diff options
Diffstat (limited to 'theories/IntMap/Adist.v')
| -rw-r--r-- | theories/IntMap/Adist.v | 397 |
1 files changed, 206 insertions, 191 deletions
diff --git a/theories/IntMap/Adist.v b/theories/IntMap/Adist.v index fbc2870f16..30b54ac14f 100644 --- a/theories/IntMap/Adist.v +++ b/theories/IntMap/Adist.v @@ -7,233 +7,244 @@ (***********************************************************************) (*i $Id$ i*) -Require Bool. -Require ZArith. -Require Arith. -Require Min. -Require Addr. - -Fixpoint ad_plength_1 [p:positive] : nat := - Cases p of - xH => O - | (xI _) => O - | (xO p') => (S (ad_plength_1 p')) +Require Import Bool. +Require Import ZArith. +Require Import Arith. +Require Import Min. +Require Import Addr. + +Fixpoint ad_plength_1 (p:positive) : nat := + match p with + | xH => 0 + | xI _ => 0 + | xO p' => S (ad_plength_1 p') end. Inductive natinf : Set := - infty : natinf + | infty : natinf | ni : nat -> natinf. -Definition ad_plength := [a:ad] - Cases a of - ad_z => infty - | (ad_x p) => (ni (ad_plength_1 p)) +Definition ad_plength (a:ad) := + match a with + | ad_z => infty + | ad_x p => ni (ad_plength_1 p) end. -Lemma ad_plength_infty : (a:ad) (ad_plength a)=infty -> a=ad_z. +Lemma ad_plength_infty : forall a:ad, ad_plength a = infty -> a = ad_z. Proof. - Induction a; Trivial. - Unfold ad_plength; Intros; Discriminate H. + simple induction a; trivial. + unfold ad_plength in |- *; intros; discriminate H. Qed. -Lemma ad_plength_zeros : (a:ad) (n:nat) (ad_plength a)=(ni n) -> - (k:nat) (lt k n) -> (ad_bit a k)=false. +Lemma ad_plength_zeros : + forall (a:ad) (n:nat), + ad_plength a = ni n -> forall k:nat, k < n -> ad_bit a k = false. Proof. - Induction a; Trivial. - Induction p. Induction n. Intros. Inversion H1. - Induction k. Simpl in H1. Discriminate H1. - Intros. Simpl in H1. Discriminate H1. - Induction k. Trivial. - Generalize H0. Case n. Intros. Inversion H3. - Intros. Simpl. Unfold ad_bit in H. Apply (H n0). Simpl in H1. Inversion H1. Reflexivity. - Exact (lt_S_n n1 n0 H3). - Simpl. Intros n H. Inversion H. Intros. Inversion H0. + simple induction a; trivial. + simple induction p. simple induction n. intros. inversion H1. + simple induction k. simpl in H1. discriminate H1. + intros. simpl in H1. discriminate H1. + simple induction k. trivial. + generalize H0. case n. intros. inversion H3. + intros. simpl in |- *. unfold ad_bit in H. apply (H n0). simpl in H1. inversion H1. reflexivity. + exact (lt_S_n n1 n0 H3). + simpl in |- *. intros n H. inversion H. intros. inversion H0. Qed. -Lemma ad_plength_one : (a:ad) (n:nat) (ad_plength a)=(ni n) -> (ad_bit a n)=true. +Lemma ad_plength_one : + forall (a:ad) (n:nat), ad_plength a = ni n -> ad_bit a n = true. Proof. - Induction a. Intros. Inversion H. - Induction p. Intros. Simpl in H0. Inversion H0. Reflexivity. - Intros. Simpl in H0. Inversion H0. Simpl. Unfold ad_bit in H. Apply H. Reflexivity. - Intros. Simpl in H. Inversion H. Reflexivity. + simple induction a. intros. inversion H. + simple induction p. intros. simpl in H0. inversion H0. reflexivity. + intros. simpl in H0. inversion H0. simpl in |- *. unfold ad_bit in H. apply H. reflexivity. + intros. simpl in H. inversion H. reflexivity. Qed. -Lemma ad_plength_first_one : (a:ad) (n:nat) - ((k:nat) (lt k n) -> (ad_bit a k)=false) -> (ad_bit a n)=true -> - (ad_plength a)=(ni n). +Lemma ad_plength_first_one : + forall (a:ad) (n:nat), + (forall k:nat, k < n -> ad_bit a k = false) -> + ad_bit a n = true -> ad_plength a = ni n. Proof. - Induction a. Intros. Simpl in H0. Discriminate H0. - Induction p. Intros. Generalize H0. Case n. Intros. Reflexivity. - Intros. Absurd (ad_bit (ad_x (xI p0)) O)=false. Trivial with bool. - Auto with bool arith. - Intros. Generalize H0 H1. Case n. Intros. Simpl in H3. Discriminate H3. - Intros. Simpl. Unfold ad_plength in H. - Cut (ni (ad_plength_1 p0))=(ni n0). Intro. Inversion H4. Reflexivity. - Apply H. Intros. Change (ad_bit (ad_x (xO p0)) (S k))=false. Apply H2. Apply lt_n_S. Exact H4. - Exact H3. - Intro. Case n. Trivial. - Intros. Simpl in H0. Discriminate H0. + simple induction a. intros. simpl in H0. discriminate H0. + simple induction p. intros. generalize H0. case n. intros. reflexivity. + intros. absurd (ad_bit (ad_x (xI p0)) 0 = false). trivial with bool. + auto with bool arith. + intros. generalize H0 H1. case n. intros. simpl in H3. discriminate H3. + intros. simpl in |- *. unfold ad_plength in H. + cut (ni (ad_plength_1 p0) = ni n0). intro. inversion H4. reflexivity. + apply H. intros. change (ad_bit (ad_x (xO p0)) (S k) = false) in |- *. apply H2. apply lt_n_S. exact H4. + exact H3. + intro. case n. trivial. + intros. simpl in H0. discriminate H0. Qed. -Definition ni_min := [d,d':natinf] - Cases d of - infty => d' - | (ni n) => Cases d' of - infty => d - | (ni n') => (ni (min n n')) - end +Definition ni_min (d d':natinf) := + match d with + | infty => d' + | ni n => match d' with + | infty => d + | ni n' => ni (min n n') + end end. -Lemma ni_min_idemp : (d:natinf) (ni_min d d)=d. +Lemma ni_min_idemp : forall d:natinf, ni_min d d = d. Proof. - Induction d; Trivial. - Unfold ni_min. - Induction n; Trivial. - Intros. - Simpl. - Inversion H. - Rewrite H1. - Rewrite H1. - Reflexivity. + simple induction d; trivial. + unfold ni_min in |- *. + simple induction n; trivial. + intros. + simpl in |- *. + inversion H. + rewrite H1. + rewrite H1. + reflexivity. Qed. -Lemma ni_min_comm : (d,d':natinf) (ni_min d d')=(ni_min d' d). +Lemma ni_min_comm : forall d d':natinf, ni_min d d' = ni_min d' d. Proof. - Induction d. Induction d'; Trivial. - Induction d'; Trivial. Elim n. Induction n0; Trivial. - Intros. Elim n1; Trivial. Intros. Unfold ni_min in H. Cut (min n0 n2)=(min n2 n0). - Intro. Unfold ni_min. Simpl. Rewrite H1. Reflexivity. - Cut (ni (min n0 n2))=(ni (min n2 n0)). Intros. - Inversion H1; Trivial. - Exact (H n2). + simple induction d. simple induction d'; trivial. + simple induction d'; trivial. elim n. simple induction n0; trivial. + intros. elim n1; trivial. intros. unfold ni_min in H. cut (min n0 n2 = min n2 n0). + intro. unfold ni_min in |- *. simpl in |- *. rewrite H1. reflexivity. + cut (ni (min n0 n2) = ni (min n2 n0)). intros. + inversion H1; trivial. + exact (H n2). Qed. -Lemma ni_min_assoc : (d,d',d'':natinf) (ni_min (ni_min d d') d'')=(ni_min d (ni_min d' d'')). +Lemma ni_min_assoc : + forall d d' d'':natinf, ni_min (ni_min d d') d'' = ni_min d (ni_min d' d''). Proof. - Induction d; Trivial. Induction d'; Trivial. - Induction