diff options
Diffstat (limited to 'theories/IntMap/Lsort.v')
| -rw-r--r-- | theories/IntMap/Lsort.v | 1007 |
1 files changed, 549 insertions, 458 deletions
diff --git a/theories/IntMap/Lsort.v b/theories/IntMap/Lsort.v index 80ab704de3..3399eaad24 100644 --- a/theories/IntMap/Lsort.v +++ b/theories/IntMap/Lsort.v @@ -7,531 +7,622 @@ (***********************************************************************) (*i $Id$ i*) -Require Bool. -Require Sumbool. -Require Arith. -Require ZArith. -Require Addr. -Require Adist. -Require Addec. -Require Map. -Require PolyList. -Require Mapiter. +Require Import Bool. +Require Import Sumbool. +Require Import Arith. +Require Import ZArith. +Require Import Addr. +Require Import Adist. +Require Import Addec. +Require Import Map. +Require Import List. +Require Import Mapiter. Section LSort. Variable A : Set. - Fixpoint ad_less_1 [a,a':ad; p:positive] : bool := - Cases p of - (xO p') => (ad_less_1 (ad_div_2 a) (ad_div_2 a') p') - | _ => (andb (negb (ad_bit_0 a)) (ad_bit_0 a')) + Fixpoint ad_less_1 (a a':ad) (p:positive) {struct p} : bool := + match p with + | xO p' => ad_less_1 (ad_div_2 a) (ad_div_2 a') p' + | _ => andb (negb (ad_bit_0 a)) (ad_bit_0 a') end. - Definition ad_less := [a,a':ad] Cases (ad_xor a a') of - ad_z => false - | (ad_x p) => (ad_less_1 a a' p) - end. - - Lemma ad_bit_0_less : (a,a':ad) (ad_bit_0 a)=false -> (ad_bit_0 a')=true -> - (ad_less a a')=true. - Proof. - Intros. Elim (ad_sum (ad_xor a a')). Intro H1. Elim H1. Intros p H2. Unfold ad_less. - Rewrite H2. Generalize H2. Elim p. Intros. Simpl. Rewrite H. Rewrite H0. Reflexivity. - Intros. Cut (ad_bit_0 (ad_xor a a'))=false. Intro. Rewrite (ad_xor_bit_0 a a') in H5. - Rewrite H in H5. Rewrite H0 in H5. Discriminate H5. - Rewrite H4. Reflexivity. - Intro. Simpl. Rewrite H. Rewrite H0. Reflexivity. - Intro H1. Cut (ad_bit_0 (ad_xor a a'))=false. Intro. Rewrite (ad_xor_bit_0 a a') in H2. - Rewrite H in H2. Rewrite H0 in H2. Discriminate H2. - Rewrite H1. Reflexivity. - Qed. - - Lemma ad_bit_0_gt : (a,a':ad) (ad_bit_0 a)=true -> (ad_bit_0 a')=false -> - (ad_less a a')=false. - Proof. - Intros. Elim (ad_sum (ad_xor a a')). Intro H1. Elim H1. Intros p H2. Unfold ad_less. - Rewrite H2. Generalize H2. Elim p. Intros. Simpl. Rewrite H. Rewrite H0. Reflexivity. - Intros. Cut (ad_bit_0 (ad_xor a a'))=false. Intro. Rewrite (ad_xor_bit_0 a a') in H5. - Rewrite H in H5. Rewrite H0 in H5. Discriminate H5. - Rewrite H4. Reflexivity. - Intro. Simpl. Rewrite H. Rewrite H0. Reflexivity. - Intro H1. Unfold ad_less. Rewrite H1. Reflexivity. - Qed. - - Lemma ad_less_not_refl : (a:ad) (ad_less a a)=false. - Proof. - Intro. Unfold ad_less. Rewrite (ad_xor_nilpotent a). Reflexivity. - Qed. - - Lemma ad_ind_double : - (a:ad)(P:ad->Prop) (P ad_z) -> - ((a:ad) (P a) -> (P (ad_double a))) -> - ((a:ad) (P a) -> (P (ad_double_plus_un a))) -> (P a). - Proof. - Intros; Elim a. Trivial. - Induction p. Intros. - Apply (H1 (ad_x p0)); Trivial. - Intros; Apply (H0 (ad_x p0)); Trivial. - Intros; Apply (H1 ad_z); Assumption. - Qed. - - Lemma ad_rec_double : - (a:ad)(P:ad->Set) (P ad_z) -> - ((a:ad) (P a) -> (P (ad_double a))) -> - ((a:ad) (P a) -> (P (ad_double_plus_un a))) -> (P a). - Proof. - Intros; Elim a. Trivial. - Induction p. Intros. - Apply (H1 (ad_x p0)); Trivial. - Intros; Apply (H0 (ad_x p0)); Trivial. - Intros; Apply (H1 ad_z); Assumption. - Qed. - - Lemma ad_less_def_1 : (a,a':ad) (ad_less (ad_double a) (ad_double a'))=(ad_less a a'). - Proof. - Induction a. Induction a'. Reflexivity. - Trivial. - Induction a'. Unfold ad_less. Simpl. (Elim p; Trivial). - Unfold ad_less. Simpl. Intro. Case (p_xor p p0). Reflexivity. - Trivial. - Qed. - - Lemma ad_less_def_2 : (a,a':ad) - (ad_less (ad_double_plus_un a) (ad_double_plus_un a'))=(ad_less a a'). - Proof. - Induction a. Induction a'. Reflexivity. - Trivial. - Induction a'. Unfold ad_less. Simpl. (Elim p; Trivial). - Unfold ad_less. Simpl. Intro. Case (p_xor p p0). Reflexivity. - Trivial. - Qed. + Definition ad_less (a a':ad) := + match ad_xor a a' with + | ad_z => false + | ad_x p => ad_less_1 a a' p + end. - Lemma ad_less_def_3 : (a,a':ad) (ad_less (ad_double a) (ad_double_plus_un a'))=true. + Lemma ad_bit_0_less : + forall a a':ad, + ad_bit_0 a = false -> ad_bit_0 a' = true -> ad_less a a' = true. Proof. - Intros. Apply ad_bit_0_less. Apply ad_double_bit_0. - Apply ad_double_plus_un_bit_0. + intros. elim (ad_sum (ad_xor a a')). intro H1. elim H1. intros p H2. unfold ad_less in |- *. + rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity. + intros. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H5. + rewrite H in H5. rewrite H0 in H5. discriminate H5. + rewrite H4. reflexivity. + intro. simpl in |- *. rewrite H. rewrite H0. reflexivity. + intro H1. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H2. + rewrite H in H2. rewrite H0 in H2. discriminate H2. + rewrite H1. reflexivity. Qed. - Lemma ad_less_def_4 : (a,a':ad) (ad_less (ad_double_plus_un a) (ad_double a'))=false. + Lemma ad_bit_0_gt : + forall a a':ad, + ad_bit_0 a = true -> ad_bit_0 a' = false -> ad_less a a' = false. Proof. - Intros. Apply ad_bit_0_gt. Apply ad_double_plus_un_bit_0. - Apply ad_double_bit_0. + intros. elim (ad_sum (ad_xor a a')). intro H1. elim H1. intros p H2. unfold ad_less in |- *. + rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity. + intros. