite in_FSet_inter. - Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity. -Qed. + intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_union. + rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter. + case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity. +Qed.
\ No newline at end of file |