d''; Trivial. - Unfold ni_min. Intro. Cut (min (min n n0) n1)=(min n (min n0 n1)). - Intro. Rewrite H. Reflexivity. - Generalize n0 n1. Elim n; Trivial. - Induction n3; Trivial. Induction n5; Trivial. - Intros. Simpl. Auto. + simple induction d; trivial. simple induction d'; trivial. + simple induction d''; trivial. + unfold ni_min in |- *. intro. cut (min (min n n0) n1 = min n (min n0 n1)). + intro. rewrite H. reflexivity. + generalize n0 n1. elim n; trivial. + simple induction n3; trivial. simple induction n5; trivial. + intros. simpl in |- *. auto. Qed. -Lemma ni_min_O_l : (d:natinf) (ni_min (ni O) d)=(ni O). +Lemma ni_min_O_l : forall d:natinf, ni_min (ni 0) d = ni 0. Proof. - Induction d; Trivial. + simple induction d; trivial. Qed. -Lemma ni_min_O_r : (d:natinf) (ni_min d (ni O))=(ni O). +Lemma ni_min_O_r : forall d:natinf, ni_min d (ni 0) = ni 0. Proof. - Intros. Rewrite ni_min_comm. Apply ni_min_O_l. + intros. rewrite ni_min_comm. apply ni_min_O_l. Qed. -Lemma ni_min_inf_l : (d:natinf) (ni_min infty d)=d. +Lemma ni_min_inf_l : forall d:natinf, ni_min infty d = d. Proof. - Trivial. + trivial. Qed. -Lemma ni_min_inf_r : (d:natinf) (ni_min d infty)=d. +Lemma ni_min_inf_r : forall d:natinf, ni_min d infty = d. Proof. - Induction d; Trivial. + simple induction d; trivial. Qed. -Definition ni_le := [d,d':natinf] (ni_min d d')=d. +Definition ni_le (d d':natinf) := ni_min d d' = d. -Lemma ni_le_refl : (d:natinf) (ni_le d d). +Lemma ni_le_refl : forall d:natinf, ni_le d d. Proof. - Exact ni_min_idemp. + exact ni_min_idemp. Qed. -Lemma ni_le_antisym : (d,d':natinf) (ni_le d d') -> (ni_le d' d) -> d=d'. +Lemma ni_le_antisym : forall d d':natinf, ni_le d d' -> ni_le d' d -> d = d'. Proof. - Unfold ni_le. Intros d d'. Rewrite ni_min_comm. Intro H. Rewrite H. Trivial. + unfold ni_le in |- *. intros d d'. rewrite ni_min_comm. intro H. rewrite H. trivial. Qed. -Lemma ni_le_trans : (d,d',d'':natinf) (ni_le d d') -> (ni_le d' d'') -> (ni_le d d''). +Lemma ni_le_trans : + forall d d' d'':natinf, ni_le d d' -> ni_le d' d'' -> ni_le d d''. Proof. - Unfold ni_le. Intros. Rewrite <- H. Rewrite ni_min_assoc. Rewrite H0. Reflexivity. + unfold ni_le in |- *. intros. rewrite <- H. rewrite ni_min_assoc. rewrite H0. reflexivity. Qed. -Lemma ni_le_min_1 : (d,d':natinf) (ni_le (ni_min d d') d). +Lemma ni_le_min_1 : forall d d':natinf, ni_le (ni_min d d') d. Proof. - Unfold ni_le. Intros. Rewrite (ni_min_comm d d'). Rewrite ni_min_assoc. - Rewrite ni_min_idemp. Reflexivity. + unfold ni_le in |- *. intros. rewrite (ni_min_comm d d'). rewrite ni_min_assoc. + rewrite ni_min_idemp. reflexivity. Qed. -Lemma ni_le_min_2 : (d,d':natinf) (ni_le (ni_min d d') d'). +Lemma ni_le_min_2 : forall d d':natinf, ni_le (ni_min d d') d'. Proof. - Unfold ni_le. Intros. Rewrite ni_min_assoc. Rewrite ni_min_idemp. Reflexivity. + unfold ni_le in |- *. intros. rewrite ni_min_assoc. rewrite ni_min_idemp. reflexivity. Qed. -Lemma ni_min_case : (d,d':natinf) (ni_min d d')=d \/ (ni_min d d')=d'. +Lemma ni_min_case : forall d d':natinf, ni_min d d' = d \/ ni_min d d' = d'. Proof. - Induction d. Intro. Right . Exact (ni_min_inf_l d'). - Induction d'. Left . Exact (ni_min_inf_r (ni n)). - Unfold ni_min. Cut (n0:nat)(min n n0)=n\/(min n