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H5. + rewrite H in H5. rewrite H0 in H5. discriminate H5. + rewrite H4. reflexivity. + intro. simpl in |- *. rewrite H. rewrite H0. reflexivity. + intro H1. unfold ad_less in |- *. rewrite H1. reflexivity. Qed. - Lemma ad_less_z : (a:ad) (ad_less a ad_z)=false. + Lemma ad_less_not_refl : forall a:ad, ad_less a a = false. Proof. - Induction a. Reflexivity. - Unfold ad_less. Intro. Rewrite (ad_xor_neutral_right (ad_x p)). (Elim p; Trivial). + intro. unfold ad_less in |- *. rewrite (ad_xor_nilpotent a). reflexivity. Qed. - Lemma ad_z_less_1 : (a:ad) (ad_less ad_z a)=true -> {p:positive | a=(ad_x p)}. + Lemma ad_ind_double : + forall (a:ad) (P:ad -> Prop), + P ad_z -> + (forall a:ad, P a -> P (ad_double a)) -> + (forall a:ad, P a -> P (ad_double_plus_un a)) -> P a. Proof. - Induction a. Intro. Discriminate H. - Intros. Split with p. Reflexivity. - Qed. - - Lemma ad_z_less_2 : (a:ad) (ad_less ad_z a)=false -> a=ad_z. - Proof. - Induction a. Trivial. - Unfold ad_less. Simpl. Cut (p:positive)(ad_less_1 ad_z (ad_x p) p)=false->False. - Intros. Elim (H p H0). - Induction p. Intros. Discriminate H0. - Intros. Exact (H H0). - Intro. Discriminate H. + intros; elim a. trivial. + simple induction p. intros. + apply (H1 (ad_x p0)); trivial. + intros; apply (H0 (ad_x p0)); trivial. + intros; apply (H1 ad_z); assumption. Qed. - Lemma ad_less_trans : (a,a',a'':ad) - (ad_less a a')=true -> (ad_less a' a'')=true -> (ad_less a a'')=true. + Lemma ad_rec_double : + forall (a:ad) (P:ad -> Set), + P ad_z -> + (forall a:ad, P a -> P (ad_double a)) -> + (forall a:ad, P a -> P (ad_double_plus_un a)) -> P a. Proof. - Intro a. Apply ad_ind_double with P:=[a:ad] - (a',a'':ad) - (ad_less a a')=true - ->(ad_less a' a'')=true->(ad_less a a'')=true. - Intros. Elim (sumbool_of_bool (ad_less ad_z a'')). Trivial. - Intro H1. Rewrite (ad_z_less_2 a'' H1) in H0. Rewrite (ad_less_z a') in H0. Discriminate H0. - Intros a0 H a'. Apply ad_ind_double with P:=[a':ad] - (a'':ad) - (ad_less (ad_double a0) a')=true - ->(ad_less a' a'')=true->(ad_less (ad_double a0) a'')=true. - Intros. Rewrite (ad_less_z (ad_double a0)) in H0. Discriminate H0. - Intros a1 H0 a'' H1. Rewrite (ad_less_def_1 a0 a1) in H1. - Apply ad_ind_double with P:=[a'':ad] - (ad_less (ad_double a1) a'')=true - ->(ad_less (ad_double a0) a'')=true. - Intro. Rewrite (ad_less_z (ad_double a1)) in H2. Discriminate H2. - Intros. Rewrite (ad_less_def_1 a1 a2) in H3. Rewrite (ad_less_def_1 a0 a2). - Exact (H a1 a2 H1 H3). - Intros. Apply ad_less_def_3. - Intros a1 H0 a'' H1. Apply ad_ind_double with P:=[a'':ad] - (ad_less (ad_double_plus_un a1) a'')=true - ->(ad_less (ad_double a0) a'')=true. - Intro. Rewrite (ad_less_z (ad_double_plus_un a1)) in H2. Discriminate H2. - Intros. Rewrite (ad_less_def_4 a1 a2) in H3. Discriminate H3. - Intros. Apply ad_less_def_3. - Intros a0 H a'. Apply ad_ind_double with P:=[a':ad] - (a'':ad) - (ad_less (ad_double_plus_un a0) a')=true - ->(ad_less a' a'')=true - ->(ad_less (ad_double_plus_un a0) a'')=true. - Intros. Rewrite (ad_less_z (ad_double_plus_un a0)) in H0. Discriminate H0. - Intros. Rewrite (ad_less_def_4 a0 a1) in H1. Discriminate H1. - Intros a1 H0 a'' H1. Apply ad_ind_double with P:=[a'':ad] - (ad_less (ad_double_plus_un a1) a'')=true - ->(ad_less (ad_double_plus_un a0) a'')=true. - Intro. Rewrite (ad_less_z (ad_double_plus_un a1)) in H2. Discriminate H2. - Intros. Rewrite (ad_less_def_4 a1 a2) in H3. Discriminate H3. - Rewrite (ad_less_def_2 a0 a1) in H1. Intros. Rewrite (ad_less_def_2 a1 a2) in H3. - Rewrite (ad_less_def_2 a0 a2). Exact (H a1 a2 H1 H3). - Qed. - - Fixpoint alist_sorted [l:(alist A)] : bool := - Cases l of - nil => true - | (cons (a, _) l') => Cases l' of - nil => true - | (cons (a', y') l'') => (andb (ad_less a a') - (alist_sorted l')) - end + intros; elim a. trivial. + simple induction p. intros. + apply (H1 (ad_x p0)); trivial. + intros; apply (H0 (ad_x p0)); trivial. + intros; apply (H1 ad_z); assumption. + Qed. + + Lemma ad_less_def_1 : + forall a a':ad, ad_less (ad_double a) (ad_double a') = ad_less a a'. + Proof. + simple induction a. simple induction a'. reflexivity. + trivial. + simple induction a'. unfold ad_less in |- *. simpl in |- *. elim p; trivial. + unfold ad_less in |- *. simpl in |- *. intro. case (p_xor p p0). reflexivity. + trivial. + Qed. + + Lemma ad_less_def_2 : + forall a a':ad, + ad_less (ad_double_plus_un a) (ad_double_plus_un a') = ad_less a a'. + Proof. + simple induction a. simple induction a'. reflexivity. + trivial. + simple induction a'. unfold ad_less in |- *. simpl in |- *. elim p; trivial. + unfold ad_less in |- *. simpl in |- *. intro. case (p_xor p p0). reflexivity. + trivial. + Qed. + + Lemma ad_less_def_3 : + forall a a':ad, ad_less (ad_double a) (ad_double_plus_un a') = true. + Proof. + intros. apply ad_bit_0_less. apply ad_double_bit_0. + apply ad_double_plus_un_bit_0. + Qed. + + Lemma ad_less_def_4 : + forall a a':ad, ad_less (ad_double_plus_un a) (ad_double a') = false. + Proof. + intros. apply ad_bit_0_gt. apply ad_double_plus_un_bit_0. + apply ad_double_bit_0. + Qed. + + Lemma ad_less_z : forall a:ad, ad_less a ad_z = false. + Proof. + simple induction a. reflexivity. + unfold ad_less in |- *. intro. rewrite (ad_xor_neutral_right (ad_x p)). elim p; trivial. + Qed. + + Lemma ad_z_less_1 : + forall a:ad, ad_less ad_z a = true -> {p : positive | a = ad_x p}. + Proof. + simple induction a. intro. discriminate H. + intros. split with p. reflexivity. + Qed. + + Lemma