diff options
Diffstat (limited to 'theories/IntMap/Mapcard.v')
| -rw-r--r-- | theories/IntMap/Mapcard.v | 1316 |
1 files changed, 705 insertions, 611 deletions
diff --git a/theories/IntMap/Mapcard.v b/theories/IntMap/Mapcard.v index e124a11f6b..fe598c4128 100644 --- a/theories/IntMap/Mapcard.v +++ b/theories/IntMap/Mapcard.v @@ -7,664 +7,758 @@ (***********************************************************************) (*i $Id$ i*) -Require Bool. -Require Sumbool. -Require Arith. -Require ZArith. -Require Addr. -Require Adist. -Require Addec. -Require Map. -Require Mapaxioms. -Require Mapiter. -Require Fset. -Require Mapsubset. -Require PolyList. -Require Lsort. -Require Peano_dec. +Require Import Bool. +Require Import Sumbool. +Require Import Arith. +Require Import ZArith. +Require Import Addr. +Require Import Adist. +Require Import Addec. +Require Import Map. +Require Import Mapaxioms. +Require Import Mapiter. +Require Import Fset. +Require Import Mapsubset. +Require Import List. +Require Import Lsort. +Require Import Peano_dec. Section MapCard. - Variable A, B : Set. + Variables A B : Set. + + Lemma MapCard_M0 : MapCard A (M0 A) = 0. + Proof. + trivial. + Qed. + + Lemma MapCard_M1 : forall (a:ad) (y:A), MapCard A (M1 A a y) = 1. + Proof. + trivial. + Qed. + + Lemma MapCard_is_O : + forall m:Map A, MapCard A m = 0 -> forall a:ad, MapGet A m a = NONE A. + Proof. + simple induction m. trivial. + intros a y H. discriminate H. + intros. simpl in H1. elim (plus_is_O _ _ H1). intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a). + case (ad_bit_0 a). apply H0. assumption. + apply H. assumption. + Qed. - Lemma MapCard_M0 : (MapCard A (M0 A))=O. + Lemma MapCard_is_not_O : + forall (m:Map A) (a:ad) (y:A), + MapGet A m a = SOME A y -> {n : nat | MapCard A m = S n}. Proof. - Trivial. + simple induction m. intros. discriminate H. + intros a y a0 y0 H. simpl in H. elim (sumbool_of_bool (ad_eq a a0)). intro H0. split with 0. + reflexivity. + intro H0. rewrite H0 in H. discriminate H. + intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. + rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. elim (H0 (ad_div_2 a) y H1). intros n H3. + simpl in |- *. rewrite H3. split with (MapCard A m0 + n). + rewrite <- (plus_Snm_nSm (MapCard A m0) n). reflexivity. + intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. elim (H (ad_div_2 a) y H1). + intros n H3. simpl in |- *. rewrite H3. split with (n + MapCard A m1). reflexivity. Qed. - Lemma MapCard_M1 : (a:ad) (y:A) (MapCard A (M1 A a y))=(1). + Lemma MapCard_is_one : + forall m:Map A, + MapCard A m = 1 -> {a : ad & {y : A | MapGet A m a = SOME A y}}. Proof. - Trivial. + simple induction m. intro. discriminate H. + intros a y H. split with a. split with y. apply M1_semantics_1. + intros. simpl in H1. elim (plus_is_one (MapCard A m0) (MapCard A m1) H1). + intro H2. elim H2. intros. elim (H0 H4). intros a H5. split with (ad_double_plus_un a). + rewrite (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m0 m1). + rewrite ad_double_plus_un_div_2. exact H5. + intro H2. elim H2. intros. elim (H H3). intros a H5. split with (ad_double a). + rewrite (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m0 m1). + rewrite ad_double_div_2. exact H5. Qed. - Lemma MapCard_is_O : (m:(Map A)) (MapCard A m)=O -> - (a:ad) (MapGet A m a)=(NONE A). + Lemma MapCard_is_one_unique : + forall m:Map A, + MapCard A m = 1 -> + forall (a a':ad) (y y':A), + MapGet A m a = SOME A y -> + MapGet A m a' = SOME A y' -> a = a' /\ y = y'. Proof. - Induction m. Trivial. - Intros a y H. Discriminate H. - Intros. Simpl in H1. Elim (plus_is_O ? ? H1). Intros. Rewrite (MapGet_M2_bit_0_if A m0 m1 a). - Case (ad_bit_0 a). Apply H0. Assumption. - Apply H. Assumption. + simple induction m. intro. discriminate H. + intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2. rewrite (ad_eq_complete _ _ H2) in H0. + rewrite (M1_semantics_1 A a1 a0) in H0. inversion H0. elim (sumbool_of_bool (ad_eq a a')). + intro H5. rewrite (ad_eq_complete _ _ H5) in H1. rewrite (M1_semantics_1 A a' a0) in H1. + inversion H1. rewrite <- (ad_eq_complete _ _ H2). rewrite <- (ad_eq_complete _ _ H5). + rewrite <- H4. rewrite <- H6. split; reflexivity. + intro H5. rewrite (M1_semantics_2 A a a' a0 H5) in H1. discriminate H1. + intro H2. rewrite (M1_semantics_2 A a a1 a0 H2) in H0. discriminate H0. + intros. simpl in H1. elim (plus_is_one _ _ H1). intro H4. elim H4. intros. + rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. elim (sumbool_of_bool (ad_bit_0 a)). + intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3. + elim (sumbool_of_bool (ad_bit_0 a')). intro H8. rewrite H8 in H3. elim (H0 H6 _ _ _ _ H2 H3). + intros. split. rewrite <- (ad_div_2_double_plus_un a H7). + rewrite <- (ad_div_2_double_plus_un a' H8). rewrite H9. reflexivity. + assumption. + intro H8. rewrite H8 in H3. rewrite (MapCard_is_O m0 H5 (ad_div_2 a')) in H3. + discriminate H3. + intro H7. rewrite H7 in H2. rewrite (MapCard_is_O m0 H5 (ad_div_2 a)) in H2. + discriminate H2. + intro H4. elim H4. intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. + elim (sumbool_of_bool (ad_bit_0 a)). intro H7. rewrite H7 in H2. + rewrite (MapCard_is_O m1 H6 (ad_div_2 a)) in H2. discriminate H2. + intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3. + elim (sumbool_of_bool (ad_bit_0 a')). intro H8. rewrite H8 in H3. + rewrite (MapCard_is_O m1 H6 (ad_div_2 a')) in H3. discriminate H3. + intro H8. rewrite H8 in H3. elim (H H5 _ _ _ _ H2 H3). intros. split. + rewrite <- (ad_div_2_double a H7). rewrite <- (ad_div_2_double a' H8). + rewrite H9. reflexivity. + assumption. Qed. - Lemma MapCard_is_not_O : (m:(Map A)) (a:ad) (y:A) (MapGet A m a)=(SOME A y) -> - {n:nat | (MapCard A m)=(S n)}. + Lemma length_as_fold : + forall (C:Set) (l:list C), + length l = fold_right (fun (_:C) (n:nat) => S n) 0 l. Proof. - Induction m. Intros. Discriminate H. - Intros a y a0 y0 H. Simpl in H. Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. Split with O. - Reflexivity. - Intro H0. Rewrite H0 in H. Discriminate H. - Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2. - Rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. Elim (H0 (ad_div_2 a) y H1). Intros n H3. - Simpl. Rewrite H3. Split with (plus (MapCard A m0) n). - Rewrite <- (plus_Snm_nSm (MapCard A m0) n). Reflexivity. - Intro H2. Rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. Elim (H (ad_div_2 a) y H1). - Intros n H3. Simpl. Rewrite H3. Split with (plus n (MapCard A m1)). Reflexivity. + simple induction l. reflexivity. + intros. simpl in |- *. rewrite H. reflexivity. Qed. - Lemma MapCard_is_one : (m:(Map A)) (MapCard A m)=(1) -> - {a:ad & {y:A | (MapGet A m a)=(SOME A y)}}. - Proof. - Induction m. Intro. Discriminate H. - Intros a y H. Split with a. Split with y. Apply M1_semantics_1. - Intros. Simpl in H1. Elim (plus_is_one (MapCard A m0) (MapCard A m1) H1). - Intro H2. Elim H2. Intros. Elim (H0 H4). Intros a H5. Split with (ad_double_plus_un a). - Rewrite (MapGet_M2_bit_0_1 A ? (ad_double_plus_un_bit_0 a) m0 m1). - Rewrite ad_double_plus_un_div_2. Exact H5. - Intro H2. Elim H2. Intros. Elim (H H3). Intros a H5. Split with (ad_double a). - Rewrite (MapGet_M2_bit_0_0 A ? (ad_double_bit_0 a) m0 m1). - Rewrite ad_double_div_2. Exact H5. - Qed. - - Lemma MapCard_is_one_unique : (m:(Map A)) (MapCard A m)=(1) -> (a,a':ad) (y,y':A) - (MapGet A m a)=(SOME A y) -> (MapGet A m a')=(SOME A y') -> - a=a' /\ y=y'. - Proof. - Induction m. Intro. Discriminate H. - Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H2. Rewrite (ad_eq_complete ? ? H2) in H0. - Rewrite (M1_semantics_1 A a1 a0) in H0. Inversion H0. Elim (sumbool_of_bool (ad_eq a a')). - Intro H5. Rewrite (ad_eq_complete ? ? H5) in H1. Rewrite (M1_semantics_1 A a' a0) in H1. - Inversion H1. Rewrite <- (ad_eq_complete ? ? H2). Rewrite <- (ad_eq_complete ? ? H5). - Rewrite <- H4. Rewrite <- H6. (Split; Reflexivity). - Intro H5. Rewrite (M1_semantics_2 A a a' a0 H5) in H1. Discriminate H1. - Intro H2. Rewrite (M1_semantics_2 A a a1 a0 H2) in H0. Discriminate H0. - Intros. Simpl in H1. Elim (plus_is_one ? ? H1). Intro H4. Elim H4. Intros. - Rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. Elim (sumbool_of_bool (ad_bit_0 a)). - Intro H7. Rewrite H7 in H2. Rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3. - Elim (sumbool_of_bool (ad_bit_0 a')). Intro H8. Rewrite H8 in H3. Elim (H0 H6 ? ? ? ? H2 H3). - Intros. Split. Rewrite <- (ad_div_2_double_plus_un a H7). - Rewrite <- (ad_div_2_double_plus_un a' H8). Rewrite H9. Reflexivity. - Assumption. - Intro H8. Rewrite H8 in H3. Rewrite (MapCard_is_O m0 H5 (ad_div_2 a')) in H3. - Discriminate H3. - Intro H7. Rewrite H7 in H2. Rewrite (MapCard_is_O m0 H5 (ad_div_2 a)) in H2. - Discriminate H2. - Intro H4. Elim H4. Intros. Rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. - Elim (sumbool_of_bool (ad_bit_0 a)). Intro H7. Rewrite H7 in H2. - Rewrite (MapCard_is_O m1 H6 (ad_div_2 a)) in H2. Discriminate H2. - Intro H7. Rewrite H7 in H2. Rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3. - Elim (sumbool_of_bool (ad_bit_0 a')). Intro H8. Rewrite H8 in H3. - Rewrite (MapCard_is_O m1 H6 (ad_div_2 a')) in H3. Discriminate H3. - Intro H8. Rewrite H8 in H3. Elim (H H5 ? ? ? ? H2 H3). Intros. Split. - Rewrite <- (ad_div_2_double a H7). Rewrite <- (ad_div_2_double a' H8). - Rewrite H9. Reflexivity. - Assumption. - Qed. - - Lemma length_as_fold : (C:Set) (l:(list C)) - (length l)=(fold_right [_:C][n:nat](S n) O l). - Proof. - Induction l. Reflexivity. - Intros. Simpl. Rewrite H. Reflexivity. - Qed. - - Lemma length_as_fold_2 : (l:(alist A)) - (length l)=(fold_right [r:ad*A][n:nat]let (a,y)=r in (plus (1) n) O l). - Proof. - Induction l. Reflexivity. - Intros. Simpl. Rewrite H. (Elim a; Reflexivity). - Qed. - - Lemma MapCard_as_Fold_1 : (m:(Map A)) (pf:ad->ad) - (MapCard A m)=(MapFold1 A nat O plus [_:ad][_:A](1) pf m). - Proof. - Induction m. Trivial. - Trivial. - Intros. Simpl. Rewrite <- (H [a0:ad](pf (ad_double a0))). - Rewrite <- (H0 [a0:ad](pf (ad_double_plus_un a0))). Reflexivity. - Qed. - - Lemma MapCard_as_Fold : - (m:(Map A)) (MapCard A m)=(MapFold A nat O plus [_:ad][_:A](1) m). - Proof. - Intro. Exact (MapCard_as_Fold_1 m [a0:ad]a0). + Lemma length_as_fold_2 : + forall l:alist A, + length l = + fold_right (fun (r:ad * A) (n:nat) => let (a, y) := r in 1 + n) 0 l. + Proof. + simple induction l. reflexivity. + intros. simpl in |- *. rewrite H. elim a; reflexivity. + Qed. + + Lemma MapCard_as_Fold_1 : + forall (m:Map A) (pf:ad -> ad), + MapCard A m = MapFold1 A nat 0 plus (fun (_:ad) (_:A) => 1) pf m. + Proof. + simple induction m. trivial. + trivial. + intros. simpl in |- *. rewrite <- (H (fun a0:ad => pf (ad_double a0))). + rewrite <- (H0 (fun a0:ad => pf (ad_double_plus_un a0))). reflexivity. + Qed. + + Lemma MapCard_as_Fold : + forall m:Map A, + MapCard A m = MapFold A nat 0 plus (fun (_:ad) (_:A) => 1) m. + Proof. + intro. exact (MapCard_as_Fold_1 m (fun a0:ad => a0)). Qed. - Lemma MapCard_as_length : (m:(Map A)) (MapCard A m)=(length (alist_of_Map A m)). - Proof. - Intro. Rewrite MapCard_as_Fold. Rewrite length_as_fold_2. - Apply MapFold_as_fold with op:=plus neutral:=O f:=[_:ad][_:A](1). Exact plus_assoc_r. - Trivial. - Intro. Rewrite <- plus_n_O. Reflexivity. - Qed. - - Lemma MapCard_Put1_equals_2 : (p:positive) (a,a':ad) (y,y':A) - (MapCard A (MapPut1 A a y a' y' p))=(2). - Proof. - Induction p. Intros. Simpl. (Case (ad_bit_0 a); Reflexivity). - Intros. Simpl. Case (ad_bit_0 a). Exact (H (ad_div_2 a) (ad_div_2 a') y y'). - Simpl. Rewrite <- plus_n_O. Exact (H (ad_div_2 a) (ad_div_2 a') y y'). - Intros. Simpl. (Case (ad_bit_0 a); Reflexivity). - Qed. - - Lemma MapCard_Put_sum : (m,m':(Map A)) (a:ad) (y:A) (n,n':nat) - m'=(MapPut A m a y) -> n=(MapCard A m) -> n'=(MapCard A m') -> - {n'=n}+{n'=(S n)}. - Proof. - Induction m. Simpl. Intros. Rewrite H in H1. Simpl in H1. Right . - Rewrite H0. Rewrite H1. Reflexivity. - Intros a y m' a0 y0 n n' H H0 H1. Simpl in H. Elim (ad_sum (ad_xor a a0)). Intro H2. - Elim H2. Intros p H3. Rewrite H3 in H. Rewrite H in H1. - Rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H1. Simpl in H0. Right . - Rewrite H0. Rewrite H1. Reflexivity. - Intro H2. Rewrite H2 in H. Rewrite H in H1. Simpl in H1. Simpl in H0. Left . - Rewrite H0. Rewrite H1. Reflexivity. - Intros. Simpl in H2. Rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. - Elim (sumbool_of_bool (ad_bit_0 a)). Intro H4. Rewrite H4 in H1. - Elim (H0 (MapPut A m1 (ad_div_2 a) y) (ad_div_2 a) y (MapCard A m1) - (MapCard A (MapPut A m1 (ad_div_2 a) y)) (refl_equal ? ?) - (refl_equal ? ?) (refl_equal ? ?)). - Intro H5. Rewrite H1 in H3. Simpl in H3. Rewrite H5 in H3. Rewrite <- H2 in H3. Left . - Assumption. - Intro H5. Rewrite H1 in H3. Simpl in H3. Rewrite H5 in H3. - Rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)) in H3. - Simpl in H3. Rewrite <- H2 in H3. Right . Assumption. - Intro H4. Rewrite H4 in H1. - Elim (H (MapPut A m0 (ad_div_2 a) y) (ad_div_2 a) y (MapCard A m0) - (MapCard A (MapPut A m0 (ad_div_2 a) y)) (refl_equal ? ?) - (refl_equal ? ?) (refl_equal ? ?)). - Intro H5. Rewrite H1 in H3. Simpl in H3. Rewrite H5 in H3. Rewrite <- H2 in H3. - Left . Assumption. - Intro H5. Rewrite H1 in H3. Simpl in H3. Rewrite H5 in H3. Simpl in H3. Rewrite <- H2 in H3. - Right . Assumption. - Qed. - - Lemma MapCard_Put_lb : (m:(Map A)) (a:ad) (y:A) - (ge (MapCard A (MapPut A m a y)) (MapCard A m)). - Proof. - Unfold ge. Intros. - Elim (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) - (MapCard A (MapPut A m a y)) (refl_equal ? ?) (refl_equal ? ?) - (refl_equal ? ?)). - Intro H. Rewrite H. Apply le_n. - Intro H. Rewrite H. Apply le_n_Sn. - Qed. - - Lemma MapCard_Put_ub : (m:(Map A)) (a:ad) (y:A) - (le (MapCard A (MapPut A m a y)) (S (MapCard A m))). - Proof. - Intros. - Elim (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) - (MapCard A (MapPut A m a y)) (refl_equal ? ?) (refl_equal ? ?) - (refl_equal ? ?)). - Intro H. Rewrite H. Apply le_n_Sn. - Intro H. Rewrite H. Apply le_n. - Qed. - - Lemma MapCard_Put_1 : (m:(Map A)) (a:ad) (y:A) - (MapCard A (MapPut A m a y))=(MapCard A m) -> - {y:A | (MapGet A m a)=(SOME A y)}. - Proof. - Induction m. Intros. Discriminate H. - Intros a y a0 y0 H. Simpl in H. Elim (ad_sum (ad_xor a a0)). Intro H0. Elim H0. - Intros p H1. Rewrite H1 in H. Rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H. - Discriminate H. - Intro H0. Rewrite H0 in H. Rewrite (ad_xor_eq ? ? H0). Split with y. Apply M1_semantics_1. - Intros. Rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. Elim (sumbool_of_bool (ad_bit_0 a)). - Intro H2. Rewrite H2 in H1. Simpl in H1. Elim (H0 (ad_div_2 a) y (simpl_plus_l ? ? ? H1)). - Intros y0 H3. Split with y0. Rewrite <- H3. Exact (MapGet_M2_bit_0_1 A a H2 m0 m1). - Intro H2. Rewrite H2 in H1. Simpl in