n0)=n0. - Intros. Case (H n0). Intro. Left . Rewrite H0. Reflexivity. - Intro. Right . Rewrite H0. Reflexivity. - Elim n. Intro. Left . Reflexivity. - Induction n1. Right . Reflexivity. - Intros. Case (H n2). Intro. Left . Simpl. Rewrite H1. Reflexivity. - Intro. Right . Simpl. Rewrite H1. Reflexivity. + simple induction d. intro. right. exact (ni_min_inf_l d'). + simple induction d'. left. exact (ni_min_inf_r (ni n)). + unfold ni_min in |- *. cut (forall n0:nat, min n n0 = n \/ min n n0 = n0). + intros. case (H n0). intro. left. rewrite H0. reflexivity. + intro. right. rewrite H0. reflexivity. + elim n. intro. left. reflexivity. + simple induction n1. right. reflexivity. + intros. case (H n2). intro. left. simpl in |- *. rewrite H1. reflexivity. + intro. right. simpl in |- *. rewrite H1. reflexivity. Qed. -Lemma ni_le_total : (d,d':natinf) (ni_le d d') \/ (ni_le d' d). +Lemma ni_le_total : forall d d':natinf, ni_le d d' \/ ni_le d' d. Proof. - Unfold ni_le. Intros. Rewrite (ni_min_comm d' d). Apply ni_min_case. + unfold ni_le in |- *. intros. rewrite (ni_min_comm d' d). apply ni_min_case. Qed. -Lemma ni_le_min_induc : (d,d',dm:natinf) (ni_le dm d) -> (ni_le dm d') -> - ((d'':natinf) (ni_le d'' d) -> (ni_le d'' d') -> (ni_le d'' dm)) -> - (ni_min d d')=dm. +Lemma ni_le_min_induc : + forall d d' dm:natinf, + ni_le dm d -> + ni_le dm d' -> + (forall d'':natinf, ni_le d'' d -> ni_le d'' d' -> ni_le d'' dm) -> + ni_min d d' = dm. Proof. - Intros. Case (ni_min_case d d'). Intro. Rewrite H2. - Apply ni_le_antisym. Apply H1. Apply ni_le_refl. - Exact H2. - Exact H. - Intro. Rewrite H2. Apply ni_le_antisym. Apply H1. Unfold ni_le. Rewrite ni_min_comm. Exact H2. - Apply ni_le_refl. - Exact H0. + intros. case (ni_min_case d d'). intro. rewrite H2. + apply ni_le_antisym. apply H1. apply ni_le_refl. + exact H2. + exact H. + intro. rewrite H2. apply ni_le_antisym. apply H1. unfold ni_le in |- *. rewrite ni_min_comm. exact H2. + apply ni_le_refl. + exact H0. Qed. -Lemma le_ni_le : (m,n:nat) (le m n) -> (ni_le (ni m) (ni n)). +Lemma le_ni_le : forall m n:nat, m <= n -> ni_le (ni m) (ni n). Proof. - Cut (m,n:nat)(le m n)->(min m n)=m. - Intros. Unfold ni_le ni_min. Rewrite (H m n H0). Reflexivity. - Induction m. Trivial. - Induction n0. Intro. Inversion H0. - Intros. Simpl. Rewrite (H n1 (le_S_n n n1 H1)). Reflexivity. + cut (forall m n:nat, m <= n -> min m n = m). + intros. unfold ni_le, ni_min in |- *. rewrite (H m n H0). reflexivity. + simple induction m. trivial. + simple induction n0. intro. inversion H0. + intros. simpl in |- *. rewrite (H n1 (le_S_n n n1 H1)). reflexivity. Qed. -Lemma ni_le_le : (m,n:nat) (ni_le (ni m) (ni n)) -> (le m n). +Lemma ni_le_le : forall m n:nat, ni_le (ni m) (ni n) -> m <= n. Proof. - Unfold ni_le. Unfold ni_min. Intros. Inversion H. Apply le_min_r. + unfold ni_le in |- *. unfold ni_min in |- *. intros. inversion H. apply le_min_r. Qed. -Lemma ad_plength_lb : (a:ad) (n:nat) ((k:nat) (lt k n) -> (ad_bit a k)=false) -> - (ni_le (ni n) (ad_plength a)). +Lemma ad_plength_lb : + forall (a:ad) (n:nat), + (forall k:nat, k < n -> ad_bit a k = false) -> ni_le (ni n) (ad_plength a). Proof. - Induction a. Intros. Exact (ni_min_inf_r (ni n)). - Intros. Unfold ad_plength. Apply le_ni_le. Case (le_or_lt n (ad_plength_1 p)). Trivial. - Intro. Absurd (ad_bit (ad_x p) (ad_plength_1 p))=false. - Rewrite (ad_plength_one (ad_x p) (ad_plength_1 p) - (refl_equal natinf (ad_plength (ad_x p)))). - Discriminate. - Apply H. Exact H0. + simple induction a. intros. exact (ni_min_inf_r (ni n)). + intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt n (ad_plength_1 p)). trivial. + intro. absurd (ad_bit (ad_x p) (ad_plength_1 p) = false). + rewrite + (ad_plength_one (ad_x p) (ad_plength_1 p) + (refl_equal (ad_plength (ad_x p)))). + discriminate. + apply H. exact H0. Qed. -Lemma ad_plength_ub : (a:ad) (n:nat) (ad_bit a n)=true -> - (ni_le (ad_plength a) (ni n)). +Lemma ad_plength_ub : + forall (a:ad) (n:nat), ad_bit a n = true -> ni_le (ad_plength a) (ni n). Proof. - Induction a. Intros. Discriminate H. - Intros. Unfold ad_plength. Apply le_ni_le. Case (le_or_lt (ad_plength_1 p) n). Trivial. - Intro. Absurd (ad_bit (ad_x p) n)=true. - Rewrite (ad_plength_zeros (ad_x p) (ad_plength_1 p) - (refl_equal natinf (ad_plength (ad_x p))) n H0). - Discriminate. - Exact H. + simple induction a. intros. discriminate H. + intros. unfold ad_plength in |- *. apply le_ni_le. case (le_or_lt (ad_plength_1 p) n). trivial. + intro. absurd (ad_bit (ad_x p) n = true). + rewrite + (ad_plength_zeros (ad_x p) (ad_plength_1 p) + (refl_equal (ad_plength (ad_x p))) n H0). + discriminate. + exact H. Qed. @@ -244,26 +255,26 @@ Qed. Instead of working with $d$, we work with $pd$, namely [ad_pdist]: *) -Definition ad_pdist := [a,a':ad] (ad_plength (ad_xor a a')). +Definition ad_pdist (a a':ad) := ad_plength (ad_xor a a'). (** d is a distance, so $d(a,a')=0$ iff $a=a'$; this means that $pd(a,a')=infty$ iff $a=a'$: *) -Lemma ad_pdist_eq_1 : (a:ad) (ad_pdist a a)=infty. +Lemma ad_pdist_eq_1 : forall a:ad, ad_pdist a a = infty. Proof. - Intros. Unfold ad_pdist. Rewrite ad_xor_nilpotent. Reflexivity. + intros. unfold ad_pdist in |- *. rewrite ad_xor_nilpotent. reflexivity. Qed. -Lemma ad_pdist_eq_2 : (a,a':ad) (ad_pdist a a')=infty -> a=a'. +Lemma ad_pdist_eq_2 : forall a a':ad, ad_pdist a a' = infty -> a = a'. Proof. - Intros. Apply ad_xor_eq. Apply ad_plength_infty. Exact H. + intros. apply ad_xor_eq. apply ad_plength_infty. exact H. Qed. (** $d$ is a distance, so $d(a,a')=d(a',a)$: *) -Lemma ad_pdist_comm : (a,a':ad) (ad_pdist a a')=(ad_pdist a' a). +Lemma ad_pdist_comm : forall a a':ad, ad_pdist a a' = ad_pdist a' a. Proof. - Unfold ad_pdist. Intros. Rewrite ad_xor_comm. Reflexivity. + unfold ad_pdist in |- *. intros. rewrite ad_xor_comm. reflexivity. Qed. (** $d$ is an ultrametric distance, that is, not only $d(a,a')\leq @@ -278,44 +289,48 @@ Qed. (lemma [ad_plength_ultra]). *) -Lemma ad_plength_ultra_1 : (a,a':ad) - (ni_le (ad_plength a) (ad_plength a')) -> - (ni_le (ad_plength a) (ad_plength (ad_xor a a'))). +Lemma ad_plength_ultra_1 : + forall a a':ad, + ni_le (ad_plength a) (ad_plength a') -> + ni_le (ad_plength a) (ad_plength (ad_xor a a')). Proof. - Induction a. Intros. Unfold ni_le in H. Unfold 1 3 ad_plength in H. - Rewrite (ni_min_inf_l (ad_plength a')) in H. - Rewrite (ad_plength_infty a' H). Simpl. Apply ni_le_refl. - Intros. Unfold 1 ad_plength. Apply ad_plength_lb. Intros. - Cut (a'':ad)(ad_xor (ad_x p) a')=a''->(ad_bit