diff options
| author | Andrej Dudenhefner | 2021-03-25 18:19:12 +0100 |
|---|---|---|
| committer | mrhaandi | 2021-04-02 17:24:12 +0200 |
| commit | 2b02934f003836133d194d29f6a32c289280263c (patch) | |
| tree | f3d89bc467fe806a4dafeb01ed2e0bed37d205ef /theories | |
| parent | 012b8a08f142d39b2211fd52c811f830f88f2075 (diff) | |
add Cantor pairing to_nat and its inverse of_nat
add polynomial specifications of to_nat
add changelog and doc entries
Diffstat (limited to 'theories')
| -rw-r--r-- | theories/Arith/Cantor.v | 88 |
1 files changed, 88 insertions, 0 deletions
diff --git a/theories/Arith/Cantor.v b/theories/Arith/Cantor.v new file mode 100644 index 0000000000..b63d970db7 --- /dev/null +++ b/theories/Arith/Cantor.v @@ -0,0 +1,88 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * Copyright INRIA, CNRS and contributors *) +(* <O___,, * (see version control and CREDITS file for authors & dates) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(** Implementation of the Cantor pairing and its inverse function *) + +Require Import PeanoNat Lia. + +(** Bijections between [nat * nat] and [nat] *) + +(** Cantor pairing [to_nat] *) + +Definition to_nat '(x, y) : nat := + y + (nat_rec _ 0 (fun i m => (S i) + m) (y + x)). + +(** Cantor pairing inverse [of_nat] *) + +Definition of_nat (n : nat) : nat * nat := + nat_rec _ (0, 0) (fun _ '(x, y) => + match x with | S x => (x, S y) | _ => (S y, 0) end) n. + +(** [of_nat] is the left inverse for [to_nat] *) + +Lemma cancel_of_to p : of_nat (to_nat p) = p. +Proof. + enough (H : forall n p, to_nat p = n -> of_nat n = p) by now apply H. + intro n. induction n as [|n IHn]. + - now intros [[|?] [|?]]. + - intros [x [|y]]. + + destruct x as [|x]; [discriminate|]. + intros [=H]. cbn. fold (of_nat n). + rewrite (IHn (0, x)); [reflexivity|]. + rewrite <- H. cbn. now rewrite PeanoNat.Nat.add_0_r. + + intros [=H]. cbn. fold (of_nat n). + rewrite (IHn (S x, y)); [reflexivity|]. + rewrite <- H. cbn. now rewrite Nat.add_succ_r. +Qed. + +(** [to_nat] is injective *) + +Corollary to_nat_inj p q : to_nat p = to_nat q -> p = q. +Proof. + intros H %(f_equal of_nat). now rewrite ?cancel_of_to in H. +Qed. + +(** [to_nat] is the left inverse for [of_nat] *) + +Lemma cancel_to_of n : to_nat (of_nat n) = n. +Proof. + induction n as [|n IHn]; [reflexivity|]. + cbn. fold (of_nat n). destruct (of_nat n) as [[|x] y]. + - rewrite <- IHn. cbn. now rewrite PeanoNat.Nat.add_0_r. + - rewrite <- IHn. cbn. now rewrite (Nat.add_succ_r y x). +Qed. + +(** [of_nat] is injective *) + +Corollary of_nat_inj n m : of_nat n = of_nat m -> n = m. +Proof. + intros H %(f_equal to_nat). now rewrite ?cancel_to_of in H. +Qed. + +(** Polynomial specifications of [to_nat] *) + +Lemma to_nat_spec x y : + to_nat (x, y) * 2 = y * 2 + (y + x) * S (y + x). +Proof. + cbn. induction (y + x) as [|n IHn]; cbn; lia. +Qed. + +Lemma to_nat_spec2 x y : + to_nat (x, y) = y + (y + x) * S (y + x) / 2. +Proof. + now rewrite <- Nat.div_add_l, <- to_nat_spec, Nat.div_mul. +Qed. + +(** [to_nat] is non-decreasing in (the sum of) pair components *) + +Lemma to_nat_non_decreasing x y : y + x <= to_nat (x, y). +Proof. + pose proof (to_nat_spec x y). nia. +Qed. |