H1. - Rewrite (plus_sym (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1)) in H1. - Rewrite (plus_sym (MapCard A m0) (MapCard A m1)) in H1. - Elim (H (ad_div_2 a) y (simpl_plus_l ? ? ? H1)). Intros y0 H3. Split with y0. - Rewrite <- H3. Exact (MapGet_M2_bit_0_0 A a H2 m0 m1). - Qed. - - Lemma MapCard_Put_2 : (m:(Map A)) (a:ad) (y:A) - (MapCard A (MapPut A m a y))=(S (MapCard A m)) -> (MapGet A m a)=(NONE A). - Proof. - Induction m. Trivial. - Intros. Simpl in H. Elim (sumbool_of_bool (ad_eq a a1)). Intro H0. - Rewrite (ad_eq_complete ? ? H0) in H. Rewrite (ad_xor_nilpotent a1) in H. Discriminate H. - Intro H0. Exact (M1_semantics_2 A a a1 a0 H0). - Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2. - Rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). Apply (H0 (ad_div_2 a) y). - Apply simpl_plus_l with n:=(MapCard A m0). - Rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)). Simpl in H1. Simpl. Rewrite <- H1. - Clear H1. - NewInduction a. Discriminate H2. - NewInduction p. Reflexivity. - Discriminate H2. - Reflexivity. - Intro H2. Rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). Apply (H (ad_div_2 a) y). - Cut (plus (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1)) - =(plus (S (MapCard A m0)) (MapCard A m1)). - Intro. Rewrite (plus_sym (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1)) in H3. - Rewrite (plus_sym (S (MapCard A m0)) (MapCard A m1)) in H3. Exact (simpl_plus_l ? ? ? H3). - Simpl. Simpl in H1. Rewrite <- H1. NewInduction a. Trivial. - NewInduction p. Discriminate H2. - Reflexivity. - Discriminate H2. - Qed. - - Lemma MapCard_Put_1_conv : (m:(Map A)) (a:ad) (y,y':A) - (MapGet A m a)=(SOME A y) -> (MapCard A (MapPut A m a y'))=(MapCard A m). - Proof. - Intros. - Elim (MapCard_Put_sum m (MapPut A m a y') a y' (MapCard A m) - (MapCard A (MapPut A m a y')) (refl_equal ? ?) (refl_equal ? ?) - (refl_equal ? ?)). - Trivial. - Intro H0. Rewrite (MapCard_Put_2 m a y' H0) in H. Discriminate H. - Qed. - - Lemma MapCard_Put_2_conv : (m:(Map A)) (a:ad) (y:A) - (MapGet A m a)=(NONE A) -> (MapCard A (MapPut A m a y))=(S (MapCard A m)). - Proof. - Intros. - Elim (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) - (MapCard A (MapPut A m a y)) (refl_equal ? ?) (refl_equal ? ?) - (refl_equal ? ?)). - Intro H0. Elim (MapCard_Put_1 m a y H0). Intros y' H1. Rewrite H1 in H. Discriminate H. - Trivial. - Qed. - - Lemma MapCard_ext : (m,m':(Map A)) - (eqm A (MapGet A m) (MapGet A m')) -> (MapCard A m)=(MapCard A m'). - Proof. - Unfold eqm. Intros. Rewrite (MapCard_as_length m). Rewrite (MapCard_as_length m'). - Rewrite (alist_canonical A (alist_of_Map A m) (alist_of_Map A m')). Reflexivity. - Unfold eqm. Intro. Rewrite (Map_of_alist_semantics A (alist_of_Map A m) a). - Rewrite (Map_of_alist_semantics A (alist_of_Map A m') a). Rewrite (Map_of_alist_of_Map A m' a). - Rewrite (Map_of_alist_of_Map A m a). Exact (H a). - Apply alist_of_Map_sorts2. - Apply alist_of_Map_sorts2. - Qed. - - Lemma MapCard_Dom : (m:(Map A)) (MapCard A m)=(MapCard unit (MapDom A m)). - Proof. - (Induction m; Trivial). Intros. Simpl. Rewrite H. Rewrite H0. Reflexivity. - Qed. - - Lemma MapCard_Dom_Put_behind : (m:(Map A)) (a:ad) (y:A) - (MapDom A (MapPut_behind A m a y))=(MapDom A (MapPut A m a y)). - Proof. - Induction m. Trivial. - Intros a y a0 y0. Simpl. Elim (ad_sum (ad_xor a a0)). Intro H. Elim H. - Intros p H0. Rewrite H0. Reflexivity. - Intro H. Rewrite H. Rewrite (ad_xor_eq ? ? H). Reflexivity. - Intros. Simpl. Elim (ad_sum a). Intro H1. Elim H1. Intros p H2. Rewrite H2. Case p. - Intro p0. Simpl. Rewrite H0. Reflexivity. - Intro p0. Simpl. Rewrite H. Reflexivity. - Simpl. Rewrite H0. Reflexivity. - Intro H1. Rewrite H1. Simpl. Rewrite H. Reflexivity. - Qed. - - Lemma MapCard_Put_behind_Put : (m:(Map A)) (a:ad) (y:A) - (MapCard A (MapPut_behind A m a y))=(MapCard A (MapPut A m a y)). - Proof. - Intros. Rewrite MapCard_Dom. Rewrite MapCard_Dom. Rewrite MapCard_Dom_Put_behind. - Reflexivity. - Qed. - - Lemma MapCard_Put_behind_sum : (m,m':(Map A)) (a:ad) (y:A) (n,n':nat) - m'=(MapPut_behind A m a y) -> n=(MapCard A m) -> n'=(MapCard A m') -> - {n'=n}+{n'=(S n)}. - Proof. - Intros. (Apply (MapCard_Put_sum m (MapPut A m a y) a y n n'); Trivial). - Rewrite <- MapCard_Put_behind_Put. Rewrite <- H. Assumption. - Qed. + Lemma MapCard_as_length : + forall m:Map A, MapCard A m = length (alist_of_Map A m). + Proof. + intro. rewrite MapCard_as_Fold. rewrite length_as_fold_2. + apply MapFold_as_fold with + (op := plus) (neutral := 0) (f := fun (_:ad) (_:A) => 1). exact plus_assoc_reverse. + trivial. + intro. rewrite <- plus_n_O. reflexivity. + Qed. + + Lemma MapCard_Put1_equals_2 : + forall (p:positive) (a a':ad) (y y':A), + MapCard A (MapPut1 A a y a' y' p) = 2. + Proof. + simple induction p. intros. simpl in |- *. case (ad_bit_0 a); reflexivity. + intros. simpl in |- *. case (ad_bit_0 a). exact (H (ad_div_2 a) (ad_div_2 a') y y'). + simpl in |- *. rewrite <- plus_n_O. exact (H (ad_div_2 a) (ad_div_2 a') y y'). + intros. simpl in |- *. case (ad_bit_0 a); reflexivity. + Qed. + + Lemma MapCard_Put_sum : + forall (m m':Map A) (a:ad) (y:A) (n n':nat), + m' = MapPut A m a y -> + n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}. + Proof. + simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. right. + rewrite H0. rewrite H1. reflexivity. + intros a y m' a0 y0 n n' H H0 H1. simpl in H. elim (ad_sum (ad_xor a a0)). intro H2. + elim H2. intros p H3. rewrite H3 in H. rewrite H in H1. + rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H1. simpl in H0. right. + rewrite H0. rewrite H1. reflexivity. + intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. simpl in H0. left. + rewrite H0. rewrite H1. reflexivity. + intros. simpl in H2. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. + elim (sumbool_of_bool (ad_bit_0 a)). intro H4. rewrite H4 in H1. + elim + (H0 (MapPut A m1 (ad_div_2 a) y) (ad_div_2 a) y ( + MapCard A m1) (MapCard A (MapPut A m1 (ad_div_2 a) y)) ( + refl_equal _) (refl_equal _) (refl_equal _)). + intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3. left. + assumption. + intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. + rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)) in H3. + simpl in H3. rewrite <- H2 in H3. right. assumption. + intro H4. rewrite H4 in H1. + elim + (H (MapPut A m0 (ad_div_2 a) y) (ad_div_2 a) y ( + MapCard A m0) (MapCard A (MapPut A m0 (ad_div_2 a) y)) ( + refl_equal _) (refl_equal _) (refl_equal _)). + intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3. + left. assumption. + intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. simpl in H3. rewrite <- H2 in H3. + right. assumption. + Qed. + + Lemma MapCard_Put_lb : + forall (m:Map A) (a:ad) (y:A), MapCard A (MapPut A m a y) >= MapCard A m. + Proof. + unfold ge in |- *. intros. + elim + (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) + (MapCard A (MapPut A m a y)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H. rewrite H. apply le_n. + intro H. rewrite H. apply le_n_Sn. + Qed. + + Lemma MapCard_Put_ub : + forall (m:Map A) (a:ad) (y:A), + MapCard A (MapPut A m a y) <= S (MapCard A m). + Proof. + intros. + elim + (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) + (MapCard A (MapPut A m a y)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H. rewrite H. apply le_n_Sn. + intro H. rewrite H. apply le_n. + Qed. + + Lemma MapCard_Put_1 : + forall (m:Map A) (a:ad) (y:A), + MapCard A (MapPut A m a y) = MapCard A m -> + {y : A | MapGet A m a = SOME A y}. + Proof. + simple induction m. intros. discriminate H. + intros a y a0 y0 H. simpl in H. elim (ad_sum (ad_xor a a0)). intro H0. elim H0. + intros p H1. rewrite H1 in H. rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H. + discriminate H. + intro H0. rewrite H0 in H. rewrite (ad_xor_eq _ _ H0). split with y. apply M1_semantics_1. + intros. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. elim (sumbool_of_bool (ad_bit_0 a)). + intro H2. rewrite H2 in H1. simpl in H1. elim (H0 (ad_div_2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)). + intros y0 H3. split with y0. rewrite <- H3. exact (MapGet_M2_bit_0_1 A a H2 m0 m1). + intro H2. rewrite H2 in H1. simpl in H1. + rewrite + (plus_comm (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1)) + in H1. + rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. + elim (H (ad_div_2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)). intros y0 H3. split with y0. + rewrite <- H3. exact (MapGet_M2_bit_0_0 A a H2 m0 m1). + Qed. + + Lemma MapCard_Put_2 : + forall (m:Map A) (a:ad) (y:A), + MapCard A (MapPut A m a y) = S (MapCard A m) -> MapGet A m a = NONE A. + Proof. + simple induction m. trivial. + intros. simpl in H. elim (sumbool_of_bool (ad_eq a a1)). intro H0. + rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_xor_nilpotent a1) in H. discriminate H. + intro H0. exact (M1_semantics_2 A a a1 a0 H0). + intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. + rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply (H0 (ad_div_2 a) y). + apply (fun n m p:nat => plus_reg_l m p n) with (n := MapCard A m0). + rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)). simpl in H1. simpl in |- *. rewrite <- H1. + clear H1. + induction a. discriminate H2. + induction p. reflexivity. + discriminate H2. + reflexivity. + intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply (H (ad_div_2 a) y). + cut + (MapCard A (MapPut A m0 (ad_div_2 a) y) + MapCard A m1 = + S (MapCard A m0) + MapCard A m1). + intro. rewrite (plus_comm (MapCard A (MapPut A m0 (ad_div_2 a) y)) (MapCard A m1)) + in H3. + rewrite (plus_comm (S (MapCard A m0)) (MapCard A m1)) in H3. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H3). + simpl in |- *. simpl in H1. rewrite <- H1. induction a. trivial. + induction p. discriminate H2. + reflexivity. + discriminate H2. + Qed. + + Lemma MapCard_Put_1_conv : + forall (m:Map A) (a:ad) (y y':A), + MapGet A m a = SOME A y -> MapCard A (MapPut A m a y') = MapCard A m. + Proof. + intros. + elim + (MapCard_Put_sum m (MapPut A m a y') a y' (MapCard A m) + (MapCard A (MapPut A m a y')) (refl_equal _) ( + refl_equal _) (refl_equal _)). + trivial. + intro H0. rewrite (MapCard_Put_2 m a y' H0) in H. discriminate H. + Qed. + + Lemma MapCard_Put_2_conv : + forall (m:Map A) (a:ad) (y:A), + MapGet A m a = NONE A -> MapCard A (MapPut A m a y) = S (MapCard A m). + Proof. + intros. + elim + (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m) + (MapCard A (MapPut A m a y)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H0. elim (MapCard_Put_1 m a y H0). intros y' H1. rewrite H1 in H. discriminate H. + trivial. + Qed. + + Lemma MapCard_ext : + forall m m':Map A, + eqm A (MapGet A m) (MapGet A m') -> MapCard A m = MapCard A m'. + Proof. + unfold eqm in |- *. intros. rewrite (MapCard_as_length m). rewrite (MapCard_as_length m'). + rewrite (alist_canonical A (alist_of_Map A m) (alist_of_Map A m')). reflexivity. + unfold eqm in |- *. intro. rewrite (Map_of_alist_semantics A (alist_of_Map A m) a). + rewrite (Map_of_alist_semantics A (alist_of_Map A m') a). rewrite (Map_of_alist_of_Map A m' a). + rewrite (Map_of_alist_of_Map A m a). exact (H a). + apply alist_of_Map_sorts2. + apply alist_of_Map_sorts2. + Qed. + + Lemma MapCard_Dom : forall m:Map A, MapCard A m = MapCard unit (MapDom A m). + Proof. + simple induction m; trivial. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity. + Qed. + + Lemma MapCard_Dom_Put_behind : + forall (m:Map A) (a:ad) (y:A), + MapDom A (MapPut_behind A m a y) = MapDom A (MapPut A m a y). + Proof. + simple induction m. trivial. + intros a y a0 y0. simpl in |- *. elim (ad_sum (ad_xor a a0)). intro H. elim H. + intros p H0. rewrite H0. reflexivity. + intro H. rewrite H. rewrite (ad_xor_eq _ _ H). reflexivity. + intros. simpl in |- *. elim (ad_sum a). intro H1. elim H1. intros p H2. rewrite H2. case p. + intro p0. simpl in |- *. rewrite H0. reflexivity. + intro p0. simpl in |- *. rewrite H. reflexivity. + simpl in |- *. rewrite H0. reflexivity. + intro H1. rewrite H1. simpl in |- *. rewrite H. reflexivity. + Qed. + + Lemma MapCard_Put_behind_Put : + forall (m:Map A) (a:ad) (y:A), + MapCard A (MapPut_behind A m a y) = MapCard A (MapPut A m a y). + Proof. + intros. rewrite MapCard_Dom. rewrite MapCard_Dom. rewrite MapCard_Dom_Put_behind. + reflexivity. + Qed. - Lemma MapCard_makeM2 : (m,m':(Map A)) - (MapCard A (makeM2 A m m'))=(plus (MapCard A m) (MapCard A m')). + Lemma MapCard_Put_behind_sum : + forall (m m':Map A) (a:ad) (y:A) (n n':nat), + m' = MapPut_behind A m a y -> + n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}. + Proof. + intros. apply (MapCard_Put_sum m (MapPut A m a y) a y n n'); trivial. + rewrite <- MapCard_Put_behind_Put. rewrite <- H. assumption. + Qed. + + Lemma MapCard_makeM2 : + forall m m':Map A, MapCard A (makeM2 A m m') = MapCard A m + MapCard A m'. Proof. - Intros. Rewrite (MapCard_ext ? ? (makeM2_M2 A m m')). Reflexivity. + intros. rewrite (MapCard_ext _ _ (makeM2_M2 A m m')). reflexivity. Qed. - Lemma MapCard_Remove_sum : (m,m':(Map A)) (a:ad) (n,n':nat) - m'=(MapRemove A m a) -> n=(MapCard A m) -> n'=(MapCard A m') -> - {n=n'}+{n=(S n')}. - Proof. - Induction m. Simpl. Intros. Rewrite H in H1. Simpl in H1. Left . Rewrite H1. Assumption. - Simpl. Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H2. Rewrite H2 in H. - Rewrite H in H1. Simpl in H1. Right . Rewrite H1. Assumption. - Intro H2. Rewrite H2 in H. Rewrite H in H1. Simpl in H1. Left . Rewrite H1. Assumption. - Intros. Simpl in H1. Simpl in H2. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H4. - Rewrite H4 in H1. Rewrite H1 in H3. - Rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H3. - Elim (H0 (MapRemove A m1 (ad_div_2 a)) (ad_div_2 a) (MapCard A m1) - (MapCard A (MapRemove A m1 (ad_div_2 a))) (refl_equal ? ?) - (refl_equal ? ?) (refl_equal ? ?)). - Intro H5. Rewrite H5 in H2. Left . Rewrite H3. Exact H2. - Intro H5. Rewrite H5 in H2. - Rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a)))) in H2. - Right . Rewrite H3. Exact H2. - Intro H4. Rewrite H4 in H1. Rewrite H1 in H3. - Rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H3. - Elim (H (MapRemove A m0 (ad_div_2 a)) (ad_div_2 a) (MapCard A m0) - (MapCard A (MapRemove A m0 (ad_div_2 a))) (refl_equal ? ?) - (refl_equal ? ?) (refl_equal ? ?)). - Intro H5. Rewrite H5 in H2. Left . Rewrite H3. Exact H2. - Intro H5. Rewrite H5 in H2. Right . Rewrite H3. Exact H2. - Qed. - - Lemma MapCard_Remove_ub : (m:(Map A)) (a:ad) - (le (MapCard A (MapRemove A m a)) (MapCard A m)). - Proof. - Intros. - Elim (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) - (MapCard A (MapRemove A m a)) (refl_equal ? ?) (refl_equal ? ?) - (refl_equal ? ?)). - Intro H. Rewrite H. Apply le_n. - Intro H. Rewrite H. Apply le_n_Sn. - Qed. - - Lemma MapCard_Remove_lb : (m:(Map A)) (a:ad) - (ge (S (MapCard A (MapRemove A m a))) (MapCard A m)). - Proof. - Unfold ge. Intros. - Elim (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) - (MapCard A (MapRemove A m a)) (refl_equal ? ?) (refl_equal ? ?) - (refl_equal ? ?)). - Intro H. Rewrite H. Apply le_n_Sn. - Intro H. Rewrite H. Apply le_n. - Qed. - - Lemma MapCard_Remove_1 : (m:(Map A)) (a:ad) - (MapCard A (MapRemove A m a))=(MapCard A m) -> (MapGet A m a)=(NONE A). - Proof. - Induction m. Trivial. - Simpl. Intros a y a0 H. Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. - Rewrite H0 in H. Discriminate H. - Intro H0. Rewrite H0. Reflexivity. - Intros. Simpl in H1. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2. Rewrite H2 in H1. - Rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1. - Rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). Apply H0. Exact (simpl_plus_l ? ? ? H1). - Intro H2. Rewrite H2 in H1. - Rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1. - Rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). Apply H. - Rewrite (plus_sym (MapCard A (MapRemove A m0 (ad_div_2 a))) (MapCard A m1)) in H1. - Rewrite (plus_sym (MapCard A m0) (MapCard A m1)) in H1. Exact (simpl_plus_l ? ? ? H1). - Qed. - - Lemma MapCard_Remove_2 : (m:(Map A)) (a:ad) - (S (MapCard A (MapRemove A m a)))=(MapCard A m) -> - {y:A | (MapGet A m a)=(SOME A y)}. - Proof. - Induction m. Intros. Discriminate H. - Intros a y a0 H. Simpl in H. Elim (sumbool_of_bool (ad_eq a a0)). Intro H0. - Rewrite (ad_eq_complete ? ? H0). Split with y. Exact (M1_semantics_1 A a0 y). - Intro H0. Rewrite H0 in H. Discriminate H. - Intros. Simpl in H1. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H2. Rewrite H2 in H1. - Rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1. - Rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). Apply H0. - Change (plus (S (MapCard A m0)) (MapCard A (MapRemove A m1 (ad_div_2 a)))) - =(plus (MapCard A m0) (MapCard A m1)) in H1. - Rewrite (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a)))) in H1. - Exact (simpl_plus_l ? ? ? H1). - Intro H2. Rewrite H2 in H1. Rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). Apply H. - Rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1. - Change (plus (S (MapCard A (MapRemove A m0 (ad_div_2 a)))) (MapCard A m1)) - =(plus (MapCard A m0) (MapCard A m1)) in H1. - Rewrite (plus_sym (S (MapCard A (MapRemove A m0 (ad_div_2 a)))) (MapCard A m1)) in H1. - Rewrite (plus_sym (MapCard A m0) (MapCard A m1)) in H1. Exact (simpl_plus_l ? ? ? H1). - Qed. - - Lemma MapCard_Remove_1_conv : (m:(Map A)) (a:ad) - (MapGet A m a)=(NONE A) -> (MapCard A (MapRemove A m a))=(MapCard A m). - Proof. - Intros. - Elim (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) - (MapCard A (MapRemove A m a)) (refl_equal ? ?) (refl_equal ? ?) - (refl_equal ? ?)). - Intro H0. Rewrite H0. Reflexivity. - Intro H0. Elim (MapCard_Remove_2 m a (sym_eq ? ? ? H0)). Intros y H1. Rewrite H1 in H. - Discriminate H. - Qed. - - Lemma MapCard_Remove_2_conv : (m:(Map A)) (a:ad) (y:A) - (MapGet A m a)=(SOME A y) -> - (S (MapCard A (MapRemove A m a)))=(MapCard A m). - Proof. - Intros. - Elim (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) - (MapCard A (MapRemove A m a)) (refl_equal ? ?) (refl_equal ? ?) - (refl_equal ? ?)). - Intro H0. Rewrite (MapCard_Remove_1 m a (sym_eq ? ? ? H0)) in H. Discriminate H. - Intro H0. Rewrite H0. Reflexivity. - Qed. - - Lemma MapMerge_Restr_Card : (m,m':(Map A)) - (plus (MapCard A m) (MapCard A m'))= - (plus (MapCard A (MapMerge A m m')) (MapCard A (MapDomRestrTo A A m m'))). - Proof. - Induction m. Simpl. Intro. Apply plus_n_O. - Simpl. Intros a y m'. Elim (option_sum A (MapGet A m' a)). Intro H. Elim H. Intros y0 H0. - Rewrite H0. Rewrite MapCard_Put_behind_Put. Rewrite (MapCard_Put_1_conv m' a y0 y H0). - Simpl. Rewrite <- plus_Snm_nSm. Apply plus_n_O. - Intro H. Rewrite H. Rewrite MapCard_Put_behind_Put. Rewrite (MapCard_Put_2_conv m' a y H). - Apply plus_n_O. - Intros. - Change (plus (plus (MapCard A m0) (MapCard A m1)) (MapCard A m')) - =(plus (MapCard A (MapMerge A (M2 A m0 m1) m')) - (MapCard A (MapDomRestrTo A A (M2 A m0 m1) m'))). - Elim m'. Reflexivity. - Intros a y. Unfold MapMerge. Unfold MapDomRestrTo. - Elim (option_sum A (MapGet A (M2 A m0 m1) a)). Intro H1. Elim H1. Intros y0 H2. Rewrite H2. - Rewrite (MapCard_Put_1_conv (M2 A m0 m1) a y0 y H2). Reflexivity. - Intro H1. Rewrite H1. Rewrite (MapCard_Put_2_conv (M2 A m0 m1) a y H1). Simpl. - Rewrite <- (plus_Snm_nSm (plus (MapCard A m0) (MapCard A m1)) O). Reflexivity. - Intros. Simpl. - Rewrite (plus_permute_2_in_4 (MapCard A m0) (MapCard A m1) (MapCard A m2) (MapCard A m3)). - Rewrite (H m2). Rewrite (H0 m3). - Rewrite (MapCard_makeM2 (MapDomRestrTo A A m0 m2) (MapDomRestrTo A A m1 m3)). - Apply plus_permute_2_in_4. - Qed. - - Lemma MapMerge_disjoint_Card : (m,m':(Map A)) (MapDisjoint A A m m') -> - (MapCard A (MapMerge A m m'))=(plus (MapCard A m) (MapCard A m')). - Proof. - Intros. Rewrite (MapMerge_Restr_Card m m'). - Rewrite (MapCard_ext ? ? (MapDisjoint_imp_2 ? ? ? ? H)). Apply plus_n_O. - Qed. - - Lemma MapSplit_Card : (m:(Map A)) (m':(Map B)) - (MapCard A m)=(plus (MapCard A (MapDomRestrTo A B m m')) - (MapCard A (MapDomRestrBy A B m m'))). - Proof. - Intros. Rewrite (MapCard_ext ? ? (MapDom_Split_1 A B m m')). Apply MapMerge_disjoint_Card. - Apply MapDisjoint_2_imp. Unfold MapDisjoint_2. Apply MapDom_Split_3. - Qed. - - Lemma MapMerge_Card_ub : (m,m':(Map A)) - (le (MapCard A (MapMerge A m m')) (plus (MapCard A m) (MapCard A m'))). - Proof. - Intros. Rewrite MapMerge_Restr_Card. Apply le_plus_l. - Qed. - - Lemma MapDomRestrTo_Card_ub_l : (m:(Map A)) (m':(Map B)) - (le (MapCard A (MapDomRestrTo A B m m')) (MapCard A m)). - Proof. - Intros. Rewrite (MapSplit_Card m m'). Apply le_plus_l. - Qed. - - Lemma MapDomRestrBy_Card_ub_l : (m:(Map A)) (m':(Map B)) - (le (MapCard A (MapDomRestrBy A B m m')) (MapCard A m)). - Proof. - Intros. Rewrite (MapSplit_Card m m'). Apply le_plus_r. - Qed. - - Lemma MapMerge_Card_disjoint : (m,m':(Map A)) - (MapCard A (MapMerge A m m'))=(plus (MapCard A m) (MapCard A m')) -> - (MapDisjoint A A m m'). - Proof. - Induction m. Intros. Apply Map_M0_disjoint. - Simpl. Intros. Rewrite (MapCard_Put_behind_Put m' a a0) in H. Unfold MapDisjoint in_dom. - Simpl. Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H2. - Rewrite (ad_eq_complete ? ? H2) in H. Rewrite (MapCard_Put_2 m' a1 a0 H) in H1. - Discriminate H1. - Intro H2. Rewrite H2 in H0. Discriminate H0. - Induction m'. Intros. Apply Map_disjoint_M0. - Intros a y H1. Rewrite <- (MapCard_ext ? ? (MapPut_as_Merge A (M2 A m0 m1) a y)) in H1. - Unfold 3 MapCard in H1. Rewrite <- (plus_Snm_nSm (MapCard A (M2 A m0 m1)) O) in H1. - Rewrite <- (plus_n_O (S (MapCard A (M2 A m0 m1)))) in H1. Unfold MapDisjoint in_dom. - Unfold 2 MapGet. Intros. Elim (sumbool_of_bool (ad_eq a a0)). Intro H4. - Rewrite <- (ad_eq_complete ? ? H4) in H2. Rewrite (MapCard_Put_2 ? ? ? H1) in H2. - Discriminate H2. - Intro H4. Rewrite H4 in H3. Discriminate H3. - Intros. Unfold MapDisjoint. Intros. Elim (sumbool_of_bool (ad_bit_0 a)). Intro H6. - Unfold MapDisjoint in H0. Apply H0 with m':=m3 a:=(ad_div_2 a). Apply le_antisym. - Apply MapMerge_Card_ub. - Apply simpl_le_plus_l with p:=(plus (MapCard A m0) (MapCard A m2)). - Rewrite (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) (MapCard A m1) (MapCard A m3)). - Change (MapCard