a'' k)=false. - Intros. Apply H1. Reflexivity. - Intro a''. Case a''. Intro. Reflexivity. - Intros. Rewrite <- H1. Rewrite (ad_xor_semantics (ad_x p) a' k). Unfold adf_xor. - Rewrite (ad_plength_zeros (ad_x p) (ad_plength_1 p) - (refl_equal natinf (ad_plength (ad_x p))) k H0). - Generalize H. Case a'. Trivial. - Intros. Cut (ad_bit (ad_x p1) k)=false. Intros. Rewrite H3. Reflexivity. - Apply ad_plength_zeros with n:=(ad_plength_1 p1). Reflexivity. - Apply (lt_le_trans k (ad_plength_1 p) (ad_plength_1 p1)). Exact H0. - Apply ni_le_le. Exact H2. + simple induction a. intros. unfold ni_le in H. unfold ad_plength at 1 3 in H. + rewrite (ni_min_inf_l (ad_plength a')) in H. + rewrite (ad_plength_infty a' H). simpl in |- *. apply ni_le_refl. + intros. unfold ad_plength at 1 in |- *. apply ad_plength_lb. intros. + cut (forall a'':ad, ad_xor (ad_x p) a' = a'' -> ad_bit a'' k = false). + intros. apply H1. reflexivity. + intro a''. case a''. intro. reflexivity. + intros. rewrite <- H1. rewrite (ad_xor_semantics (ad_x p) a' k). unfold adf_xor in |- *. + rewrite + (ad_plength_zeros (ad_x p) (ad_plength_1 p) + (refl_equal (ad_plength (ad_x p))) k H0). + generalize H. case a'. trivial. + intros. cut (ad_bit (ad_x p1) k = false). intros. rewrite H3. reflexivity. + apply ad_plength_zeros with (n := ad_plength_1 p1). reflexivity. + apply (lt_le_trans k (ad_plength_1 p) (ad_plength_1 p1)). exact H0. + apply ni_le_le. exact H2. Qed. -Lemma ad_plength_ultra : (a,a':ad) - (ni_le (ni_min (ad_plength a) (ad_plength a')) (ad_plength (ad_xor a a'))). +Lemma ad_plength_ultra : + forall a a':ad, + ni_le (ni_min (ad_plength a) (ad_plength a')) (ad_plength (ad_xor a a')). Proof. - Intros. Case (ni_le_total (ad_plength a) (ad_plength a')). Intro. - Cut (ni_min (ad_plength a) (ad_plength a'))=(ad_plength a). - Intro. Rewrite H0. Apply ad_plength_ultra_1. Exact H. - Exact H. - Intro. Cut (ni_min (ad_plength a) (ad_plength a'))=(ad_plength a'). - Intro. Rewrite H0. Rewrite ad_xor_comm. Apply ad_plength_ultra_1. Exact H. - Rewrite ni_min_comm. Exact H. + intros. case (ni_le_total (ad_plength a) (ad_plength a')). intro. + cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a). + intro. rewrite H0. apply ad_plength_ultra_1. exact H. + exact H. + intro. cut (ni_min (ad_plength a) (ad_plength a') = ad_plength a'). + intro. rewrite H0. rewrite ad_xor_comm. apply ad_plength_ultra_1. exact H. + rewrite ni_min_comm. exact H. Qed. -Lemma ad_pdist_ultra : (a,a',a'':ad) - (ni_le (ni_min (ad_pdist a a'') (ad_pdist a'' a')) (ad_pdist a a')). +Lemma ad_pdist_ultra : + forall a a' a'':ad, + ni_le (ni_min (ad_pdist a a'') (ad_pdist a'' a')) (ad_pdist a a'). Proof. - Intros. Unfold ad_pdist. Cut (ad_xor (ad_xor a a'') (ad_xor a'' a'))=(ad_xor a a'). - Intro. Rewrite <- H. Apply ad_plength_ultra. - Rewrite ad_xor_assoc. Rewrite <- (ad_xor_assoc a'' a'' a'). Rewrite ad_xor_nilpotent. - Rewrite ad_xor_neutral_left. Reflexivity. -Qed. + intros. unfold ad_pdist in |- *. cut (ad_xor (ad_xor a a'') (ad_xor a'' a') = ad_xor a a'). + intro. rewrite <- H. apply ad_plength_ultra. + rewrite ad_xor_assoc. rewrite <- (ad_xor_assoc a'' a'' a'). rewrite ad_xor_nilpotent. + rewrite ad_xor_neutral_left. reflexivity. +Qed.
\ No newline at end of file |