ad_z_less_2 : forall a:ad, ad_less ad_z a = false -> a = ad_z. + Proof. + simple induction a. trivial. + unfold ad_less in |- *. simpl in |- *. cut (forall p:positive, ad_less_1 ad_z (ad_x p) p = false -> False). + intros. elim (H p H0). + simple induction p. intros. discriminate H0. + intros. exact (H H0). + intro. discriminate H. + Qed. + + Lemma ad_less_trans : + forall a a' a'':ad, + ad_less a a' = true -> ad_less a' a'' = true -> ad_less a a'' = true. + Proof. + intro a. apply ad_ind_double with + (P := fun a:ad => + forall a' a'':ad, + ad_less a a' = true -> + ad_less a' a'' = true -> ad_less a a'' = true). + intros. elim (sumbool_of_bool (ad_less ad_z a'')). trivial. + intro H1. rewrite (ad_z_less_2 a'' H1) in H0. rewrite (ad_less_z a') in H0. discriminate H0. + intros a0 H a'. apply ad_ind_double with + (P := fun a':ad => + forall a'':ad, + ad_less (ad_double a0) a' = true -> + ad_less a' a'' = true -> ad_less (ad_double a0) a'' = true). + intros. rewrite (ad_less_z (ad_double a0)) in H0. discriminate H0. + intros a1 H0 a'' H1. rewrite (ad_less_def_1 a0 a1) in H1. + apply ad_ind_double with + (P := fun a'':ad => + ad_less (ad_double a1) a'' = true -> + ad_less (ad_double a0) a'' = true). + intro. rewrite (ad_less_z (ad_double a1)) in H2. discriminate H2. + intros. rewrite (ad_less_def_1 a1 a2) in H3. rewrite (ad_less_def_1 a0 a2). + exact (H a1 a2 H1 H3). + intros. apply ad_less_def_3. + intros a1 H0 a'' H1. apply ad_ind_double with + (P := fun a'':ad => + ad_less (ad_double_plus_un a1) a'' = true -> + ad_less (ad_double a0) a'' = true). + intro. rewrite (ad_less_z (ad_double_plus_un a1)) in H2. discriminate H2. + intros. rewrite (ad_less_def_4 a1 a2) in H3. discriminate H3. + intros. apply ad_less_def_3. + intros a0 H a'. apply ad_ind_double with + (P := fun a':ad => + forall a'':ad, + ad_less (ad_double_plus_un a0) a' = true -> + ad_less a' a'' = true -> + ad_less (ad_double_plus_un a0) a'' = true). + intros. rewrite (ad_less_z (ad_double_plus_un a0)) in H0. discriminate H0. + intros. rewrite (ad_less_def_4 a0 a1) in H1. discriminate H1. + intros a1 H0 a'' H1. apply ad_ind_double with + (P := fun a'':ad => + ad_less (ad_double_plus_un a1) a'' = true -> + ad_less (ad_double_plus_un a0) a'' = true). + intro. rewrite (ad_less_z (ad_double_plus_un a1)) in H2. discriminate H2. + intros. rewrite (ad_less_def_4 a1 a2) in H3. discriminate H3. + rewrite (ad_less_def_2 a0 a1) in H1. intros. rewrite (ad_less_def_2 a1 a2) in H3. + rewrite (ad_less_def_2 a0 a2). exact (H a1 a2 H1 H3). + Qed. + + Fixpoint alist_sorted (l:alist A) : bool := + match l with + | nil => true + | (a, _) :: l' => + match l' with + | nil => true + | (a', y') :: l'' => andb (ad_less a a') (alist_sorted l') + end end. - Fixpoint alist_nth_ad [n:nat; l:(alist A)] : ad := - Cases l of - nil => ad_z (* dummy *) - | (cons (a, y) l') => Cases n of - O => a - | (S n') => (alist_nth_ad n' l') - end + Fixpoint alist_nth_ad (n:nat) (l:alist A) {struct l} : ad := + match l with + | nil => ad_z (* dummy *) + | (a, y) :: l' => match n with + | O => a + | S n' => alist_nth_ad n' l' + end end. - Definition alist_sorted_1 := [l:(alist A)] - (n:nat) (le (S (S n)) (length l)) -> - (ad_less (alist_nth_ad n l) (alist_nth_ad (S n) l))=true. - - Lemma alist_sorted_imp_1 : (l:(alist A)) (alist_sorted l)=true -> (alist_sorted_1 l). - Proof. - Unfold alist_sorted_1. Induction l. Intros. Elim (le_Sn_O (S n) H0). - Intro r. Elim r. Intros a y. Induction l0. Intros. Simpl in H1. - Elim (le_Sn_O n (le_S_n (S n) O H1)). - Intro r0. Elim r0. Intros a0 y0. Induction n. Intros. Simpl. Simpl in H1. - Exact (proj1 ? ? (andb_prop ? ? H1)). - Intros. Change (ad_less (alist_nth_ad n0 (cons (a0,y0) l1)) - (alist_nth_ad (S n0) (cons (a0,y0) l1)))=true. - Apply H0. Exact (proj2 ? ? (andb_prop ? ? H1)). - Apply le_S_n. Exact H3. - Qed. - - Definition alist_sorted_2 := [l:(alist A)] - (m,n:nat) (lt m n) -> (le (S n) (length l)) -> - (ad_less (alist_nth_ad m l) (alist_nth_ad n l))=true. - - Lemma alist_sorted_1_imp_2 : (l:(alist A)) (alist_sorted_1 l) -> (alist_sorted_2 l). - Proof. - Unfold alist_sorted_1 alist_sorted_2 lt. Intros l H m n H0. Elim H0. Exact (H m). - Intros. Apply ad_less_trans with a':=(alist_nth_ad m0 l). Apply H2. Apply le_trans_S. - Assumption. - Apply H. Assumption. - Qed. - - Lemma alist_sorted_2_imp : (l:(alist A)) (alist_sorted_2 l) -> (alist_sorted l)=true. - Proof. - Unfold alist_sorted_2 lt. Induction l. Trivial. - Intro r. Elim r. Intros a y. Induction l0. Trivial. - Intro r0. Elim r0. Intros a0 y0. Intros. - Change (andb (ad_less a a0) (alist_sorted (cons (a0,y0) l1)))=true. - Apply andb_true_intro. Split. Apply (H1 (0) (1)). Apply le_n. - Simpl. Apply le_n_S. Apply le_n_S. Apply le_O_n. - Apply H0. Intros. Apply (H1 (S m) (S n)). Apply le_n_S. Assumption. - Exact (le_n_S ? ? H3). - Qed. + Definition alist_sorted_1 (l:alist A) := + forall n:nat, + S (S n) <= length l -> + ad_less (alist_nth_ad n l) (alist_nth_ad (S n) l) = true. - Lemma app_length : (C:Set) (l,l':(list C)) (length (app l l'))=(plus (length l) (length l')). + Lemma alist_sorted_imp_1 : + forall l:alist A, alist_sorted l = true -> alist_sorted_1 l. Proof. - Induction l. Trivial. - Intros. Simpl. Rewrite (H l'). Reflexivity. - Qed. - - Lemma aapp_length : (l,l':(alist A)) (length (aapp A l l'))=(plus (length l) (length l')). + unfold alist_sorted_1 in |- *. simple induction l. intros. elim (le_Sn_O (S n) H0). + intro