A (M2 A (MapMerge A m0 m2) (MapMerge A m1 m3))) - =(plus (plus (MapCard A m0) (MapCard A m1)) (plus (MapCard A m2) (MapCard A m3))) in H3. - Rewrite <- H3. Simpl. Apply le_reg_r. Apply MapMerge_Card_ub. - Elim (in_dom_some ? ? ? H4). Intros y H7. Rewrite (MapGet_M2_bit_0_1 ? a H6 m0 m1) in H7. - Unfold in_dom. Rewrite H7. Reflexivity. - Elim (in_dom_some ? ? ? H5). Intros y H7. Rewrite (MapGet_M2_bit_0_1 ? a H6 m2 m3) in H7. - Unfold in_dom. Rewrite H7. Reflexivity. - Intro H6. Unfold MapDisjoint in H. Apply H with m':=m2 a:=(ad_div_2 a). Apply le_antisym. - Apply MapMerge_Card_ub. - Apply simpl_le_plus_l with p:=(plus (MapCard A m1) (MapCard A m3)). - Rewrite (plus_sym (plus (MapCard A m1) (MapCard A m3)) (plus (MapCard A m0) (MapCard A m2))). - Rewrite (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) (MapCard A m1) (MapCard A m3)). - Rewrite (plus_sym (plus (MapCard A m1) (MapCard A m3)) (MapCard A (MapMerge A m0 m2))). - Change (plus (MapCard A (MapMerge A m0 m2)) (MapCard A (MapMerge A m1 m3))) - =(plus (plus (MapCard A m0) (MapCard A m1)) (plus (MapCard A m2) (MapCard A m3))) in H3. - Rewrite <- H3. Apply le_reg_l. Apply MapMerge_Card_ub. - Elim (in_dom_some ? ? ? H4). Intros y H7. Rewrite (MapGet_M2_bit_0_0 ? a H6 m0 m1) in H7. - Unfold in_dom. Rewrite H7. Reflexivity. - Elim (in_dom_some ? ? ? H5). Intros y H7. Rewrite (MapGet_M2_bit_0_0 ? a H6 m2 m3) in H7. - Unfold in_dom. Rewrite H7. Reflexivity. - Qed. - - Lemma MapCard_is_Sn : (m:(Map A)) (n:nat) (MapCard ? m)=(S n) -> - {a:ad | (in_dom ? a m)=true}. - Proof. - Induction m. Intros. Discriminate H. - Intros a y n H. Split with a. Unfold in_dom. Rewrite (M1_semantics_1 ? a y). Reflexivity. - Intros. Simpl in H1. Elim (O_or_S (MapCard ? m0)). Intro H2. Elim H2. Intros m2 H3. - Elim (H ? (sym_eq ? ? ? H3)). Intros a H4. Split with (ad_double a). Unfold in_dom. - Rewrite (MapGet_M2_bit_0_0 A (ad_double a) (ad_double_bit_0 a) m0 m1). - Rewrite (ad_double_div_2 a). Elim (in_dom_some ? ? ? H4). Intros y H5. Rewrite H5. Reflexivity. - Intro H2. Rewrite <- H2 in H1. Simpl in H1. Elim (H0 ? H1). Intros a H3. - Split with (ad_double_plus_un a). Unfold in_dom. - Rewrite (MapGet_M2_bit_0_1 A (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) m0 m1). - Rewrite (ad_double_plus_un_div_2 a). Elim (in_dom_some ? ? ? H3). Intros y H4. Rewrite H4. - Reflexivity. + Lemma MapCard_Remove_sum : + forall (m m':Map A) (a:ad) (n n':nat), + m' = MapRemove A m a -> + n = MapCard A m -> n' = MapCard A m' -> {n = n'} + {n = S n'}. + Proof. + simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. left. rewrite H1. assumption. + simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2. rewrite H2 in H. + rewrite H in H1. simpl in H1. right. rewrite H1. assumption. + intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. left. rewrite H1. assumption. + intros. simpl in H1. simpl in H2. elim (sumbool_of_bool (ad_bit_0 a)). intro H4. + rewrite H4 in H1. rewrite H1 in H3. + rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H3. + elim + (H0 (MapRemove A m1 (ad_div_2 a)) (ad_div_2 a) ( + MapCard A m1) (MapCard A (MapRemove A m1 (ad_div_2 a))) + (refl_equal _) (refl_equal _) (refl_equal _)). + intro H5. rewrite H5 in H2. left. rewrite H3. exact H2. + intro H5. rewrite H5 in H2. + rewrite <- + (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a)))) + in H2. + right. rewrite H3. exact H2. + intro H4. rewrite H4 in H1. rewrite H1 in H3. + rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H3. + elim + (H (MapRemove A m0 (ad_div_2 a)) (ad_div_2 a) ( + MapCard A m0) (MapCard A (MapRemove A m0 (ad_div_2 a))) + (refl_equal _) (refl_equal _) (refl_equal _)). + intro H5. rewrite H5 in H2. left. rewrite H3. exact H2. + intro H5. rewrite H5 in H2. right. rewrite H3. exact H2. + Qed. + + Lemma MapCard_Remove_ub : + forall (m:Map A) (a:ad), MapCard A (MapRemove A m a) <= MapCard A m. + Proof. + intros. + elim + (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) + (MapCard A (MapRemove A m a)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H. rewrite H. apply le_n. + intro H. rewrite H. apply le_n_Sn. + Qed. + + Lemma MapCard_Remove_lb : + forall (m:Map A) (a:ad), S (MapCard A (MapRemove A m a)) >= MapCard A m. + Proof. + unfold ge in |- *. intros. + elim + (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) + (MapCard A (MapRemove A m a)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H. rewrite H. apply le_n_Sn. + intro H. rewrite H. apply le_n. + Qed. + + Lemma MapCard_Remove_1 : + forall (m:Map A) (a:ad), + MapCard A (MapRemove A m a) = MapCard A m -> MapGet A m a = NONE A. + Proof. + simple induction m. trivial. + simpl in |- *. intros a y a0 H. elim (sumbool_of_bool (ad_eq a a0)). intro H0. + rewrite H0 in H. discriminate H. + intro H0. rewrite H0. reflexivity. + intros. simpl in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2 in H1. + rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1. + rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). + intro H2. rewrite H2 in H1. + rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1. + rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H. + rewrite + (plus_comm (MapCard A (MapRemove A m0 (ad_div_2 a))) (MapCard A m1)) + in H1. + rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). + Qed. + + Lemma MapCard_Remove_2 : + forall (m:Map A) (a:ad), + S (MapCard A (MapRemove A m a)) = MapCard A m -> + {y : A | MapGet A m a = SOME A y}. + Proof. + simple induction m. intros. discriminate H. + intros a y a0 H. simpl in H. elim (sumbool_of_bool (ad_eq a a0)). intro H0. + rewrite (ad_eq_complete _ _ H0). split with y. exact (M1_semantics_1 A a0 y). + intro H0. rewrite H0 in H. discriminate H. + intros. simpl in H1. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2 in H1. + rewrite (MapCard_makeM2 m0 (MapRemove A m1 (ad_div_2 a))) in H1. + rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0. + change + (S (MapCard A m0) + MapCard A (MapRemove A m1 (ad_div_2 a)) = + MapCard A m0 + MapCard A m1) in H1. + rewrite + (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (ad_div_2 a)))) + in H1. + exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). + intro H2. rewrite H2 in H1. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H. + rewrite (MapCard_makeM2 (MapRemove A m0 (ad_div_2 a)) m1) in H1. + change + (S (MapCard A (MapRemove A m0 (ad_div_2 a))) + MapCard A m1 = + MapCard A m0 + MapCard A m1) in H1. + rewrite + (plus_comm (S (MapCard A (MapRemove A m0 (ad_div_2 a)))) (MapCard A m1)) + in H1. + rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1). + Qed. + + Lemma MapCard_Remove_1_conv : + forall (m:Map A) (a:ad), + MapGet A m a = NONE A -> MapCard A (MapRemove A m a) = MapCard A m. + Proof. + intros. + elim + (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) + (MapCard A (MapRemove A m a)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H0. rewrite H0. reflexivity. + intro H0. elim (MapCard_Remove_2 m a (sym_eq H0)). intros y H1. rewrite H1 in H. + discriminate H. + Qed. + + Lemma MapCard_Remove_2_conv : + forall (m:Map A) (a:ad) (y:A), + MapGet A m a = SOME A y -> S (MapCard A (MapRemove A m a)) = MapCard A m. + Proof. + intros. + elim + (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m) + (MapCard A (MapRemove A m a)) (refl_equal _) ( + refl_equal _) (refl_equal _)). + intro H0. rewrite (MapCard_Remove_1 m a (sym_eq H0)) in H. discriminate H. + intro H0. rewrite H0. reflexivity. + Qed. + + Lemma MapMerge_Restr_Card : + forall m m':Map A, + MapCard A m + MapCard A m' = + MapCard A (MapMerge A m m') + MapCard A (MapDomRestrTo A A m m'). + Proof. + simple induction m. simpl in |- *. intro. apply plus_n_O. + simpl in |- *. intros a y m'. elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y0 H0. + rewrite H0. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_1_conv m' a y0 y H0). + simpl in |- *. rewrite <- plus_Snm_nSm. apply plus_n_O. + intro H. rewrite H. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_2_conv m' a y H). + apply plus_n_O. + intros. + change + (MapCard A m0 + MapCard A m1 + MapCard A m' = + MapCard A (MapMerge A (M2 A m0 m1) m') + + MapCard A (MapDomRestrTo A A (M2 A m0 m1) m')) + in |- *. + elim m'. reflexivity. + intros a y. unfold MapMerge in |- *. unfold MapDomRestrTo in |- *. + elim (option_sum A (MapGet A (M2 A m0 m1) a)). intro H1. elim H1. intros y0 H2. rewrite H2. + rewrite (MapCard_Put_1_conv (M2 A m0 m1) a y0 y H2). reflexivity. + intro H1. rewrite H1. rewrite (MapCard_Put_2_conv (M2 A m0 m1) a y H1). simpl in |- *. + rewrite <- (plus_Snm_nSm (MapCard A m0 + MapCard A m1) 0). reflexivity. + intros. simpl in |- *. + rewrite + (plus_permute_2_in_4 (MapCard A m0) (MapCard A m1) ( + MapCard A m2) (MapCard A m3)). + rewrite (H m2). rewrite (H0 m3). + rewrite + (MapCard_makeM2 (MapDomRestrTo A A m0 m2) (MapDomRestrTo A A m1 m3)) + . + apply plus_permute_2_in_4. + Qed. + + Lemma MapMerge_disjoint_Card : + forall m m':Map A, + MapDisjoint A A m m' -> + MapCard A (MapMerge A m m') = MapCard A m + MapCard A m'. + Proof. + intros. rewrite (MapMerge_Restr_Card m m'). + rewrite (MapCard_ext _ _ (MapDisjoint_imp_2 _ _ _ _ H)). apply plus_n_O. + Qed. + + Lemma MapSplit_Card : + forall (m:Map A) (m':Map B), + MapCard A m = + MapCard A (MapDomRestrTo A B m m') + MapCard A (MapDomRestrBy A B m m'). + Proof. + intros. rewrite (MapCard_ext _ _ (MapDom_Split_1 A B m m')). apply MapMerge_disjoint_Card. + apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *. apply MapDom_Split_3. + Qed. + + Lemma MapMerge_Card_ub : + forall m m':Map A, + MapCard A (MapMerge A m m') <= MapCard A m + MapCard A m'. + Proof. + intros. rewrite MapMerge_Restr_Card. apply le_plus_l. + Qed. + + Lemma MapDomRestrTo_Card_ub_l : + forall (m:Map A) (m':Map B), + MapCard A (MapDomRestrTo A B m m') <= MapCard A m. + Proof. + intros. rewrite (MapSplit_Card m m'). apply le_plus_l. + Qed. + + Lemma MapDomRestrBy_Card_ub_l : + forall (m:Map A) (m':Map B), + MapCard A (MapDomRestrBy A B m m') <= MapCard A m. + Proof. + intros. rewrite (MapSplit_Card m m'). apply le_plus_r. + Qed. + + Lemma MapMerge_Card_disjoint : + forall m m':Map A, + MapCard A (MapMerge A m m') = MapCard A m + MapCard A m' -> + MapDisjoint A A m m'. + Proof. + simple induction m. intros. apply Map_M0_disjoint. + simpl in |- *. intros. rewrite (MapCard_Put_behind_Put m' a a0) in H. unfold MapDisjoint, in_dom in |- *. + simpl in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H2. + rewrite (ad_eq_complete _ _ H2) in H. rewrite (MapCard_Put_2 m' a1 a0 H) in H1. + discriminate H1. + intro H2. rewrite H2 in H0. discriminate H0. + simple induction m'. intros. apply Map_disjoint_M0. + intros a y H1. rewrite <- (MapCard_ext _ _ (MapPut_as_Merge A (M2 A m0 m1) a y)) in H1. + unfold MapCard at 3 in H1. rewrite <- (plus_Snm_nSm (MapCard A (M2 A m0 m1)) 0) in H1. + rewrite <- (plus_n_O (S (MapCard A (M2 A m0 m1)))) in H1. unfold MapDisjoint, in_dom in |- *. + unfold MapGet at 2 in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H4. + rewrite <- (ad_eq_complete _ _ H4) in H2. rewrite (MapCard_Put_2 _ _ _ H1) in H2. + discriminate H2. + intro H4. rewrite H4 in H3. discriminate H3. + intros. unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H6. + unfold MapDisjoint in H0. apply H0 with (m' := m3) (a := ad_div_2 a). apply le_antisym. + apply MapMerge_Card_ub. + apply (fun p n m:nat => plus_le_reg_l n m p) with + (p := MapCard A m0 + MapCard A m2). + rewrite + (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) ( + MapCard A m1) (MapCard A m3)). + change + (MapCard A (M2 A (MapMerge A m0 m2) (MapMerge A m1 m3)) = + MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3)) + in H3. + rewrite <- H3. simpl in |- *. apply plus_le_compat_r. apply MapMerge_Card_ub. + elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m0 m1) in H7. + unfold in_dom in |- *. rewrite H7. reflexivity. + elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m2 m3) in H7. + unfold in_dom in |- *. rewrite H7. reflexivity. + intro H6. unfold MapDisjoint in H. apply H with (m' := m2) (a := ad_div_2 a). apply le_antisym. + apply MapMerge_Card_ub. + apply (fun p n m:nat => plus_le_reg_l n m p) with + (p := MapCard A m1 + MapCard A m3). + rewrite + (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A m0 + MapCard A m2)) + . + rewrite + (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) ( + MapCard A m1) (MapCard A m3)). + rewrite + (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A (MapMerge A m0 m2))) + . + change + (MapCard A (MapMerge A m0 m2) + MapCard A (MapMerge A m1 m3) = + MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3)) + in H3. + rewrite <- H3. apply plus_le_compat_l. apply MapMerge_Card_ub. + elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m0 m1) in H7. + unfold in_dom in |- *. rewrite H7. reflexivity. + elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m2 m3) in H7. + unfold in_dom in |- *. rewrite H7. reflexivity. + Qed. + + Lemma MapCard_is_Sn : + forall (m:Map A) (n:nat), + MapCard _ m = S n -> {a : ad | in_dom _ a m = true}. + Proof. + simple induction m. intros. discriminate H. + intros a y n H. split with a. unfold in_dom in |- *. rewrite (M1_semantics_1 _ a y). reflexivity. + intros. simpl in H1. elim (O_or_S (MapCard _ m0)). intro H2. elim H2. intros m2 H3. + elim (H _ (sym_eq H3)). intros a H4. split with (ad_double a). unfold in_dom in |- *. + rewrite (MapGet_M2_bit_0_0 A (ad_double a) (ad_double_bit_0 a) m0 m1). + rewrite (ad_double_div_2 a). elim (in_dom_some _ _ _ H4). intros y H5. rewrite H5. reflexivity. + intro H2. rewrite <- H2 in H1. simpl in H1. elim (H0 _ H1). intros a H3. + split with (ad_double_plus_un a). unfold in_dom in |- *. + rewrite + (MapGet_M2_bit_0_1 A (ad_double_plus_un a) (ad_double_plus_un_bit_0 a) + m0 m1). + rewrite (ad_double_plus_un_div_2 a). elim (in_dom_some _ _ _ H3). intros y H4. rewrite H4. + reflexivity. Qed. End MapCard. Section MapCard2. - Variable A, B : Set. - - Lemma MapSubset_card_eq_1 : (n:nat) (m:(Map A)) (m':(Map B)) - (MapSubset ? ? m m') -> (MapCard ? m)=n -> (MapCard ? m')=n -> - (MapSubset ? ? m' m). - Proof. - Induction n. Intros. Unfold MapSubset in_dom. Intro. Rewrite (MapCard_is_O ? m H0 a). - Rewrite (MapCard_is_O ? m' H1 a). Intro H2. Discriminate H2. - Intros. Elim (MapCard_is_Sn A m n0 H1). Intros a H3. Elim (in_dom_some ? ? ? H3). - Intros y H4. Elim (in_dom_some ? ? ? (H0 ? H3)). Intros y' H6. - Cut (eqmap ? (MapPut ? (MapRemove ? m a) a y) m). Intro. - Cut (eqmap ? (MapPut ? (MapRemove ? m' a) a y') m'). Intro. - Apply MapSubset_ext with m0:=(MapPut ? (MapRemove ? m' a) a y') - m2:=(MapPut ? (MapRemove ? m a) a y). - Assumption. - Assumption. - Apply MapSubset_Put_mono. Apply H. Apply MapSubset_Remove_mono. Assumption. - Rewrite <- (MapCard_Remove_2_conv ? m a y H4) in H1. Inversion_clear