aboutsummaryrefslogtreecommitdiff
path: root/theories/IntMap/Mapiter.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap/Mapiter.v')
-rw-r--r--theories/IntMap/Mapiter.v865
1 files changed, 479 insertions, 386 deletions
diff --git a/theories/IntMap/Mapiter.v b/theories/IntMap/Mapiter.v
index 216a07c630..3c0aad8028 100644
--- a/theories/IntMap/Mapiter.v
+++ b/theories/IntMap/Mapiter.v
@@ -7,16 +7,16 @@
(***********************************************************************)
(*i $Id$ i*)
-Require Bool.
-Require Sumbool.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
-Require Mapaxioms.
-Require Fset.
-Require PolyList.
+Require Import Bool.
+Require Import Sumbool.
+Require Import ZArith.
+Require Import Addr.
+Require Import Adist.
+Require Import Addec.
+Require Import Map.
+Require Import Mapaxioms.
+Require Import Fset.
+Require Import List.
Section MapIter.
@@ -24,172 +24,200 @@ Section MapIter.
Section MapSweepDef.
- Variable f:ad->A->bool.
-
- Definition MapSweep2 := [a0:ad; y:A] if (f a0 y) then (SOME ? (a0, y)) else (NONE ?).
-
- Fixpoint MapSweep1 [pf:ad->ad; m:(Map A)] : (option (ad * A)) :=
- Cases m of
- M0 => (NONE ?)
- | (M1 a y) => (MapSweep2 (pf a) y)
- | (M2 m m') => Cases (MapSweep1 ([a:ad] (pf (ad_double a))) m) of
- (SOME r) => (SOME ? r)
- | NONE => (MapSweep1 ([a:ad] (pf (ad_double_plus_un a))) m')
- end
+ Variable f : ad -> A -> bool.
+
+ Definition MapSweep2 (a0:ad) (y:A) :=
+ if f a0 y then SOME _ (a0, y) else NONE _.
+
+ Fixpoint MapSweep1 (pf:ad -> ad) (m:Map A) {struct m} :
+ option (ad * A) :=
+ match m with
+ | M0 => NONE _
+ | M1 a y => MapSweep2 (pf a) y
+ | M2 m m' =>
+ match MapSweep1 (fun a:ad => pf (ad_double a)) m with
+ | SOME r => SOME _ r
+ | NONE => MapSweep1 (fun a:ad => pf (ad_double_plus_un a)) m'
+ end
end.
- Definition MapSweep := [m:(Map A)] (MapSweep1 ([a:ad] a) m).
+ Definition MapSweep (m:Map A) := MapSweep1 (fun a:ad => a) m.
- Lemma MapSweep_semantics_1_1 : (m:(Map A)) (pf:ad->ad) (a:ad) (y:A)
- (MapSweep1 pf m)=(SOME ? (a, y)) -> (f a y)=true.
+ Lemma MapSweep_semantics_1_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> f a y = true.
Proof.
- Induction m. Intros. Discriminate H.
- Simpl. Intros a y pf a0 y0. Elim (sumbool_of_bool (f (pf a) y)). Intro H. Unfold MapSweep2.
- Rewrite H. Intro H0. Inversion H0. Rewrite <- H3. Assumption.
- Intro H. Unfold MapSweep2. Rewrite H. Intro H0. Discriminate H0.
- Simpl. Intros. Elim (option_sum ad*A (MapSweep1 [a0:ad](pf (ad_double a0)) m0)).
- Intro H2. Elim H2. Intros r H3. Rewrite H3 in H1. Inversion H1. Rewrite H5 in H3.
- Exact (H [a0:ad](pf (ad_double a0)) a y H3).
- Intro H2. Rewrite H2 in H1. Exact (H0 [a0:ad](pf (ad_double_plus_un a0)) a y H1).
+ simple induction m. intros. discriminate H.
+ simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (f (pf a) y)). intro H. unfold MapSweep2 in |- *.
+ rewrite H. intro H0. inversion H0. rewrite <- H3. assumption.
+ intro H. unfold MapSweep2 in |- *. rewrite H. intro H0. discriminate H0.
+ simpl in |- *. intros. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)).
+ intro H2. elim H2. intros r H3. rewrite H3 in H1. inversion H1. rewrite H5 in H3.
+ exact (H (fun a0:ad => pf (ad_double a0)) a y H3).
+ intro H2. rewrite H2 in H1. exact (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H1).
Qed.
- Lemma MapSweep_semantics_1 : (m:(Map A)) (a:ad) (y:A)
- (MapSweep m)=(SOME ? (a, y)) -> (f a y)=true.
+ Lemma MapSweep_semantics_1 :
+ forall (m:Map A) (a:ad) (y:A), MapSweep m = SOME _ (a, y) -> f a y = true.
Proof.
- Intros. Exact (MapSweep_semantics_1_1 m [a:ad]a a y H).
+ intros. exact (MapSweep_semantics_1_1 m (fun a:ad => a) a y H).
Qed.
- Lemma MapSweep_semantics_2_1 : (m:(Map A)) (pf:ad->ad) (a:ad) (y:A)
- (MapSweep1 pf m)=(SOME ? (a, y)) -> {a':ad | a=(pf a')}.
+ Lemma MapSweep_semantics_2_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> {a' : ad | a = pf a'}.
Proof.
- Induction m. Intros. Discriminate H.
- Simpl. Unfold MapSweep2. Intros a y pf a0 y0. Case (f (pf a) y). Intros. Split with a.
- Inversion H. Reflexivity.
- Intro. Discriminate H.
- Intros m0 H m1 H0 pf a y. Simpl.
- Elim (option_sum ad*A (MapSweep1 [a0:ad](pf (ad_double a0)) m0)). Intro H1. Elim H1.
- Intros r H2. Rewrite H2. Intro H3. Inversion H3. Rewrite H5 in H2.
- Elim (H [a0:ad](pf (ad_double a0)) a y H2). Intros a0 H6. Split with (ad_double a0).
- Assumption.
- Intro H1. Rewrite H1. Intro H2. Elim (H0 [a0:ad](pf (ad_double_plus_un a0)) a y H2).
- Intros a0 H3. Split with (ad_double_plus_un a0). Assumption.
+ simple induction m. intros. discriminate H.
+ simpl in |- *. unfold MapSweep2 in |- *. intros a y pf a0 y0. case (f (pf a) y). intros. split with a.
+ inversion H. reflexivity.
+ intro. discriminate H.
+ intros m0 H m1 H0 pf a y. simpl in |- *.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H1. elim H1.
+ intros r H2. rewrite H2. intro H3. inversion H3. rewrite H5 in H2.
+ elim (H (fun a0:ad => pf (ad_double a0)) a y H2). intros a0 H6. split with (ad_double a0).
+ assumption.
+ intro H1. rewrite H1. intro H2. elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H2).
+ intros a0 H3. split with (ad_double_plus_un a0). assumption.
Qed.
- Lemma MapSweep_semantics_2_2 : (m:(Map A))
- (pf,fp:ad->ad) ((a0:ad) (fp (pf a0))=a0) -> (a:ad) (y:A)
- (MapSweep1 pf m)=(SOME ? (a, y)) -> (MapGet A m (fp a))=(SOME ? y).
