aboutsummaryrefslogtreecommitdiff
path: root/theories/Arith/Cantor.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Cantor.v')
-rw-r--r--theories/Arith/Cantor.v88
1 files changed, 88 insertions, 0 deletions
diff --git a/theories/Arith/Cantor.v b/theories/Arith/Cantor.v
new file mode 100644
index 0000000000..b63d970db7
--- /dev/null
+++ b/theories/Arith/Cantor.v
@@ -0,0 +1,88 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * Copyright INRIA, CNRS and contributors *)
+(* <O___,, * (see version control and CREDITS file for authors & dates) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+(** Implementation of the Cantor pairing and its inverse function *)
+
+Require Import PeanoNat Lia.
+
+(** Bijections between [nat * nat] and [nat] *)
+
+(** Cantor pairing [to_nat] *)
+
+Definition to_nat '(x, y) : nat :=
+ y + (nat_rec _ 0 (fun i m => (S i) + m) (y + x)).
+
+(** Cantor pairing inverse [of_nat] *)
+
+Definition of_nat (n : nat) : nat * nat :=
+ nat_rec _ (0, 0) (fun _ '(x, y) =>
+ match x with | S x => (x, S y) | _ => (S y, 0) end) n.
+
+(** [of_nat] is the left inverse for [to_nat] *)
+
+Lemma cancel_of_to p : of_nat (to_nat p) = p.
+Proof.
+ enough (H : forall n p, to_nat p = n -> of_nat n = p) by now apply H.
+ intro n. induction n as [|n IHn].
+ - now intros [[|?] [|?]].
+ - intros [x [|y]].
+ + destruct x as [|x]; [discriminate|].
+ intros [=H]. cbn. fold (of_nat n).
+ rewrite (IHn (0, x)); [reflexivity|].
+ rewrite <- H. cbn. now rewrite PeanoNat.Nat.add_0_r.
+ + intros [=H]. cbn. fold (of_nat n).
+ rewrite (IHn (S x, y)); [reflexivity|].
+ rewrite <- H. cbn. now rewrite Nat.add_succ_r.
+Qed.
+
+(** [to_nat] is injective *)
+
+Corollary to_nat_inj p q : to_nat p = to_nat q -> p = q.
+Proof.
+ intros H %(f_equal of_nat). now rewrite ?cancel_of_to in H.
+Qed.
+
+(** [to_nat] is the left inverse for [of_nat] *)
+
+Lemma cancel_to_of n : to_nat (of_nat n) = n.
+Proof.
+ induction n as [|n IHn]; [reflexivity|].
+ cbn. fold (of_nat n). destruct (of_nat n) as [[|x] y].
+ - rewrite <- IHn. cbn. now rewrite PeanoNat.Nat.add_0_r.
+ - rewrite <- IHn. cbn. now rewrite (Nat.add_succ_r y x).
+Qed.
+
+(** [of_nat] is injective *)
+
+Corollary of_nat_inj n m : of_nat n = of_nat m -> n = m.
+Proof.
+ intros H %(f_equal to_nat). now rewrite ?cancel_to_of in H.
+Qed.
+
+(** Polynomial specifications of [to_nat] *)
+
+Lemma to_nat_spec x y :
+ to_nat (x, y) * 2 = y * 2 + (y + x) * S (y + x).
+Proof.
+ cbn. induction (y + x) as [|n IHn]; cbn; lia.
+Qed.
+
+Lemma to_nat_spec2 x y :
+ to_nat (x, y) = y + (y + x) * S (y + x) / 2.
+Proof.
+ now rewrite <- Nat.div_add_l, <- to_nat_spec, Nat.div_mul.
+Qed.
+
+(** [to_nat] is non-decreasing in (the sum of) pair components *)
+
+Lemma to_nat_non_decreasing x y : y + x <= to_nat (x, y).
+Proof.
+ pose proof (to_nat_spec x y). nia.
+Qed.