H1. Reflexivity. - Rewrite <- (MapCard_Remove_2_conv ? m' a y' H6) in H2. Inversion_clear H2. Reflexivity. - Unfold eqmap eqm. Intro. Rewrite (MapPut_semantics ? (MapRemove B m' a) a y' a0). - Elim (sumbool_of_bool (ad_eq a a0)). Intro H7. Rewrite H7. Rewrite <- (ad_eq_complete ? ? H7). - Apply sym_eq. Assumption. - Intro H7. Rewrite H7. Rewrite (MapRemove_semantics ? m' a a0). Rewrite H7. Reflexivity. - Unfold eqmap eqm. Intro. Rewrite (MapPut_semantics ? (MapRemove A m a) a y a0). - Elim (sumbool_of_bool (ad_eq a a0)). Intro H7. Rewrite H7. Rewrite <- (ad_eq_complete ? ? H7). - Apply sym_eq. Assumption. - Intro H7. Rewrite H7. Rewrite (MapRemove_semantics A m a a0). Rewrite H7. Reflexivity. - Qed. - - Lemma MapDomRestrTo_Card_ub_r : (m:(Map A)) (m':(Map B)) - (le (MapCard A (MapDomRestrTo A B m m')) (MapCard B m')). - Proof. - Induction m. Intro. Simpl. Apply le_O_n. - Intros a y m'. Simpl. Elim (option_sum B (MapGet B m' a)). Intro H. Elim H. Intros y0 H0. - Rewrite H0. Elim (MapCard_is_not_O B m' a y0 H0). Intros n H1. Rewrite H1. Simpl. - Apply le_n_S. Apply le_O_n. - Intro H. Rewrite H. Simpl. Apply le_O_n. - Induction m'. Simpl. Apply le_O_n. - - Intros a y. Unfold MapDomRestrTo. Case (MapGet A (M2 A m0 m1) a). Simpl. Apply le_O_n. - Intro. Simpl. Apply le_n. - Intros. Simpl. Rewrite (MapCard_makeM2 A (MapDomRestrTo A B m0 m2) (MapDomRestrTo A B m1 m3)). - Apply le_plus_plus. Apply H. - Apply H0. + Variables A B : Set. + + Lemma MapSubset_card_eq_1 : + forall (n:nat) (m:Map A) (m':Map B), + MapSubset _ _ m m' -> + MapCard _ m = n -> MapCard _ m' = n -> MapSubset _ _ m' m. + Proof. + simple induction n. intros. unfold MapSubset, in_dom in |- *. intro. rewrite (MapCard_is_O _ m H0 a). + rewrite (MapCard_is_O _ m' H1 a). intro H2. discriminate H2. + intros. elim (MapCard_is_Sn A m n0 H1). intros a H3. elim (in_dom_some _ _ _ H3). + intros y H4. elim (in_dom_some _ _ _ (H0 _ H3)). intros y' H6. + cut (eqmap _ (MapPut _ (MapRemove _ m a) a y) m). intro. + cut (eqmap _ (MapPut _ (MapRemove _ m' a) a y') m'). intro. + apply MapSubset_ext with + (m0 := MapPut _ (MapRemove _ m' a) a y') + (m2 := MapPut _ (MapRemove _ m a) a y). + assumption. + assumption. + apply MapSubset_Put_mono. apply H. apply MapSubset_Remove_mono. assumption. + rewrite <- (MapCard_Remove_2_conv _ m a y H4) in H1. inversion_clear H1. reflexivity. + rewrite <- (MapCard_Remove_2_conv _ m' a y' H6) in H2. inversion_clear H2. reflexivity. + unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove B m' a) a y' a0). + elim (sumbool_of_bool (ad_eq a a0)). intro H7. rewrite H7. rewrite <- (ad_eq_complete _ _ H7). + apply sym_eq. assumption. + intro H7. rewrite H7. rewrite (MapRemove_semantics _ m' a a0). rewrite H7. reflexivity. + unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove A m a) a y a0). + elim (sumbool_of_bool (ad_eq a a0)). intro H7. rewrite H7. rewrite <- (ad_eq_complete _ _ H7). + apply sym_eq. assumption. + intro H7. rewrite H7. rewrite (MapRemove_semantics A m a a0). rewrite H7. reflexivity. + Qed. + + Lemma MapDomRestrTo_Card_ub_r : + forall (m:Map A) (m':Map B), + MapCard A (MapDomRestrTo A B m m') <= MapCard B m'. + Proof. + simple induction m. intro. simpl in |- *. apply le_O_n. + intros a y m'. simpl in |- *. elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y0 H0. + rewrite H0. elim (MapCard_is_not_O B m' a y0 H0). intros n H1. rewrite H1. simpl in |- *. + apply le_n_S. apply le_O_n. + intro H. rewrite H. simpl in |- *. apply le_O_n. + simple induction m'. simpl in |- *. apply le_O_n. + + intros a y. unfold MapDomRestrTo in |- *. case (MapGet A (M2 A m0 m1) a). simpl in |- *. apply le_O_n. + intro. simpl in |- *. apply le_n. + intros. simpl in |- *. rewrite + (MapCard_makeM2 A (MapDomRestrTo A B m0 m2) (MapDomRestrTo A B m1 m3)) + . + apply plus_le_compat. apply H. + apply H0. Qed. End MapCard2. Section MapCard3. - Variable A, B : Set. + Variables A B : Set. - Lemma MapMerge_Card_lb_l : (m,m':(Map A)) - (ge (MapCard A (MapMerge A m m')) (MapCard A m)). + Lemma MapMerge_Card_lb_l : + forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m. Proof. - Unfold ge. Intros. Apply (simpl_le_plus_l (MapCard A m')). - Rewrite (plus_sym (MapCard A m') (MapCard A m)). - Rewrite (plus_sym (MapCard A m') (MapCard A (MapMerge A m m'))). - Rewrite (MapMerge_Restr_Card A m m'). Apply le_reg_l. Apply MapDomRestrTo_Card_ub_r. + unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m')). + rewrite (plus_comm (MapCard A m') (MapCard A m)). + rewrite (plus_comm (MapCard A m') (MapCard A (MapMerge A m m'))). + rewrite (MapMerge_Restr_Card A m m'). apply plus_le_compat_l. apply MapDomRestrTo_Card_ub_r. Qed. - Lemma MapMerge_Card_lb_r : (m,m':(Map A)) - (ge (MapCard A (MapMerge A m m')) (MapCard A m')). + Lemma MapMerge_Card_lb_r : + forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m'. Proof. - Unfold ge. Intros. Apply (simpl_le_plus_l (MapCard A m)). Rewrite (MapMerge_Restr_Card A m m'). - Rewrite (plus_sym (MapCard A (MapMerge A m m')) (MapCard A (MapDomRestrTo A A m m'))). - Apply le_reg_r. Apply MapDomRestrTo_Card_ub_l. + unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m)). rewrite (MapMerge_Restr_Card A m m'). + rewrite + (plus_comm (MapCard A (MapMerge A m m')) + (MapCard A (MapDomRestrTo A A m m'))). + apply plus_le_compat_r. apply MapDomRestrTo_Card_ub_l. Qed. - Lemma MapDomRestrBy_Card_lb : (m:(Map A)) (m':(Map B)) - (ge (plus (MapCard B m') (MapCard A (MapDomRestrBy A B m m'))) (MapCard A m)). + Lemma MapDomRestrBy_Card_lb : + forall (m:Map A) (m':Map B), + MapCard B m' + MapCard A (MapDomRestrBy A B m m') >= MapCard A m. Proof. - Unfold ge. Intros. Rewrite (MapSplit_Card A B m m'). Apply le_reg_r. - Apply MapDomRestrTo_Card_ub_r. + unfold ge in |- *. intros. rewrite (MapSplit_Card A B m m'). apply plus_le_compat_r. + apply MapDomRestrTo_Card_ub_r. Qed. - Lemma MapSubset_Card_le : (m:(Map A)) (m':(Map B)) - (MapSubset A B m m') -> (le (MapCard A m) (MapCard B m')). + Lemma MapSubset_Card_le : + forall (m:Map A) (m':Map B), + MapSubset A B m m' -> MapCard A m <= MapCard B m'. Proof. - Intros. Apply le_trans with m:=(plus (MapCard B m') (MapCard A (MapDomRestrBy A B m m'))). - Exact (MapDomRestrBy_Card_lb m m'). - Rewrite (MapCard_ext ? ? ? (MapSubset_imp_2 ? ? ? ? H)). Simpl. Rewrite <- plus_n_O. - Apply le_n. + intros. apply le_trans with (m := MapCard B m' + MapCard A (MapDomRestrBy A B m m')). + exact (MapDomRestrBy_Card_lb m m'). + rewrite (MapCard_ext _ _ _ (MapSubset_imp_2 _ _ _ _ H)). simpl in |- *. rewrite <- plus_n_O. + apply le_n. Qed. - Lemma MapSubset_card_eq : (m:(Map A)) (m':(Map B)) - (MapSubset ? ? m m') -> (le (MapCard ? m') (MapCard ? m)) -> - (eqmap ? (MapDom ? m) (MapDom ? m')). + Lemma MapSubset_card_eq : + forall (m:Map A) (m':Map B), + MapSubset _ _ m m' -> + MapCard _ m' <= MapCard _ m -> eqmap _ (MapDom _ m) (MapDom _ m'). Proof. - Intros. Apply MapSubset_antisym. Assumption. - Cut (MapCard B m')=(MapCard A m). Intro. Apply (MapSubset_card_eq_1 A B (MapCard A m)). - Assumption. - Reflexivity. - Assumption. - Apply le_antisym. Assumption. - Apply MapSubset_Card_le. Assumption. + intros. apply MapSubset_antisym. assumption. + cut (MapCard B m' = MapCard A m). intro. apply (MapSubset_card_eq_1 A B (MapCard A m)). + assumption. + reflexivity. + assumption. + apply le_antisym. assumption. + apply MapSubset_Card_le. assumption. Qed. -End MapCard3. +End MapCard3.
\ No newline at end of file |