+ Lemma MapSweep_semantics_2_2 :
+ forall (m:Map A) (pf fp:ad -> ad),
+ (forall a0:ad, fp (pf a0) = a0) ->
+ forall (a:ad) (y:A),
+ MapSweep1 pf m = SOME _ (a, y) -> MapGet A m (fp a) = SOME _ y.
Proof.
- Induction m. Intros. Discriminate H0.
- Simpl. Intros a y pf fp H a0 y0. Unfold MapSweep2. Elim (sumbool_of_bool (f (pf a) y)).
- Intro H0. Rewrite H0. Intro H1. Inversion H1. Rewrite (H a). Rewrite (ad_eq_correct a).
- Reflexivity.
- Intro H0. Rewrite H0. Intro H1. Discriminate H1.
- Intros. Rewrite (MapGet_M2_bit_0_if A m0 m1 (fp a)). Elim (sumbool_of_bool (ad_bit_0 (fp a))).
- Intro H3. Rewrite H3. Elim (option_sum ad*A (MapSweep1 [a0:ad](pf (ad_double a0)) m0)).
- Intro H4. Simpl in H2. Apply (H0 [a0:ad](pf (ad_double_plus_un a0)) [a0:ad](ad_div_2 (fp a0))).
- Intro. Rewrite H1. Apply ad_double_plus_un_div_2.
- Elim (option_sum ad*A (MapSweep1 [a0:ad](pf (ad_double a0)) m0)). Intro H5. Elim H5.
- Intros r H6. Rewrite H6 in H2. Inversion H2. Rewrite H8 in H6.
- Elim (MapSweep_semantics_2_1 m0 [a0:ad](pf (ad_double a0)) a y H6). Intros a0 H9.
- Rewrite H9 in H3. Rewrite (H1 (ad_double a0)) in H3. Rewrite (ad_double_bit_0 a0) in H3.
- Discriminate H3.
- Intro H5. Rewrite H5 in H2. Assumption.
- Intro H4. Simpl in H2. Rewrite H4 in H2.
- Apply (H0 [a0:ad](pf (ad_double_plus_un a0)) [a0:ad](ad_div_2 (fp a0))). Intro.
- Rewrite H1. Apply ad_double_plus_un_div_2.
- Assumption.
- Intro H3. Rewrite H3. Simpl in H2.
- Elim (option_sum ad*A (MapSweep1 [a0:ad](pf (ad_double a0)) m0)). Intro H4. Elim H4.
- Intros r H5. Rewrite H5 in H2. Inversion H2. Rewrite H7 in H5.
- Apply (H [a0:ad](pf (ad_double a0)) [a0:ad](ad_div_2 (fp a0))). Intro. Rewrite H1.
- Apply ad_double_div_2.
- Assumption.
- Intro H4. Rewrite H4 in H2.
- Elim (MapSweep_semantics_2_1 m1 [a0:ad](pf (ad_double_plus_un a0)) a y H2).
- Intros a0 H5. Rewrite H5 in H3. Rewrite (H1 (ad_double_plus_un a0)) in H3.
- Rewrite (ad_double_plus_un_bit_0 a0) in H3. Discriminate H3.
+ simple induction m. intros. discriminate H0.
+ simpl in |- *. intros a y pf fp H a0 y0. unfold MapSweep2 in |- *. elim (sumbool_of_bool (f (pf a) y)).
+ intro H0. rewrite H0. intro H1. inversion H1. rewrite (H a). rewrite (ad_eq_correct a).
+ reflexivity.
+ intro H0. rewrite H0. intro H1. discriminate H1.
+ intros. rewrite (MapGet_M2_bit_0_if A m0 m1 (fp a)). elim (sumbool_of_bool (ad_bit_0 (fp a))).
+ intro H3. rewrite H3. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)).
+ intro H4. simpl in H2. apply
+ (H0 (fun a0:ad => pf (ad_double_plus_un a0))
+ (fun a0:ad => ad_div_2 (fp a0))).
+ intro. rewrite H1. apply ad_double_plus_un_div_2.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H5. elim H5.
+ intros r H6. rewrite H6 in H2. inversion H2. rewrite H8 in H6.
+ elim (MapSweep_semantics_2_1 m0 (fun a0:ad => pf (ad_double a0)) a y H6). intros a0 H9.
+ rewrite H9 in H3. rewrite (H1 (ad_double a0)) in H3. rewrite (ad_double_bit_0 a0) in H3.
+ discriminate H3.
+ intro H5. rewrite H5 in H2. assumption.
+ intro H4. simpl in H2. rewrite H4 in H2.
+ apply
+ (H0 (fun a0:ad => pf (ad_double_plus_un a0))
+ (fun a0:ad => ad_div_2 (fp a0))). intro.
+ rewrite H1. apply ad_double_plus_un_div_2.
+ assumption.
+ intro H3. rewrite H3. simpl in H2.
+ elim
+ (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (ad_double a0)) m0)). intro H4. elim H4.
+ intros r H5. rewrite H5 in H2. inversion H2. rewrite H7 in H5.
+ apply
+ (H (fun a0:ad => pf (ad_double a0)) (fun a0:ad => ad_div_2 (fp a0))). intro. rewrite H1.
+ apply ad_double_div_2.
+ assumption.
+ intro H4. rewrite H4 in H2.
+ elim
+ (MapSweep_semantics_2_1 m1 (fun a0:ad => pf (ad_double_plus_un a0)) a y
+ H2).
+ intros a0 H5. rewrite H5 in H3. rewrite (H1 (ad_double_plus_un a0)) in H3.
+ rewrite (ad_double_plus_un_bit_0 a0) in H3. discriminate H3.
Qed.
- Lemma MapSweep_semantics_2 : (m:(Map A)) (a:ad) (y:A)
- (MapSweep m)=(SOME ? (a, y)) -> (MapGet A m a)=(SOME ? y).
+ Lemma MapSweep_semantics_2 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapSweep m = SOME _ (a, y) -> MapGet A m a = SOME _ y.
Proof.
- Intros.
- Exact (MapSweep_semantics_2_2 m [a0:ad]a0 [a0:ad]a0 [a0:ad](refl_equal ad a0) a y H).
+ intros.
+ exact
+ (MapSweep_semantics_2_2 m (fun a0:ad => a0) (fun a0:ad => a0)
+ (fun a0:ad => refl_equal a0) a y H).
Qed.
- Lemma MapSweep_semantics_3_1 : (m:(Map A)) (pf:ad->ad)
- (MapSweep1 pf m)=(NONE ?) ->
- (a:ad) (y:A) (MapGet A m a)=(SOME ? y) -> (f (pf a) y)=false.
+ Lemma MapSweep_semantics_3_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ MapSweep1 pf m = NONE _ ->
+ forall (a:ad) (y:A), MapGet A m a = SOME _ y -> f (pf a) y = false.
Proof.
- Induction m. Intros. Discriminate H0.
- Simpl. Unfold MapSweep2. Intros a y pf. Elim (sumbool_of_bool (f (pf a) y)). Intro H.
- Rewrite H. Intro. Discriminate H0.
- Intro H. Rewrite H. Intros H0 a0 y0. Elim (sumbool_of_bool (ad_eq a a0)). Intro H1. Rewrite H1.
- Intro H2. Inversion H2. Rewrite <- H4. Rewrite <- (ad_eq_complete ? ? H1). Assumption.
- Intro H1. Rewrite H1. Intro. Discriminate H2.