r. elim r. intros a y. simple induction l0. intros. simpl in H1. + elim (le_Sn_O n (le_S_n (S n) 0 H1)). + intro r0. elim r0. intros a0 y0. simple induction n. intros. simpl in |- *. simpl in H1. + exact (proj1 (andb_prop _ _ H1)). + intros. change + (ad_less (alist_nth_ad n0 ((a0, y0) :: l1)) + (alist_nth_ad (S n0) ((a0, y0) :: l1)) = true) + in |- *. + apply H0. exact (proj2 (andb_prop _ _ H1)). + apply le_S_n. exact H3. + Qed. + + Definition alist_sorted_2 (l:alist A) := + forall m n:nat, + m < n -> + S n <= length l -> ad_less (alist_nth_ad m l) (alist_nth_ad n l) = true. + + Lemma alist_sorted_1_imp_2 : + forall l:alist A, alist_sorted_1 l -> alist_sorted_2 l. + Proof. + unfold alist_sorted_1, alist_sorted_2, lt in |- *. intros l H m n H0. elim H0. exact (H m). + intros. apply ad_less_trans with (a' := alist_nth_ad m0 l). apply H2. apply le_Sn_le. + assumption. + apply H. assumption. + Qed. + + Lemma alist_sorted_2_imp : + forall l:alist A, alist_sorted_2 l -> alist_sorted l = true. + Proof. + unfold alist_sorted_2, lt in |- *. simple induction l. trivial. + intro r. elim r. intros a y. simple induction l0. trivial. + intro r0. elim r0. intros a0 y0. intros. + change (andb (ad_less a a0) (alist_sorted ((a0, y0) :: l1)) = true) + in |- *. + apply andb_true_intro. split. apply (H1 0 1). apply le_n. + simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n. + apply H0. intros. apply (H1 (S m) (S n)). apply le_n_S. assumption. + exact (le_n_S _ _ H3). + Qed. + + Lemma app_length : + forall (C:Set) (l l':list C), length (l ++ l') = length l + length l'. + Proof. + simple induction l. trivial. + intros. simpl in |- *. rewrite (H l'). reflexivity. + Qed. + + Lemma aapp_length : + forall l l':alist A, length (aapp A l l') = length l + length l'. Proof. - Exact (app_length ad*A). + exact (app_length (ad * A)). Qed. - Lemma alist_nth_ad_aapp_1 : (l,l':(alist A)) (n:nat) - (le (S n) (length l)) -> (alist_nth_ad n (aapp A l l'))=(alist_nth_ad n l). + Lemma alist_nth_ad_aapp_1 : + forall (l l':alist A) (n:nat), + S n <= length l -> alist_nth_ad n (aapp A l l') = alist_nth_ad n l. Proof. - Induction l. Intros. Elim (le_Sn_O n H). - Intro r. Elim r. Intros a y l' H l''. Induction n. Trivial. - Intros. Simpl. Apply H. Apply le_S_n. Exact H1. + simple induction l. intros. elim (le_Sn_O n H). + intro r. elim r. intros a y l' H l''. simple induction n. trivial. + intros. simpl in |- *. apply H. apply le_S_n. exact H1. Qed. - Lemma alist_nth_ad_aapp_2 : (l,l':(alist A)) (n:nat) - (le (S n) (length l')) -> - (alist_nth_ad (plus (length l) n) (aapp A l l'))=(alist_nth_ad n l'). + Lemma alist_nth_ad_aapp_2 : + forall (l l':alist A) (n:nat), + S n <= length l' -> + alist_nth_ad (length l + n) (aapp A l l') = alist_nth_ad n l'. Proof. - Induction l. Trivial. - Intro r. Elim r. Intros a y l' H l'' n H0. Simpl. Apply H. Exact H0. + simple induction l. trivial. + intro r. elim r. intros a y l' H l'' n H0. simpl in |- *. apply H. exact H0. Qed. - Lemma interval_split : (p,q,n:nat) (le (S n) (plus p q)) -> - {n' : nat | (le (S n') q) /\ n=(plus p n')}+{(le (S n) p)}. + Lemma interval_split : + forall p q n:nat, + S n <= p + q -> {n' : nat | S n' <= q /\ n = p + n'} + {S n <= p}. Proof. - Induction p. Simpl. Intros. Left . Split with n. (Split; [ Assumption | Reflexivity ]). - Intros p' H q. Induction n. Intros. Right . Apply le_n_S. Apply le_O_n. - Intros. Elim (H ? ? (le_S_n ? ? H1)). Intro H2. Left . Elim H2. Intros n' H3. - Elim H3. Intros H4 H5. Split with n'. (Split; [ Assumption | Rewrite H5; Reflexivity ]). - Intro H2. Right . Apply le_n_S. Assumption. + simple induction p. simpl in |- *. intros. left. split with n. split; [ assumption | reflexivity ]. + intros p' H q. simple induction n. intros. right. apply le_n_S. apply le_O_n. + intros. elim (H _ _ (le_S_n _ _ H1)). intro H2. left. elim H2. intros n' H3. + elim H3. intros H4 H5. split with n'. split; [ assumption | rewrite H5; reflexivity ]. + intro H2. right. apply le_n_S. assumption. Qed. - Lemma alist_conc_sorted : (l,l':(alist A)) (alist_sorted_2 l) -> (alist_sorted_2 l') -> - ((n,n':nat) (le (S n) (length l)) -> (le (S n') (length l')) -> - (ad_less (alist_nth_ad n l) (alist_nth_ad n' l'))=true) -> - (alist_sorted_2 (aapp A l l')). + Lemma alist_conc_sorted : + forall l l':alist A, + alist_sorted_2 l -> + alist_sorted_2 l' -> + (forall n n':nat, + S n <= length l -> + S n' <= length l' -> + ad_less (alist_nth_ad n l) (alist_nth_ad n' l') = true) -> + alist_sorted_2 (aapp A l l'). Proof. - Unfold alist_sorted_2 lt. Intros. Rewrite (aapp_length l l') in H3. - Elim (interval_split (length l) (length l') m - (le_trans ? ? ? (le_n_S ? ? (lt_le_weak m n H2)) H3)). - Intro H4. Elim H4. Intros m' H5. Elim H5. Intros. Rewrite H7. - Rewrite (alist_nth_ad_aapp_2 l l' m' H6). Elim (interval_split (length l) (length l') n H3). - Intro H8. Elim H8. Intros n' H9. Elim H9. Intros. Rewrite H11. - Rewrite (alist_nth_ad_aapp_2 l l' n' H10). Apply H0. Rewrite H7 in H2. Rewrite H11 in H2. - Change (le (plus (S (length l)) m') (plus (length l) n')) in H2. - Rewrite (plus_Snm_nSm (length l) m') in H2. Exact (simpl_le_plus_l (length l) (S m') n' H2). - Exact H10. - Intro H8. Rewrite H7 in H2. Cut (le (S (length l)) (length l)). Intros. Elim (le_Sn_n ? H9). - Apply le_trans with m:=(S n). Apply le_n_S. Apply le_trans with m:=(S (plus (length l) m')). - Apply le_trans with m:=(plus (length l) m'). Apply le_plus_l. - Apply