- Intros. Simpl in H1. Elim (option_sum ad*A (MapSweep1 [a:ad](pf (ad_double a)) m0)).
- Intro H3. Elim H3. Intros r H4. Rewrite H4 in H1. Discriminate H1.
- Intro H3. Rewrite H3 in H1. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H4.
- Rewrite (MapGet_M2_bit_0_1 A a H4 m0 m1) in H2. Rewrite <- (ad_div_2_double_plus_un a H4).
- Exact (H0 [a:ad](pf (ad_double_plus_un a)) H1 (ad_div_2 a) y H2).
- Intro H4. Rewrite (MapGet_M2_bit_0_0 A a H4 m0 m1) in H2. Rewrite <- (ad_div_2_double a H4).
- Exact (H [a:ad](pf (ad_double a)) H3 (ad_div_2 a) y H2).
+ simple induction m. intros. discriminate H0.
+ simpl in |- *. unfold MapSweep2 in |- *. intros a y pf. elim (sumbool_of_bool (f (pf a) y)). intro H.
+ rewrite H. intro. discriminate H0.
+ intro H. rewrite H. intros H0 a0 y0. elim (sumbool_of_bool (ad_eq a a0)). intro H1. rewrite H1.
+ intro H2. inversion H2. rewrite <- H4. rewrite <- (ad_eq_complete _ _ H1). assumption.
+ intro H1. rewrite H1. intro. discriminate H2.
+ intros. simpl in H1. elim (option_sum (ad * A) (MapSweep1 (fun a:ad => pf (ad_double a)) m0)).
+ intro H3. elim H3. intros r H4. rewrite H4 in H1. discriminate H1.
+ intro H3. rewrite H3 in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H4.
+ rewrite (MapGet_M2_bit_0_1 A a H4 m0 m1) in H2. rewrite <- (ad_div_2_double_plus_un a H4).
+ exact (H0 (fun a:ad => pf (ad_double_plus_un a)) H1 (ad_div_2 a) y H2).
+ intro H4. rewrite (MapGet_M2_bit_0_0 A a H4 m0 m1) in H2. rewrite <- (ad_div_2_double a H4).
+ exact (H (fun a:ad => pf (ad_double a)) H3 (ad_div_2 a) y H2).
Qed.
- Lemma MapSweep_semantics_3 : (m:(Map A))
- (MapSweep m)=(NONE ?) -> (a:ad) (y:A) (MapGet A m a)=(SOME ? y) ->
- (f a y)=false.
+ Lemma MapSweep_semantics_3 :
+ forall m:Map A,
+ MapSweep m = NONE _ ->
+ forall (a:ad) (y:A), MapGet A m a = SOME _ y -> f a y = false.
Proof.
- Intros.
- Exact (MapSweep_semantics_3_1 m [a0:ad]a0 H a y H0).
+ intros.
+ exact (MapSweep_semantics_3_1 m (fun a0:ad => a0) H a y H0).
Qed.
- Lemma MapSweep_semantics_4_1 : (m:(Map A)) (pf:ad->ad) (a:ad) (y:A)
- (MapGet A m a)=(SOME A y) -> (f (pf a) y)=true ->
- {a':ad & {y':A | (MapSweep1 pf m)=(SOME ? (a', y'))}}.
+ Lemma MapSweep_semantics_4_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ MapGet A m a = SOME A y ->
+ f (pf a) y = true ->
+ {a' : ad & {y' : A | MapSweep1 pf m = SOME _ (a', y')}}.
Proof.
- Induction m. Intros. Discriminate H.
- Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H1. Split with (pf a1). Split with y.
- Rewrite (ad_eq_complete ? ? H1). Unfold MapSweep1 MapSweep2.
- Rewrite (ad_eq_complete ? ? H1) in H. Rewrite (M1_semantics_1 ? a1 a0) in H.
- Inversion H. Rewrite H0. Reflexivity.
-
- Intro H1. Rewrite (M1_semantics_2 ? a a1 a0 H1) in H. Discriminate H.
-
- Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H3.
- Rewrite (MapGet_M2_bit_0_1 ? ? H3 m0 m1) in H1.
- Rewrite <- (ad_div_2_double_plus_un a H3) in H2.
- Elim (H0 [a0:ad](pf (ad_double_plus_un a0)) (ad_div_2 a) y H1 H2). Intros a'' H4. Elim H4.
- Intros y'' H5. Simpl. Elim (option_sum ? (MapSweep1 [a:ad](pf (ad_double a)) m0)).
- Intro H6. Elim H6. Intro r. Elim r. Intros a''' y''' H7. Rewrite H7. Split with a'''.
- Split with y'''. Reflexivity.
- Intro H6. Rewrite H6. Split with a''. Split with y''. Assumption.
- Intro H3. Rewrite (MapGet_M2_bit_0_0 ? ? H3 m0 m1) in H1.
- Rewrite <- (ad_div_2_double a H3) in H2.
- Elim (H [a0:ad](pf (ad_double a0)) (ad_div_2 a) y H1 H2). Intros a'' H4. Elim H4.
- Intros y'' H5. Split with a''. Split with y''. Simpl. Rewrite H5. Reflexivity.
+ simple induction m. intros. discriminate H.
+ intros. elim (sumbool_of_bool (ad_eq a a1)). intro H1. split with (pf a1). split with y.
+ rewrite (ad_eq_complete _ _ H1). unfold MapSweep1, MapSweep2 in |- *.
+ rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 _ a1 a0) in H.
+ inversion H. rewrite H0. reflexivity.
+
+ intro H1. rewrite (M1_semantics_2 _ a a1 a0 H1) in H. discriminate H.
+
+ intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H3.
+ rewrite (MapGet_M2_bit_0_1 _ _ H3 m0 m1) in H1.
+ rewrite <- (ad_div_2_double_plus_un a H3) in H2.
+ elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) (ad_div_2 a) y H1 H2). intros a'' H4. elim H4.
+ intros y'' H5. simpl in |- *. elim (option_sum _ (MapSweep1 (fun a:ad => pf (ad_double a)) m0)).
+ intro H6. elim H6. intro r. elim r. intros a''' y''' H7. rewrite H7. split with a'''.
+ split with y'''. reflexivity.
+ intro H6. rewrite H6. split with a''. split with y''. assumption.
+ intro H3. rewrite (MapGet_M2_bit_0_0 _ _ H3 m0 m1) in H1.
+ rewrite <- (ad_div_2_double a H3) in H2.
+ elim (H (fun a0:ad => pf (ad_double a0)) (ad_div_2 a) y H1 H2). intros a'' H4. elim H4.
+ intros y'' H5. split with a''. split with y''. simpl in |- *. rewrite H5. reflexivity.
Qed.
- Lemma MapSweep_semantics_4 : (m:(Map A)) (a:ad) (y:A)
- (MapGet A m a)=(SOME A y) -> (f a y)=true ->
- {a':ad & {y':A | (MapSweep m)=(SOME ? (a', y'))}}.
+ Lemma MapSweep_semantics_4 :
+ forall (m:Map A) (a:ad) (y:A),
+ MapGet A m a = SOME A y ->
+ f a y = true -> {a' : ad & {y' : A | MapSweep m = SOME _ (a', y')}}.
Proof.
- Intros. Exact (MapSweep_semantics_4_1 m [a0:ad]a0 a y H H0).
+ intros. exact (MapSweep_semantics_4_1 m (fun a0:ad => a0) a y H H0).
Qed.
End MapSweepDef.
Variable B : Set.
- Fixpoint MapCollect1 [f:ad->A->(Map B); pf:ad->ad; m:(Map A)] : (Map B) :=
- Cases m of
- M0 => (M0 B)
- | (M1 a y) => (f (pf a) y)
- | (M2 m1 m2) => (MapMerge B (MapCollect1 f [a0:ad] (pf (ad_double a0)) m1)
- (MapCollect1 f [a0:ad] (pf (ad_double_plus_un a0)) m2))
+ Fixpoint MapCollect1 (f:ad -> A -> Map B) (pf:ad -> ad)
+ (m:Map A) {struct m} : Map B :=
+ match m with
+ | M0 => M0 B
+ | M1 a y => f (pf a) y
+ | M2 m1 m2 =>
+ MapMerge B (MapCollect1 f (fun a0:ad => pf (ad_double a0)) m1)
+ (MapCollect1 f (fun a0:ad => pf (ad_double_plus_un a0)) m2)
end.
- Definition MapCollect := [f:ad->A->(Map B); m:(Map A)] (MapCollect1 f [a:ad]a m).
+ Definition MapCollect (f:ad -> A -> Map B) (m:Map A) :=
+ MapCollect1 f (fun a:ad => a) m.
Section MapFoldDef.
@@ -197,331 +225,396 @@ Section MapIter.
Variable neutral : M.
Variable op : M -> M -> M.
- Fixpoint MapFold1 [f:ad->A->M; pf:ad->ad; m:(Map A)] : M :=
- Cases m of
- M0 => neutral
- | (M1 a y) => (f (pf a) y)
- | (M2 m1 m2) => (op (MapFold1 f [a0:ad] (pf (ad_double a0)) m1)
- (MapFold1 f [a0:ad] (pf (ad_double_plus_un a0)) m2))
+ Fixpoint MapFold1 (f:ad -> A -> M) (pf:ad -> ad)
+ (m:Map A) {struct m} : M :=
+ match m with
+ | M0 => neutral
+ | M1 a y => f (pf a) y
+ | M2 m1 m2 =>
+ op (MapFold1 f (fun a0:ad => pf (ad_double a0)) m1)
+ (MapFold1 f (fun a0:ad => pf (ad_double_plus_un a0)) m2)
end.
- Definition MapFold := [f:ad->A->M; m:(Map A)] (MapFold1 f [a:ad]a m).
+ Definition MapFold (f:ad -> A -> M) (m:Map A) :=
+ MapFold1 f (fun a:ad => a) m.
- Lemma MapFold_empty : (f:ad->A->M) (MapFold f (M0 A))=neutral.
+ Lemma MapFold_empty : forall f:ad -> A -> M, MapFold f (M0 A) = neutral.
Proof.
- Trivial.
+ trivial.
Qed.
- Lemma MapFold_M1 : (f:ad->A->M) (a:ad) (y:A) (MapFold f (M1 A a y)) = (f a y).
+ Lemma MapFold_M1 :
+ forall (f:ad -> A -> M) (a:ad) (y:A), MapFold f (M1 A a y) = f a y.
Proof.
- Trivial.
+ trivial.
Qed.
Variable State : Set.
- Variable f:State -> ad -> A -> State * M.
-
- Fixpoint MapFold1_state [state:State; pf:ad->ad; m:(Map A)]
- : State * M :=
- Cases m of
- M0 => (state, neutral)
- | (M1 a y) => (f state (pf a) y)
- | (M2 m1 m2) =>
- Cases (MapFold1_state state [a0:ad] (pf (ad_double a0)) m1) of
- (state1, x1) =>
- Cases (MapFold1_state state1 [a0:ad] (pf (ad_double_plus_un a0)) m2) of
- (state2, x2) => (state2, (op x1 x2))
- end
+ Variable f : State -> ad -> A -> State * M.
+
+ Fixpoint MapFold1_state (state:State) (pf:ad -> ad)
+ (m:Map A) {struct m} : State * M :=
+ match m with
+ | M0 => (state, neutral)
+ | M1 a y => f state (pf a) y
+ | M2 m1 m2 =>
+ match MapFold1_state state (fun a0:ad => pf (ad_double a0)) m1 with
+ | (state1, x1) =>
+ match
+ MapFold1_state state1
+ (fun a0:ad => pf (ad_double_plus_un a0)) m2
+ with
+ | (state2, x2) => (state2, op x1 x2)
+ end
end
end.
- Definition MapFold_state := [state:State] (MapFold1_state state [a:ad]a).
+ Definition MapFold_state (state:State) :=
+ MapFold1_state state (fun a:ad => a).
- Lemma pair_sp : (B,C:Set) (x:B*C) x=(Fst x, Snd x).
+ Lemma pair_sp : forall (B C:Set) (x:B * C), x = (fst x, snd x).
Proof.
- Induction x. Trivial.
+ simple induction x. trivial.
Qed.
- Lemma MapFold_state_stateless_1 : (m:(Map A)) (g:ad->A->M) (pf:ad->ad)
- ((state:State) (a:ad) (y:A) (Snd (f state a y))=(g a y)) ->
- (state:State)
- (Snd (MapFold1_state state pf m))=(MapFold1 g pf m).
+ Lemma MapFold_state_stateless_1 :
+ forall (m:Map A) (g:ad -> A -> M) (pf:ad -> ad),
+ (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) ->
+ forall state:State, snd (MapFold1_state state pf m) = MapFold1 g pf m.
Proof.
- Induction m. Trivial.
- Intros. Simpl. Apply H.
- Intros. Simpl. Rewrite (pair_sp ? ?
- (MapFold1_state state [a0:ad](pf (ad_double a0)) m0)).
- Rewrite (H g [a0:ad](pf (ad_double a0)) H1 state).
- Rewrite (pair_sp ? ?
+ simple induction m. trivial.
+ intros. simpl in |- *. apply H.
+ intros. simpl in |- *. rewrite
+ (pair_sp _ _ (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0))
+ .
+ rewrite (H g (fun a0:ad => pf (ad_double a0)) H1 state).
+ rewrite
+ (pair_sp _ _
(MapFold1_state
- (Fst (MapFold1_state state [a0:ad](pf (ad_double a0)) m0))
- [a0:ad](pf (ad_double_plus_un a0)) m1)).
- Simpl.
- Rewrite (H0 g [a0:ad](pf (ad_double_plus_un a0)) H1
- (Fst (MapFold1_state state [a0:ad](pf (ad_double a0)) m0))).
- Reflexivity.
+ (fst (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0))
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1))
+ .
+ simpl in |- *.
+ rewrite
+ (H0 g (fun a0:ad => pf (ad_double_plus_un a0)) H1
+ (fst (MapFold1_state state (fun a0:ad => pf (ad_double a0)) m0)))
+ .
+ reflexivity.
Qed.
- Lemma MapFold_state_stateless : (g:ad->A->M)
- ((state:State) (a:ad) (y:A) (Snd (f state a y))=(g a y)) ->
- (state:State) (m:(Map A))
- (Snd (MapFold_state state m))=(MapFold g m).
+ Lemma MapFold_state_stateless :
+ forall g:ad -> A -> M,
+ (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) ->
+ forall (state:State) (m:Map A),
+ snd (MapFold_state state m) = MapFold g m.