le_n_Sn. - Exact H2. - Exact H8. - Intro H4. Rewrite (alist_nth_ad_aapp_1 l l' m H4). - Elim (interval_split (length l) (length l') n H3). Intro H5. Elim H5. Intros n' H6. Elim H6. - Intros. Rewrite H8. Rewrite (alist_nth_ad_aapp_2 l l' n' H7). Exact (H1 m n' H4 H7). - Intro H5. Rewrite (alist_nth_ad_aapp_1 l l' n H5). Exact (H m n H2 H5). + unfold alist_sorted_2, lt in |- *. intros. rewrite (aapp_length l l') in H3. + elim + (interval_split (length l) (length l') m + (le_trans _ _ _ (le_n_S _ _ (lt_le_weak m n H2)) H3)). + intro H4. elim H4. intros m' H5. elim H5. intros. rewrite H7. + rewrite (alist_nth_ad_aapp_2 l l' m' H6). elim (interval_split (length l) (length l') n H3). + intro H8. elim H8. intros n' H9. elim H9. intros. rewrite H11. + rewrite (alist_nth_ad_aapp_2 l l' n' H10). apply H0. rewrite H7 in H2. rewrite H11 in H2. + change (S (length l) + m' <= length l + n') in H2. + rewrite (plus_Snm_nSm (length l) m') in H2. exact ((fun p n m:nat => plus_le_reg_l n m p) (length l) (S m') n' H2). + exact H10. + intro H8. rewrite H7 in H2. cut (S (length l) <= length l). intros. elim (le_Sn_n _ H9). + apply le_trans with (m := S n). apply le_n_S. apply le_trans with (m := S (length l + m')). + apply le_trans with (m := length l + m'). apply le_plus_l. + apply le_n_Sn. + exact H2. + exact H8. + intro H4. rewrite (alist_nth_ad_aapp_1 l l' m H4). + elim (interval_split (length l) (length l') n H3). intro H5. elim H5. intros n' H6. elim H6. + intros. rewrite H8. rewrite (alist_nth_ad_aapp_2 l l' n' H7). exact (H1 m n' H4 H7). + intro H5. rewrite (alist_nth_ad_aapp_1 l l' n H5). exact (H m n H2 H5). Qed. - Lemma alist_nth_ad_semantics : (l:(alist A)) (n:nat) (le (S n) (length l)) -> - {y:A | (alist_semantics A l (alist_nth_ad n l))=(SOME A y)}. + Lemma alist_nth_ad_semantics : + forall (l:alist A) (n:nat), + S n <= length l -> + {y : A | alist_semantics A l (alist_nth_ad n l) = SOME A y}. Proof. - Induction l. Intros. Elim (le_Sn_O ? H). - Intro r. Elim r. Intros a y l0 H. Induction n. Simpl. Intro. Split with y. - Rewrite (ad_eq_correct a). Reflexivity. - Intros. Elim (H ? (le_S_n ? ? H1)). Intros y0 H2. - Elim (sumbool_of_bool (ad_eq a (alist_nth_ad n0 l0))). Intro H3. Split with y. - Rewrite (ad_eq_complete ? ? H3). Simpl. Rewrite (ad_eq_correct (alist_nth_ad n0 l0)). - Reflexivity. - Intro H3. Split with y0. Simpl. Rewrite H3. Assumption. + simple induction l. intros. elim (le_Sn_O _ H). + intro r. elim r. intros a y l0 H. simple induction n. simpl in |- *. intro. split with y. + rewrite (ad_eq_correct a). reflexivity. + intros. elim (H _ (le_S_n _ _ H1)). intros y0 H2. + elim (sumbool_of_bool (ad_eq a (alist_nth_ad n0 l0))). intro H3. split with y. + rewrite (ad_eq_complete _ _ H3). simpl in |- *. rewrite (ad_eq_correct (alist_nth_ad n0 l0)). + reflexivity. + intro H3. split with y0. simpl in |- *. rewrite H3. assumption. Qed. - Lemma alist_of_Map_nth_ad : (m:(Map A)) (pf:ad->ad) - (l:(alist A)) l=(MapFold1 A (alist A) (anil A) (aapp A) - [a0:ad][y:A](acons A (a0,y) (anil A)) pf m) -> - (n:nat) (le (S n) (length l)) -> {a':ad | (alist_nth_ad n l)=(pf a')}. + Lemma alist_of_Map_nth_ad : + forall (m:Map A) (pf:ad -> ad) (l:alist A), + l = + MapFold1 A (alist A) (anil A) (aapp A) + (fun (a0:ad) (y:A) => acons A (a0, y) (anil A)) pf m -> + forall n:nat, S n <= length l -> {a' : ad | alist_nth_ad n l = pf a'}. Proof. - Intros. Elim (alist_nth_ad_semantics l n H0). Intros y H1. - Apply (alist_of_Map_semantics_1_1 A m pf (alist_nth_ad n l) y). - Rewrite <- H. Assumption. + intros. elim (alist_nth_ad_semantics l n H0). intros y H1. + apply (alist_of_Map_semantics_1_1 A m pf (alist_nth_ad n l) y). + rewrite <- H. assumption. Qed. - Definition ad_monotonic := [pf:ad->ad] (a,a':ad) - (ad_less a a')=true -> (ad_less (pf a) (pf a'))=true. + Definition ad_monotonic (pf:ad -> ad) := + forall a a':ad, ad_less a a' = true -> ad_less (pf a) (pf a') = true. - Lemma ad_double_monotonic : (ad_monotonic ad_double). + Lemma ad_double_monotonic : ad_monotonic ad_double. Proof. - Unfold ad_monotonic. Intros. Rewrite ad_less_def_1. Assumption. + unfold ad_monotonic in |- *. intros. rewrite ad_less_def_1. assumption. Qed. - Lemma ad_double_plus_un_monotonic : (ad_monotonic ad_double_plus_un). + Lemma ad_double_plus_un_monotonic : ad_monotonic ad_double_plus_un. Proof. - Unfold ad_monotonic. Intros. Rewrite ad_less_def_2. Assumption. + unfold ad_monotonic in |- *. intros. rewrite ad_less_def_2. assumption. Qed. - Lemma ad_comp_monotonic : (pf,pf':ad->ad) (ad_monotonic pf) -> (ad_monotonic pf') -> - (ad_monotonic [a0:ad] (pf (pf' a0))). + Lemma ad_comp_monotonic : + forall pf pf':ad -> ad, + ad_monotonic pf -> + ad_monotonic pf' -> ad_monotonic (fun a0:ad => pf (pf' a0)). Proof. - Unfold ad_monotonic. Intros. Apply H. Apply H0. Exact H1. + unfold ad_monotonic in |- *. intros. apply H. apply H0. exact H1. Qed. - Lemma ad_comp_double_monotonic : (pf:ad->ad) (ad_monotonic pf) -> - (ad_monotonic [a0:ad] (pf (ad_double a0))). + Lemma ad_comp_double_monotonic : + forall pf:ad -> ad, + ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (ad_double a0)). Proof. - Intros. Apply ad_comp_monotonic. Assumption. - Exact ad_double_monotonic. + intros. apply ad_comp_monotonic. assumption. + exact ad_double_monotonic. Qed. - Lemma ad_comp_double_plus_un_monotonic : (pf:ad->ad) (ad_monotonic pf) -> - (ad_monotonic [a0:ad] (pf (ad_double_plus_un a0))). + Lemma ad_comp_double_plus_un_monotonic : + forall pf:ad -> ad, + ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (ad_double_plus_un a0)). Proof. - Intros. Apply ad_comp_monotonic. Assumption. - Exact ad_double_plus_un_monotonic. + intros. apply ad_comp_monotonic. assumption. + exact ad_double_plus_un_monotonic. Qed. - Lemma alist_of_Map_sorts_1 : (m:(Map A)) (pf:ad->ad) (ad_monotonic pf) -> - (alist_sorted_2 (MapFold1 A (alist A) (anil A) (aapp A) - [a:ad][y:A](acons A (a,y) (anil A)) pf m)). - Proof. - Induction m. Simpl. Intros. Apply alist_sorted_1_imp_2. Apply alist_sorted_imp_1. Reflexivity. - Intros. Simpl. Apply alist_sorted_1_imp_2. Apply alist_sorted_imp_1. Reflexivity. - Intros. Simpl. Apply alist_conc_sorted. - Exact (H [a0:ad](pf (ad_double a0)) (ad_comp_double_monotonic pf H1)). - Exact (H0 [a0:ad](pf (ad_double_plus_un a0)) (ad_comp_double_plus_un_monotonic pf H1)). - Intros. Elim (alist_of_Map_nth_ad m0 [a0:ad](pf (ad_double a0)) - (MapFold1 A (alist A) (anil A) (aapp A) - [a0:ad][y:A](acons A (a0,y) (anil A)) - [a0:ad](pf (ad_double a0)) m0) (refl_equal ? ?) n H2). - Intros a H4. Rewrite H4. Elim (alist_of_Map_nth_ad m1 [a0:ad](pf (ad_double_plus_un a0)) + Lemma alist_of_Map_sorts_1 : + forall (m:Map A) (pf:ad -> ad), + ad_monotonic pf -> + alist_sorted_2 (MapFold1 A (alist A) (anil A) (aapp A) - [a0:ad][y:A](acons A (a0,y) (anil A)) - [a0:ad](pf (ad_double_plus_un a0)) m1) (refl_equal ? ?) n' H3). - Intros a' H5. Rewrite H5. Unfold ad_monotonic in H1. Apply H1. Apply ad_less_def_3. - Qed. - - Lemma alist_of_Map_sorts : (m:(Map A)) (alist_sorted (alist_of_Map A m))=true. - Proof. - Intro. Apply alist_sorted_2_imp. - Exact (alist_of_Map_sorts_1 m [a0:ad]a0 [a,a':ad][p:(ad_less a a')=true]p). - Qed. - - Lemma alist_of_Map_sorts1 : (m:(Map A)) (alist_sorted_1 (alist_of_Map A m)). - Proof. - Intro. Apply alist_sorted_imp_1. Apply alist_of_Map_sorts. + (fun (a:ad) (y:A) => acons A (a, y) (anil A)) pf m). + Proof. + simple induction m. simpl in |- *. intros. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity. + intros. simpl in |- *. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity. + intros. simpl in |- *. apply alist_conc_sorted. + exact + (H (fun a0:ad => pf (ad_double a0)) (ad_comp_double_monotonic pf H1)). + exact + (H0 (fun a0:ad => pf (ad_double_plus_un a0)) + (ad_comp_double_plus_un_monotonic pf H1)). + intros. elim + (alist_of_Map_nth_ad m0 (fun a0:ad => pf (ad_double a0)) + (MapFold1 A (alist A) (anil A) (aapp A) + (fun (a0:ad) (y:A) => acons A (a0, y) (anil A)) + (fun a0:ad => pf (ad_double a0)) m0) (refl_equal _) n H2). + intros a H4. rewrite H4. elim + (alist_of_Map_nth_ad m1 (fun a0:ad => pf (ad_double_plus_un a0)) + (MapFold1 A (alist A) (anil A) (aapp A) + (fun (a0:ad) (y:A) => acons A (a0, y) (anil A)) + (fun a0:ad => pf (ad_double_plus_un a0)) m1) ( + refl_equal _) n' H3). + intros a' H5. rewrite H5. unfold ad_monotonic in H1. apply H1. apply ad_less_def_3. + Qed. + + Lemma alist_of_Map_sorts : + forall m:Map A, alist_sorted (alist_of_Map A m) = true. + Proof. + intro. apply alist_sorted_2_imp. + exact + (alist_of_Map_sorts_1 m (fun a0:ad => a0) + (fun (a a':ad) (p:ad_less a a' = true) => p)). + Qed. + + Lemma alist_of_Map_sorts1 : + forall m:Map A, alist_sorted_1 (alist_of_Map A m). + Proof. + intro. apply alist_sorted_imp_1. apply alist_of_Map_sorts. Qed. - Lemma alist_of_Map_sorts2 : (m:(Map A)) (alist_sorted_2 (alist_of_Map A m)). + Lemma alist_of_Map_sorts2 : + forall m:Map A, alist_sorted_2 (alist_of_Map A m). Proof. - Intro. Apply alist_sorted_1_imp_2. Apply alist_of_Map_sorts1. + intro. apply alist_sorted_1_imp_2. apply alist_of_Map_sorts1. Qed. - Lemma ad_less_total : (a,a':ad) {(ad_less a a')=true}+{(ad_less a' a)=true}+{a=a'}. - Proof. - Intro a. Refine (ad_rec_double a [a:ad] (a':ad){(ad_less a a')=true}+{(ad_less a' a)=true}+{a=a'} - ? ? ?). - Intro. Elim (sumbool_of_bool (ad_less ad_z a')). Intro H. Left . Left . Assumption. - Intro H. Right . Rewrite (ad_z_less_2 a' H). Reflexivity. - Intros a0 H a'. Refine (ad_rec_double a' [a':ad] {(ad_less (ad_double a0) a')=true} - +{(ad_less a' (ad_double a0))=true}+{(ad_double a0)=a'} ? ? ?). - Elim (sumbool_of_bool (ad_less ad_z (ad_double a0))). Intro H0. Left . Right . Assumption. - Intro H0. Right . Exact (ad_z_less_2 ? H0). - Intros a1 H0. Rewrite ad_less_def_1. Rewrite ad_less_def_1. Elim (H a1). Intro H1. - Left . Assumption. - Intro H1. Right . Rewrite H1. Reflexivity. - Intros a1 H0. Left . Left . Apply ad_less_def_3. - Intros a0 H a'. Refine (ad_rec_double a' [a':ad] {(ad_less (ad_double_plus_un a0) a')=true} - +{(ad_less a' (ad_double_plus_un a0))=true} - +{(ad_double_plus_un a0)=a'} ? ? ?). - Left . Right . (Case a0; Reflexivity). - Intros a1 H0. Left . Right . Apply ad_less_def_3. - Intros a1 H0. Rewrite ad_less_def_2. Rewrite ad_less_def_2. Elim (H a1). Intro H1. - Left . Assumption. - Intro H1. Right . Rewrite H1. Reflexivity. - Qed. - - Lemma alist_too_low : (l:(alist A)) (a,a':ad) (y:A) - (ad_less a a')=true -> (alist_sorted_2 (cons (a',y) l)) -> - (alist_semantics A (cons (a',y) l) a)=(NONE A). - Proof. - Induction l. Intros. Simpl. Elim (sumbool_of_bool (ad_eq a' a)). Intro H1. - Rewrite (ad_eq_complete ? ? H1) in H. Rewrite (ad_less_not_refl a) in H. Discriminate H. - Intro H1. Rewrite H1. Reflexivity. - Intro r. Elim r. Intros a y l0 H a0 a1 y0 H0 H1. - Change (Case (ad_eq a1 a0) of - (SOME A y0) - (alist_semantics A (cons (a,y) l0) a0) - end)=(NONE A). - Elim (sumbool_of_bool (ad_eq a1 a0)). Intro H2. Rewrite (ad_eq_complete ? ? H2) in H0. - Rewrite (ad_less_not_refl a0) in H0. Discriminate H0. - Intro H2. Rewrite H2. Apply H. Apply ad_less_trans with a':=a1. Assumption. - Unfold alist_sorted_2 in H1. Apply (H1 (0) (1)). Apply lt_n_Sn. - Simpl. Apply le_n_S. Apply le_n_S. Apply le_O_n. - Apply alist_sorted_1_imp_2. Apply alist_sorted_imp_1. - Cut (alist_sorted (cons (a1,y0) (cons (a,y) l0)))=true. Intro H3. - Exact (proj2 ? ? (andb_prop ? ? H3)). - Apply alist_sorted_2_imp. Assumption. - Qed. - - Lemma alist_semantics_nth_ad : (l:(alist A)) (a:ad) (y:A) - (alist_semantics A l a)=(SOME A y) -> - {n:nat | (le (S n) (length l)) /\ (alist_nth_ad n l)=a}. - Proof. - Induction l. Intros. Discriminate H. - Intro r. Elim r. Intros a y l0 H a0 y0 H0. Simpl in H0. Elim (sumbool_of_bool (ad_eq a a0)). - Intro H1. Rewrite H1 in H0. Split with O. Split. Simpl. Apply le_n_S. Apply le_O_n. - Simpl. Exact (ad_eq_complete ? ? H1). - Intro H1. Rewrite H1 in H0. Elim (H a0 y0 H0). Intros n' H2. Split with (S n'). Split. - Simpl. Apply le_n_S. Exact (proj1 ? ? H2). - Exact (proj2 ? ? H2). - Qed. - - Lemma alist_semantics_tail : (l:(alist A)) (a:ad) (y:A) - (alist_sorted_2 (cons (a,y) l)) -> - (eqm A (alist_semantics A l) [a0:ad] if (ad_eq a a0) - then (NONE A) - else (alist_semantics A (cons (a,y) l) a0)). - Proof. - Unfold eqm. Intros. Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. Rewrite H0. - Rewrite <- (ad_eq_complete ? ? H0). Unfold alist_sorted_2 in H. - Elim (option_sum A (alist_semantics A l a)). Intro H1. Elim H1. Intros y0 H2. - Elim (alist_semantics_nth_ad l a y0 H2). Intros n H3. Elim H3. Intros. - Cut (ad_less (alist_nth_ad (0) (cons (a,y) l)) (alist_nth_ad (S n) (cons (a,y) l)))=true. - Intro. Simpl in H6. Rewrite H5 in H6. Rewrite (ad_less_not_refl a) in H6. Discriminate H6. - Apply H. Apply lt_O_Sn. - Simpl. Apply le_n_S. Assumption. - Trivial. - Intro H0. Simpl. Rewrite H0. Reflexivity. - Qed. - - Lemma alist_semantics_same_tail : (l,l':(alist A)) (a:ad) (y:A) - (alist_sorted_2 (cons (a,y) l)) -> (alist_sorted_2 (cons (a,y) l')) -> - (eqm A (alist_semantics A (cons (a,y) l)) (alist_semantics A (cons (a,y) l'))) -> - (eqm A (alist_semantics A l) (alist_semantics A l')). - Proof. - Unfold eqm. Intros. Rewrite (alist_semantics_tail ? ? ? H a0). - Rewrite (alist_semantics_tail ? ? ? H0 a0). Case (ad_eq a a0). Reflexivity. - Exact (H1 a0). - Qed. - - Lemma alist_sorted_tail : (l:(alist A)) (a:ad) (y:A) - (alist_sorted_2 (cons (a,y) l)) -> (alist_sorted_2 l). - Proof. - Unfold alist_sorted_2. Intros. Apply (H (S m) (S n)). Apply lt_n_S. Assumption. - Simpl. Apply le_n_S. Assumption. - Qed. - - Lemma alist_canonical : (l,l':(alist A)) - (eqm A (alist_semantics A l) (alist_semantics A l')) -> - (alist_sorted_2 l) -> (alist_sorted_2 l') -> l=l'. - Proof. - Unfold eqm. Induction l. Induction l'. Trivial. - Intro r. Elim r. Intros a y l0 H H0 H1 H2. Simpl in H0. - Cut (NONE A)=(Case (ad_eq a a) of (SOME A y) - (alist_semantics A l0 a) - end). - Rewrite (ad_eq_correct a). Intro. Discriminate H3. - Exact (H0 a). - Intro r. Elim r. Intros a y l0 H. Induction l'. Intros. Simpl in H0. - Cut (Case (ad_eq a a) of (SOME A y) - (alist_semantics A l0 a) - end)=(NONE A). - Rewrite (ad_eq_correct a). Intro. Discriminate H3. - Exact (H0 a). - Intro r'. Elim r'. Intros a' y' l'0 H0 H1 H2 H3. Elim (ad_less_total a a'). Intro H4. - Elim H4. Intro H5. - Cut (alist_semantics A (cons (a,y) l0) a)=(alist_semantics A (cons (a',y') l'0) a). - Intro. Rewrite (alist_too_low l'0 a a' y' H5 H3) in H6. Simpl in H6. - Rewrite (ad_eq_correct a) in H6. Discriminate H6. - Exact (H1 a). - Intro H5. Cut (alist_semantics A (cons (a,y) l0) a')=(alist_semantics A (cons (a',y') l'0) a'). - Intro. Rewrite (alist_too_low l0 a' a y H5 H2) in H6. Simpl in H6. - Rewrite (ad_eq_correct a') in H6. Discriminate H6. - Exact (H1 a'). - Intro H4. Rewrite H4. - Cut (alist_semantics A (cons (a,y) l0) a)=(alist_semantics A (cons (a',y') l'0) a). - Intro. Simpl in H5. Rewrite H4 in H5. Rewrite (ad_eq_correct a') in H5. Inversion H5. - Rewrite H4 in H1. Rewrite H7 in H1. Cut l0=l'0. Intro. Rewrite H6. Reflexivity. - Apply H. Rewrite H4 in H2. Rewrite H7 in H2. - Exact (alist_semantics_same_tail l0 l'0 a' y' H2 H3 H1). - Exact (alist_sorted_tail ? ? ? H2). - Exact (alist_sorted_tail ? ? ? H3). - Exact (H1 a). - Qed. - -End LSort. + Lemma ad_less_total : + forall a a':ad, {ad_less a a' = true} + {ad_less a' a = true} + {a = a'}. + Proof. + intro a. refine + (ad_rec_double a + (fun a:ad => + forall a':ad, + {ad_less a a' = true} + {ad_less a' a = true} + {a = a'}) _ _ _). + intro. elim (sumbool_of_bool (ad_less ad_z a')). intro H. left. left. assumption. + intro H. right. rewrite (ad_z_less_2 a' H). reflexivity. + intros a0 H a'. refine + (ad_rec_double a' + (fun a':ad => + {ad_less (ad_double a0) a' = true} + + {ad_less a' (ad_double a0) = true} + {ad_double a0 = a'}) _ _ _). + elim (sumbool_of_bool (ad_less ad_z (ad_double a0))). intro H0. left. right. assumption. + intro H0. right. exact (ad_z_less_2 _ H0). + intros a1 H0. rewrite ad_less_def_1. rewrite ad_less_def_1. elim (H a1). intro H1. + left. assumption. + intro H1. right. rewrite H1. reflexivity. + intros a1 H0. left. left. apply ad_less_def_3. + intros a0 H a'. refine + (ad_rec_double a' + (fun a':ad => + {ad_less (ad_double_plus_un a0) a' = true} + + {ad_less a' (ad_double_plus_un