Proof.
- Intros. Exact (MapFold_state_stateless_1 m g [a0:ad]a0 H state).
+ intros. exact (MapFold_state_stateless_1 m g (fun a0:ad => a0) H state).
Qed.
End MapFoldDef.
- Lemma MapCollect_as_Fold : (f:ad->A->(Map B)) (m:(Map A))
- (MapCollect f m)=(MapFold (Map B) (M0 B) (MapMerge B) f m).
+ Lemma MapCollect_as_Fold :
+ forall (f:ad -> A -> Map B) (m:Map A),
+ MapCollect f m = MapFold (Map B) (M0 B) (MapMerge B) f m.
Proof.
- Induction m;Trivial.
+ simple induction m; trivial.
Qed.
- Definition alist := (list (ad*A)).
- Definition anil := (nil (ad*A)).
- Definition acons := (!cons (ad*A)).
- Definition aapp := (!app (ad*A)).
+ Definition alist := list (ad * A).
+ Definition anil := nil (A:=(ad * A)).
+ Definition acons := cons (A:=(ad * A)).
+ Definition aapp := app (A:=(ad * A)).
- Definition alist_of_Map := (MapFold alist anil aapp [a:ad;y:A] (acons (pair ? ? a y) anil)).
+ Definition alist_of_Map :=
+ MapFold alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil).
- Fixpoint alist_semantics [l:alist] : ad -> (option A) :=
- Cases l of
- nil => [_:ad] (NONE A)
- | (cons (a, y) l') => [a0:ad] if (ad_eq a a0) then (SOME A y) else (alist_semantics l' a0)
+ Fixpoint alist_semantics (l:alist) : ad -> option A :=
+ match l with
+ | nil => fun _:ad => NONE A
+ | (a, y) :: l' =>
+ fun a0:ad => if ad_eq a a0 then SOME A y else alist_semantics l' a0
end.
- Lemma alist_semantics_app : (l,l':alist) (a:ad)
- (alist_semantics (aapp l l') a)=
- (Cases (alist_semantics l a) of
- NONE => (alist_semantics l' a)
- | (SOME y) => (SOME A y)
- end).
+ Lemma alist_semantics_app :
+ forall (l l':alist) (a:ad),
+ alist_semantics (aapp l l') a =
+ match alist_semantics l a with
+ | NONE => alist_semantics l' a
+ | SOME y => SOME A y
+ end.
Proof.
- Unfold aapp. Induction l. Trivial.
- Intros. Elim a. Intros a1 y1. Simpl. Case (ad_eq a1 a0). Reflexivity.
- Apply H.
+ unfold aapp in |- *. simple induction l. trivial.
+ intros. elim a. intros a1 y1. simpl in |- *. case (ad_eq a1 a0). reflexivity.
+ apply H.
Qed.
- Lemma alist_of_Map_semantics_1_1 : (m:(Map A)) (pf:ad->ad) (a:ad) (y:A)
- (alist_semantics (MapFold1 alist anil aapp [a0:ad][y:A](acons (a0,y) anil) pf m) a)
- =(SOME A y) -> {a':ad | a=(pf a')}.
+ Lemma alist_of_Map_semantics_1_1 :
+ forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
+ alist_semantics
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil) pf
+ m) a = SOME A y -> {a' : ad | a = pf a'}.
Proof.
- Induction m. Simpl. Intros. Discriminate H.
- Simpl. Intros a y pf a0 y0. Elim (sumbool_of_bool (ad_eq (pf a) a0)). Intro H. Rewrite H.
- Intro H0. Split with a. Rewrite (ad_eq_complete ? ? H). Reflexivity.
- Intro H. Rewrite H. Intro H0. Discriminate H0.
- Intros. Change (alist_semantics
- (aapp
- (MapFold1 alist anil aapp [a0:ad][y:A](acons (a0,y) anil)
- [a0:ad](pf (ad_double a0)) m0)
- (MapFold1 alist anil aapp [a0:ad][y:A](acons (a0,y) anil)
- [a0:ad](pf (ad_double_plus_un a0)) m1)) a)=(SOME A y) in H1.
- Rewrite (alist_semantics_app
- (MapFold1 alist anil aapp [a0:ad][y0:A](acons (a0,y0) anil)
- [a0:ad](pf (ad_double a0)) m0)
- (MapFold1 alist anil aapp [a0:ad][y0:A](acons (a0,y0) anil)
- [a0:ad](pf (ad_double_plus_un a0)) m1) a) in H1.
- Elim (option_sum A
- (alist_semantics
- (MapFold1 alist anil aapp [a0:ad][y0:A](acons (a0,y0) anil)
- [a0:ad](pf (ad_double a0)) m0) a)).
- Intro H2. Elim H2. Intros y0 H3. Elim (H [a0:ad](pf (ad_double a0)) a y0 H3). Intros a0 H4.
- Split with (ad_double a0). Assumption.
- Intro H2. Rewrite H2 in H1. Elim (H0 [a0:ad](pf (ad_double_plus_un a0)) a y H1).
- Intros a0 H3. Split with (ad_double_plus_un a0). Assumption.
+ simple induction m. simpl in |- *. intros. discriminate H.
+ simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (ad_eq (pf a) a0)). intro H. rewrite H.
+ intro H0. split with a. rewrite (ad_eq_complete _ _ H). reflexivity.
+ intro H. rewrite H. intro H0. discriminate H0.
+ intros. change
+ (alist_semantics
+ (aapp
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1)) a =
+ SOME A y) in H1.
+ rewrite
+ (alist_semantics_app
+ (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1) a)
+ in H1.
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
+ (fun a0:ad => pf (ad_double a0)) m0) a)).
+ intro H2. elim H2. intros y0 H3. elim (H (fun a0:ad => pf (ad_double a0)) a y0 H3). intros a0 H4.
+ split with (ad_double a0). assumption.
+ intro H2. rewrite H2 in H1. elim (H0 (fun a0:ad => pf (ad_double_plus_un a0)) a y H1).
+ intros a0 H3. split with (ad_double_plus_un a0). assumption.
Qed.
- Definition ad_inj := [pf:ad->ad] (a0,a1:ad) (pf a0)=(pf a1) -> a0=a1.
+ Definition ad_inj (pf:ad -> ad) :=
+ forall a0 a1:ad, pf a0 = pf a1 -> a0 = a1.
- Lemma ad_comp_double_inj :
- (pf:ad->ad) (ad_inj pf) -> (ad_inj [a0:ad] (pf (ad_double a0))).
+ Lemma ad_comp_double_inj :
+ forall pf:ad -> ad, ad_inj pf -> ad_inj (fun a0:ad => pf (ad_double a0)).
Proof.
- Unfold ad_inj. Intros. Apply ad_double_inj. Exact (H ? ? H0).
+ unfold ad_inj in |- *. intros. apply ad_double_inj. exact (H _ _ H0).
Qed.
- Lemma ad_comp_double_plus_un_inj : (pf:ad->ad) (ad_inj pf) ->
- (ad_inj [a0:ad] (pf (ad_double_plus_un a0))).
+ Lemma ad_comp_double_plus_un_inj :
+ forall pf:ad -> ad,
+ ad_inj pf -> ad_inj (fun a0:ad => pf (ad_double_plus_un a0)).
Proof.
- Unfold ad_inj. Intros. Apply ad_double_plus_un_inj. Exact (H ? ? H0).
+ unfold ad_inj in |- *. intros. apply ad_double_plus_un_inj. exact (H _ _ H0).
Qed.
- Lemma alist_of_Map_semantics_1 : (m:(Map A)) (pf:ad->ad) (ad_inj pf) ->
- (a:ad) (MapGet A m a)=(alist_semantics (MapFold1 alist anil aapp
- [a0:ad;y:A] (acons (pair ? ? a0 y) anil) pf m)
- (pf a)).
+ Lemma alist_of_Map_semantics_1 :
+ forall (m:Map A) (pf:ad -> ad),
+ ad_inj pf ->
+ forall a:ad,
+ MapGet A m a =
+ alist_semantics
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ pf m) (pf a).
Proof.
- Induction m. Trivial.
- Simpl. Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H0. Rewrite H0.
- Rewrite (ad_eq_complete ? ? H0). Rewrite (ad_eq_correct (pf a1)). Reflexivity.
- Intro H0. Rewrite H0. Elim (sumbool_of_bool (ad_eq (pf a) (pf a1))). Intro H1.
- Rewrite (H a a1 (ad_eq_complete ? ? H1)) in H0. Rewrite (ad_eq_correct a1) in H0.
- Discriminate H0.
- Intro H1. Rewrite H1. Reflexivity.
- Intros. Change (MapGet A (M2 A m0 m1) a)
- =(alist_semantics
- (aapp
- (MapFold1 alist anil aapp [a0:ad][y:A](acons (a0,y) anil)
- [a0:ad](pf (ad_double a0)) m0)
- (MapFold1 alist anil aapp [a0:ad][y:A](acons (a0,y) anil)
- [a0:ad](pf (ad_double_plus_un a0)) m1)) (pf a)).
- Rewrite alist_semantics_app. Rewrite (MapGet_M2_bit_0_if A m0 m1 a).
- Elim (ad_double_or_double_plus_un a). Intro H2. Elim H2. Intros a0 H3. Rewrite H3.
- Rewrite (ad_double_bit_0 a0).
- Rewrite <- (H [a1:ad](pf (ad_double a1)) (ad_comp_double_inj pf H1) a0).
- Rewrite ad_double_div_2. Case (MapGet A m0 a0).
- Elim (option_sum A
- (alist_semantics
- (MapFold1 alist anil aapp [a1:ad][y:A](acons (a1,y) anil)
- [a1:ad](pf (ad_double_plus_un a1)) m1) (pf (ad_double a0)))).
- Intro H4. Elim H4. Intros y H5.
- Elim (alist_of_Map_semantics_1_1 m1 [a1:ad](pf (ad_double_plus_un a1))
- (pf (ad_double a0)) y H5).
- Intros a1 H6. Cut (ad_bit_0 (ad_double a0))=(ad_bit_0 (ad_double_plus_un a1)).
- Intro. Rewrite (ad_double_bit_0 a0) in H7. Rewrite (ad_double_plus_un_bit_0 a1) in H7.
- Discriminate H7.
- Rewrite (H1 (ad_double a0) (ad_double_plus_un a1) H6). Reflexivity.
- Intro H4. Rewrite H4. Reflexivity.
- Trivial.
- Intro H2. Elim H2. Intros a0 H3. Rewrite H3. Rewrite (ad_double_plus_un_bit_0 a0).
- Rewrite <- (H0 [a1:ad](pf (ad_double_plus_un a1)) (ad_comp_double_plus_un_inj pf H1) a0).
- Rewrite ad_double_plus_un_div_2.
- Elim (option_sum A
- (alist_semantics
- (MapFold1 alist anil aapp [a1:ad][y:A](acons (a1,y) anil)
- [a1:ad](pf (ad_double a1)) m0) (pf (ad_double_plus_un a0)))).
- Intro H4. Elim H4. Intros y H5.
- Elim (alist_of_Map_semantics_1_1 m0 [a1:ad](pf (ad_double a1))
- (pf (ad_double_plus_un a0)) y H5).
- Intros a1 H6. Cut (ad_bit_0 (ad_double_plus_un a0))=(ad_bit_0 (ad_double a1)).
- Intro H7. Rewrite (ad_double_plus_un_bit_0 a0) in H7. Rewrite (ad_double_bit_0 a1) in H7.
- Discriminate H7.
- Rewrite (H1 (ad_double_plus_un a0) (ad_double a1) H6). Reflexivity.
- Intro H4. Rewrite H4. Reflexivity.
+ simple induction m. trivial.
+ simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0.
+ rewrite (ad_eq_complete _ _ H0). rewrite (ad_eq_correct (pf a1)). reflexivity.
+ intro H0. rewrite H0. elim (sumbool_of_bool (ad_eq (pf a) (pf a1))). intro H1.
+ rewrite (H a a1 (ad_eq_complete _ _ H1)) in H0. rewrite (ad_eq_correct a1) in H0.
+ discriminate H0.
+ intro H1. rewrite H1. reflexivity.
+ intros. change
+ (MapGet A (M2 A m0 m1) a =
+ alist_semantics
+ (aapp
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double a0)) m0)
+ (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
+ (fun a0:ad => pf (ad_double_plus_un a0)) m1)) (
+ pf a)) in |- *.
+ rewrite alist_semantics_app. rewrite (MapGet_M2_bit_0_if A m0 m1 a).
+ elim (ad_double_or_double_plus_un a). intro H2. elim H2. intros a0 H3. rewrite H3.
+ rewrite (ad_double_bit_0 a0).
+ rewrite <-
+ (H (fun a1:ad => pf (ad_double a1)) (ad_comp_double_inj pf H1) a0)
+ .
+ rewrite ad_double_div_2. case (MapGet A m0 a0).
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a1:ad) (y:A) => acons (a1, y) anil)
+ (fun a1:ad => pf (ad_double_plus_un a1)) m1)
+ (pf (ad_double a0)))).
+ intro H4. elim H4. intros y H5.
+ elim
+ (alist_of_Map_semantics_1_1 m1 (fun a1:ad => pf (ad_double_plus_un a1))
+ (pf (ad_double a0)) y H5).
+ intros a1 H6. cut (ad_bit_0 (ad_double a0) = ad_bit_0 (ad_double_plus_un a1)).
+ intro. rewrite (ad_double_bit_0 a0) in H7. rewrite (ad_double_plus_un_bit_0 a1) in H7.
+ discriminate H7.
+ rewrite (H1 (ad_double a0) (ad_double_plus_un a1) H6). reflexivity.
+ intro H4. rewrite H4. reflexivity.
+ trivial.
+ intro H2. elim H2. intros a0 H3. rewrite H3. rewrite (ad_double_plus_un_bit_0 a0).
+ rewrite <-
+ (H0 (fun a1:ad => pf (ad_double_plus_un a1))
+ (ad_comp_double_plus_un_inj pf H1) a0).
+ rewrite ad_double_plus_un_div_2.
+ elim
+ (option_sum A
+ (alist_semantics
+ (MapFold1 alist anil aapp
+ (fun (a1:ad) (y:A) => acons (a1, y) anil)
+ (fun a1:ad => pf (ad_double a1)) m0)
+ (pf (ad_double_plus_un a0)))).
+ intro H4. elim H4. intros y H5.