a0) = true} + + {ad_double_plus_un a0 = a'}) _ _ _). + left. right. case a0; reflexivity. + intros a1 H0. left. right. apply ad_less_def_3. + intros a1 H0. rewrite ad_less_def_2. rewrite ad_less_def_2. elim (H a1). intro H1. + left. assumption. + intro H1. right. rewrite H1. reflexivity. + Qed. + + Lemma alist_too_low : + forall (l:alist A) (a a':ad) (y:A), + ad_less a a' = true -> + alist_sorted_2 ((a', y) :: l) -> + alist_semantics A ((a', y) :: l) a = NONE A. + Proof. + simple induction l. intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a' a)). intro H1. + rewrite (ad_eq_complete _ _ H1) in H. rewrite (ad_less_not_refl a) in H. discriminate H. + intro H1. rewrite H1. reflexivity. + intro r. elim r. intros a y l0 H a0 a1 y0 H0 H1. + change + (match ad_eq a1 a0 with + | true => SOME A y0 + | false => alist_semantics A ((a, y) :: l0) a0 + end = NONE A) in |- *. + elim (sumbool_of_bool (ad_eq a1 a0)). intro H2. rewrite (ad_eq_complete _ _ H2) in H0. + rewrite (ad_less_not_refl a0) in H0. discriminate H0. + intro H2. rewrite H2. apply H. apply ad_less_trans with (a' := a1). assumption. + unfold alist_sorted_2 in H1. apply (H1 0 1). apply lt_n_Sn. + simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n. + apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. + cut (alist_sorted ((a1, y0) :: (a, y) :: l0) = true). intro H3. + exact (proj2 (andb_prop _ _ H3)). + apply alist_sorted_2_imp. assumption. + Qed. + + Lemma alist_semantics_nth_ad : + forall (l:alist A) (a:ad) (y:A), + alist_semantics A l a = SOME A y -> + {n : nat | S n <= length l /\ alist_nth_ad n l = a}. + Proof. + simple induction l. intros. discriminate H. + intro r. elim r. intros a y l0 H a0 y0 H0. simpl in H0. elim (sumbool_of_bool (ad_eq a a0)). + intro H1. rewrite H1 in H0. split with 0. split. simpl in |- *. apply le_n_S. apply le_O_n. + simpl in |- *. exact (ad_eq_complete _ _ H1). + intro H1. rewrite H1 in H0. elim (H a0 y0 H0). intros n' H2. split with (S n'). split. + simpl in |- *. apply le_n_S. exact (proj1 H2). + exact (proj2 H2). + Qed. + + Lemma alist_semantics_tail : + forall (l:alist A) (a:ad) (y:A), + alist_sorted_2 ((a, y) :: l) -> + eqm A (alist_semantics A l) + (fun a0:ad => + if ad_eq a a0 then NONE A else alist_semantics A ((a, y) :: l) a0). + Proof. + unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0. + rewrite <- (ad_eq_complete _ _ H0). unfold alist_sorted_2 in H. + elim (option_sum A (alist_semantics A l a)). intro H1. elim H1. intros y0 H2. + elim (alist_semantics_nth_ad l a y0 H2). intros n H3. elim H3. intros. + cut + (ad_less (alist_nth_ad 0 ((a, y) :: l)) + (alist_nth_ad (S n) ((a, y) :: l)) = true). + intro. simpl in H6. rewrite H5 in H6. rewrite (ad_less_not_refl a) in H6. discriminate H6. + apply H. apply lt_O_Sn. + simpl in |- *. apply le_n_S. assumption. + trivial. + intro H0. simpl in |- *. rewrite H0. reflexivity. + Qed. + + Lemma alist_semantics_same_tail : + forall (l l':alist A) (a:ad) (y:A), + alist_sorted_2 ((a, y) :: l) -> + alist_sorted_2 ((a, y) :: l') -> + eqm A (alist_semantics A ((a, y) :: l)) + (alist_semantics A ((a, y) :: l')) -> + eqm A (alist_semantics A l) (alist_semantics A l'). + Proof. + unfold eqm in |- *. intros. rewrite (alist_semantics_tail _ _ _ H a0). + rewrite (alist_semantics_tail _ _ _ H0 a0). case (ad_eq a a0). reflexivity. + exact (H1 a0). + Qed. + + Lemma alist_sorted_tail : + forall (l:alist A) (a:ad) (y:A), + alist_sorted_2 ((a, y) :: l) -> alist_sorted_2 l. + Proof. + unfold alist_sorted_2 in |- *. intros. apply (H (S m) (S n)). apply lt_n_S. assumption. + simpl in |- *. apply le_n_S. assumption. + Qed. + + Lemma alist_canonical : + forall l l':alist A, + eqm A (alist_semantics A l) (alist_semantics A l') -> + alist_sorted_2 l -> alist_sorted_2 l' -> l = l'. + Proof. + unfold eqm in |- *. simple induction l. simple induction l'. trivial. + intro r. elim r. intros a y l0 H H0 H1 H2. simpl in H0. + cut + (NONE A = + match ad_eq a a with + | true => SOME A y + | false => alist_semantics A l0 a + end). + rewrite (ad_eq_correct a). intro. discriminate H3. + exact (H0 a). + intro r. elim r. intros a y l0 H. simple induction l'. intros. simpl in H0. + cut + (match ad_eq a a with + | true => SOME A y + | false => alist_semantics A l0 a + end = NONE A). + rewrite (ad_eq_correct a). intro. discriminate H3. + exact (H0 a). + intro r'. elim r'. intros a' y' l'0 H0 H1 H2 H3. elim (ad_less_total a a'). intro H4. + elim H4. intro H5. + cut + (alist_semantics A ((a, y) :: l0) a = + alist_semantics A ((a', y') :: l'0) a). + intro. rewrite (alist_too_low l'0 a a' y' H5 H3) in H6. simpl in H6. + rewrite (ad_eq_correct a) in H6. discriminate H6. + exact (H1 a). + intro H5. cut + (alist_semantics A ((a, y) :: l0) a' = + alist_semantics A ((a', y') :: l'0) a'). + intro. rewrite (alist_too_low l0 a' a y H5 H2) in H6. simpl in H6. + rewrite (ad_eq_correct a') in H6. discriminate H6. + exact (H1 a'). + intro H4. rewrite H4. + cut + (alist_semantics A ((a, y) :: l0) a = + alist_semantics A ((a', y') :: l'0) a). + intro. simpl in H5. rewrite H4 in H5. rewrite (ad_eq_correct a') in H5. inversion H5. + rewrite H4 in H1. rewrite H7 in H1. cut (l0 = l'0). intro. rewrite H6. reflexivity. + apply H. rewrite H4 in H2. rewrite H7 in H2. + exact (alist_semantics_same_tail l0 l'0 a' y' H2 H3 H1). + exact (alist_sorted_tail _ _ _ H2). + exact (alist_sorted_tail _ _ _ H3). + exact (H1 a). + Qed. + +End LSort.
\ No newline at end of file |