+ elim
+ (alist_of_Map_semantics_1_1 m0 (fun a1:ad => pf (ad_double a1))
+ (pf (ad_double_plus_un a0)) y H5).
+ intros a1 H6. cut (ad_bit_0 (ad_double_plus_un a0) = ad_bit_0 (ad_double a1)).
+ intro H7. rewrite (ad_double_plus_un_bit_0 a0) in H7. rewrite (ad_double_bit_0 a1) in H7.
+ discriminate H7.
+ rewrite (H1 (ad_double_plus_un a0) (ad_double a1) H6). reflexivity.
+ intro H4. rewrite H4. reflexivity.
Qed.
- Lemma alist_of_Map_semantics : (m:(Map A))
- (eqm A (MapGet A m) (alist_semantics (alist_of_Map m))).
+ Lemma alist_of_Map_semantics :
+ forall m:Map A, eqm A (MapGet A m) (alist_semantics (alist_of_Map m)).
Proof.
- Unfold eqm. Intros. Exact (alist_of_Map_semantics_1 m [a0:ad]a0 [a0,a1:ad][p:a0=a1]p a).
+ unfold eqm in |- *. intros. exact
+ (alist_of_Map_semantics_1 m (fun a0:ad => a0)
+ (fun (a0 a1:ad) (p:a0 = a1) => p) a).
Qed.
- Fixpoint Map_of_alist [l:alist] : (Map A) :=
- Cases l of
- nil => (M0 A)
- | (cons (a, y) l') => (MapPut A (Map_of_alist l') a y)
+ Fixpoint Map_of_alist (l:alist) : Map A :=
+ match l with
+ | nil => M0 A
+ | (a, y) :: l' => MapPut A (Map_of_alist l') a y
end.
- Lemma Map_of_alist_semantics : (l:alist)
- (eqm A (alist_semantics l) (MapGet A (Map_of_alist l))).
+ Lemma Map_of_alist_semantics :
+ forall l:alist, eqm A (alist_semantics l) (MapGet A (Map_of_alist l)).
Proof.
- Unfold eqm. Induction l. Trivial.
- Intros r l0 H a. Elim r. Intros a0 y0. Simpl. Elim (sumbool_of_bool (ad_eq a0 a)).
- Intro H0. Rewrite H0. Rewrite (ad_eq_complete ? ? H0).
- Rewrite (MapPut_semantics A (Map_of_alist l0) a y0 a). Rewrite (ad_eq_correct a).
- Reflexivity.
- Intro H0. Rewrite H0. Rewrite (MapPut_semantics A (Map_of_alist l0) a0 y0 a).
- Rewrite H0. Apply H.
+ unfold eqm in |- *. simple induction l. trivial.
+ intros r l0 H a. elim r. intros a0 y0. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 a)).
+ intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0).
+ rewrite (MapPut_semantics A (Map_of_alist l0) a y0 a). rewrite (ad_eq_correct a).
+ reflexivity.
+ intro H0. rewrite H0. rewrite (MapPut_semantics A (Map_of_alist l0) a0 y0 a).
+ rewrite H0. apply H.
Qed.
- Lemma Map_of_alist_of_Map : (m:(Map A)) (eqmap A (Map_of_alist (alist_of_Map m)) m).
+ Lemma Map_of_alist_of_Map :
+ forall m:Map A, eqmap A (Map_of_alist (alist_of_Map m)) m.
Proof.
- Unfold eqmap. Intro. Apply eqm_trans with f':=(alist_semantics (alist_of_Map m)).
- Apply eqm_sym. Apply Map_of_alist_semantics.
- Apply eqm_sym. Apply alist_of_Map_semantics.
+ unfold eqmap in |- *. intro. apply eqm_trans with (f' := alist_semantics (alist_of_Map m)).
+ apply eqm_sym. apply Map_of_alist_semantics.
+ apply eqm_sym. apply alist_of_Map_semantics.
Qed.
- Lemma alist_of_Map_of_alist : (l:alist)
- (eqm A (alist_semantics (alist_of_Map (Map_of_alist l))) (alist_semantics l)).
+ Lemma alist_of_Map_of_alist :
+ forall l:alist,
+ eqm A (alist_semantics (alist_of_Map (Map_of_alist l)))
+ (alist_semantics l).
Proof.
- Intro. Apply eqm_trans with f':=(MapGet A (Map_of_alist l)).
- Apply eqm_sym. Apply alist_of_Map_semantics.
- Apply eqm_sym. Apply Map_of_alist_semantics.
+ intro. apply eqm_trans with (f' := MapGet A (Map_of_alist l)).
+ apply eqm_sym. apply alist_of_Map_semantics.
+ apply eqm_sym. apply Map_of_alist_semantics.
Qed.
- Lemma fold_right_aapp : (M:Set) (neutral:M) (op:M->M->M)
- ((a,b,c:M) (op (op a b) c)=(op a (op b c))) ->
- ((a:M) (op neutral a)=a) ->
- (f:ad->A->M) (l,l':alist)
- (fold_right [r:ad*A][m:M] let (a,y)=r in (op (f a y) m) neutral
- (aapp l l'))=
- (op (fold_right [r:ad*A][m:M] let (a,y)=r in (op (f a y) m) neutral l)
- (fold_right [r:ad*A][m:M] let (a,y)=r in (op (f a y) m) neutral l'))
-.
+ Lemma fold_right_aapp :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ forall (f:ad -> A -> M) (l l':alist),
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral (aapp l l') =
+ op
+ (fold_right
+ (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral
+ l)
+ (fold_right
+ (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral
+ l').
Proof.
- Induction l. Simpl. Intro. Rewrite H0. Reflexivity.
- Intros r l0 H1 l'. Elim r. Intros a y. Simpl. Rewrite H. Rewrite (H1 l'). Reflexivity.
+ simple induction l. simpl in |- *. intro. rewrite H0. reflexivity.
+ intros r l0 H1 l'. elim r. intros a y. simpl in |- *. rewrite H. rewrite (H1 l'). reflexivity.
Qed.
- Lemma MapFold_as_fold_1 : (M:Set) (neutral:M) (op:M->M->M)
- ((a,b,c:M) (op (op a b) c)=(op a (op b c))) ->
- ((a:M) (op neutral a)=a) ->
- ((a:M) (op a neutral)=a) ->
- (f:ad->A->M) (m:(Map A)) (pf:ad->ad)
- (MapFold1 M neutral op f pf m)=
- (fold_right [r:(ad*A)][m:M] let (a,y)=r in (op (f a y) m) neutral
- (MapFold1 alist anil aapp [a:ad;y:A] (acons (pair ? ?
-a y) anil) pf m)).
+ Lemma MapFold_as_fold_1 :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ (forall a:M, op a neutral = a) ->
+ forall (f:ad -> A -> M) (m:Map A) (pf:ad -> ad),
+ MapFold1 M neutral op f pf m =
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral
+ (MapFold1 alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil) pf
+ m).
Proof.
- Induction m. Trivial.
- Intros. Simpl. Rewrite H1. Reflexivity.
- Intros. Simpl. Rewrite (fold_right_aapp M neutral op H H0 f).
- Rewrite (H2 [a0:ad](pf (ad_double a0))). Rewrite (H3 [a0:ad](pf (ad_double_plus_un a0))).
- Reflexivity.
+ simple induction m. trivial.
+ intros. simpl in |- *. rewrite H1. reflexivity.
+ intros. simpl in |- *. rewrite (fold_right_aapp M neutral op H H0 f).
+ rewrite (H2 (fun a0:ad => pf (ad_double a0))). rewrite (H3 (fun a0:ad => pf (ad_double_plus_un a0))).
+ reflexivity.
Qed.
- Lemma MapFold_as_fold : (M:Set) (neutral:M) (op:M->M->M)
- ((a,b,c:M) (op (op a b) c)=(op a (op b c))) ->
- ((a:M) (op neutral a)=a) ->
- ((a:M) (op a neutral)=a) ->
- (f:ad->A->M) (m:(Map A))
- (MapFold M neutral op f m)=
- (fold_right [r:(ad*A)][m:M] let (a,y)=r in (op (f a y) m) neutral
- (alist_of_Map m)).
+ Lemma MapFold_as_fold :
+ forall (M:Set) (neutral:M) (op:M -> M -> M),
+ (forall a b c:M, op (op a b) c = op a (op b c)) ->
+ (forall a:M, op neutral a = a) ->
+ (forall a:M, op a neutral = a) ->
+ forall (f:ad -> A -> M) (m:Map A),
+ MapFold M neutral op f m =
+ fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
+ neutral (alist_of_Map m).
Proof.
- Intros. Exact (MapFold_as_fold_1 M neutral op H H0 H1 f m [a0:ad]a0).
+ intros. exact (MapFold_as_fold_1 M neutral op H H0 H1 f m (fun a0:ad => a0)).
Qed.
- Lemma alist_MapMerge_semantics : (m,m':(Map A))
- (eqm A (alist_semantics (aapp (alist_of_Map m') (alist_of_Map m)))
- (alist_semantics (alist_of_Map (MapMerge A m m')))).
+ Lemma alist_MapMerge_semantics :
+ forall m m':Map A,
+ eqm A (alist_semantics (aapp (alist_of_Map m') (alist_of_Map m)))
+ (alist_semantics (alist_of_Map (MapMerge A m m'))).
Proof.
- Unfold eqm. Intros. Rewrite alist_semantics_app. Rewrite <- (alist_of_Map_semantics m a).
- Rewrite <- (alist_of_Map_semantics m' a).
- Rewrite <- (alist_of_Map_semantics (MapMerge A m m') a).
- Rewrite (MapMerge_semantics A m m' a). Reflexivity.
+ unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a).
+ rewrite <- (alist_of_Map_semantics m' a).
+ rewrite <- (alist_of_Map_semantics (MapMerge A m m') a).
+ rewrite (MapMerge_semantics A m m' a). reflexivity.
Qed.
- Lemma alist_MapMerge_semantics_disjoint : (m,m':(Map A))
- (eqmap A (MapDomRestrTo A A m m') (M0 A)) ->
- (eqm A (alist_semantics (aapp (alist_of_Map m) (alist_of_Map m')))
- (alist_semantics (alist_of_Map (MapMerge A m m')))).
+ Lemma alist_MapMerge_semantics_disjoint :
+ forall m m':Map A,
+ eqmap A (MapDomRestrTo A A m m') (M0 A) ->
+ eqm A (alist_semantics (aapp (alist_of_Map m) (alist_of_Map m')))
+ (alist_semantics (alist_of_Map (MapMerge A m m'))).
Proof.
- Unfold eqm. Intros. Rewrite alist_semantics_app. Rewrite <- (alist_of_Map_semantics m a).
- Rewrite <- (alist_of_Map_semantics m' a).
- Rewrite <- (alist_of_Map_semantics (MapMerge A m m') a). Rewrite (MapMerge_semantics A m m' a).
- Elim (option_sum ? (MapGet A m a)). Intro H0. Elim H0. Intros y H1. Rewrite H1.
- Elim (option_sum ? (MapGet A m' a)). Intro H2. Elim H2. Intros y' H3.
- Cut (MapGet A (MapDomRestrTo A A m m') a)=(NONE A).
- Rewrite (MapDomRestrTo_semantics A A m m' a). Rewrite H3. Rewrite H1. Intro. Discriminate H4.
- Exact (H a).
- Intro H2. Rewrite H2. Reflexivity.
- Intro H0. Rewrite H0. Case (MapGet A m' a); Trivial.
+ unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a).
+ rewrite <- (alist_of_Map_semantics m' a).
+ rewrite <- (alist_of_Map_semantics (MapMerge A m m') a). rewrite (MapMerge_semantics A m m' a).
+ elim (option_sum _ (MapGet A m a)). intro H0. elim H0. intros y H1. rewrite H1.
+ elim (option_sum _ (MapGet A m' a)). intro H2. elim H2. intros y' H3.
+ cut (MapGet A (MapDomRestrTo A A m m') a = NONE A).
+ rewrite (MapDomRestrTo_semantics A A m m' a). rewrite H3. rewrite H1. intro. discriminate H4.
+ exact (H a).
+ intro H2. rewrite H2. reflexivity.
+ intro H0. rewrite H0. case (MapGet A m' a); trivial.
Qed.
- Lemma alist_semantics_disjoint_comm : (l,l':alist)
- (eqmap A (MapDomRestrTo A A (Map_of_alist l) (Map_of_alist l')) (M0 A)) ->
- (eqm A (alist_semantics (aapp l l')) (alist_semantics (aapp l' l))).
+ Lemma alist_semantics_disjoint_comm :
+ forall l l':alist,
+ eqmap A (MapDomRestrTo A A (Map_of_alist l) (Map_of_alist l')) (M0 A) ->
+ eqm A (alist_semantics (aapp l l')) (alist_semantics (aapp l' l)).
Proof.
- Unfold eqm. Intros. Rewrite (alist_semantics_app l l' a). Rewrite (alist_semantics_app l' l a).
- Rewrite <- (alist_of_Map_of_alist l a). Rewrite <- (alist_of_Map_of_alist l' a).
- Rewrite <- (alist_semantics_app (alist_of_Map (Map_of_alist l))
- (alist_of_Map (Map_of_alist l')) a).
- Rewrite <- (alist_semantics_app (alist_of_Map (Map_of_alist l'))
- (alist_of_Map (Map_of_alist l)) a).
- Rewrite (alist_MapMerge_semantics (Map_of_alist l) (Map_of_alist l') a).
- Rewrite (alist_MapMerge_semantics_disjoint (Map_of_alist l) (Map_of_alist l') H a).
- Reflexivity.
+ unfold eqm in |- *. intros. rewrite (alist_semantics_app l l' a). rewrite (alist_semantics_app l' l a).
+ rewrite <- (alist_of_Map_of_alist l a). rewrite <- (alist_of_Map_of_alist l' a).
+ rewrite <-
+ (alist_semantics_app (alist_of_Map (Map_of_alist l))
+ (alist_of_Map (Map_of_alist l')) a).
+ rewrite <-
+ (alist_semantics_app (alist_of_Map (Map_of_alist l'))
+ (alist_of_Map (Map_of_alist l)) a).
+ rewrite (alist_MapMerge_semantics (Map_of_alist l) (Map_of_alist l') a).
+ rewrite
+ (alist_MapMerge_semantics_disjoint (Map_of_alist l) (
+ Map_of_alist l') H a).
+ reflexivity.
Qed.
End MapIter.
-