From 2b02934f003836133d194d29f6a32c289280263c Mon Sep 17 00:00:00 2001 From: Andrej Dudenhefner Date: Thu, 25 Mar 2021 18:19:12 +0100 Subject: add Cantor pairing to_nat and its inverse of_nat add polynomial specifications of to_nat add changelog and doc entries --- theories/Arith/Cantor.v | 88 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 88 insertions(+) create mode 100644 theories/Arith/Cantor.v (limited to 'theories') diff --git a/theories/Arith/Cantor.v b/theories/Arith/Cantor.v new file mode 100644 index 0000000000..b63d970db7 --- /dev/null +++ b/theories/Arith/Cantor.v @@ -0,0 +1,88 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * Copyright INRIA, CNRS and contributors *) +(* (S i) + m) (y + x)). + +(** Cantor pairing inverse [of_nat] *) + +Definition of_nat (n : nat) : nat * nat := + nat_rec _ (0, 0) (fun _ '(x, y) => + match x with | S x => (x, S y) | _ => (S y, 0) end) n. + +(** [of_nat] is the left inverse for [to_nat] *) + +Lemma cancel_of_to p : of_nat (to_nat p) = p. +Proof. + enough (H : forall n p, to_nat p = n -> of_nat n = p) by now apply H. + intro n. induction n as [|n IHn]. + - now intros [[|?] [|?]]. + - intros [x [|y]]. + + destruct x as [|x]; [discriminate|]. + intros [=H]. cbn. fold (of_nat n). + rewrite (IHn (0, x)); [reflexivity|]. + rewrite <- H. cbn. now rewrite PeanoNat.Nat.add_0_r. + + intros [=H]. cbn. fold (of_nat n). + rewrite (IHn (S x, y)); [reflexivity|]. + rewrite <- H. cbn. now rewrite Nat.add_succ_r. +Qed. + +(** [to_nat] is injective *) + +Corollary to_nat_inj p q : to_nat p = to_nat q -> p = q. +Proof. + intros H %(f_equal of_nat). now rewrite ?cancel_of_to in H. +Qed. + +(** [to_nat] is the left inverse for [of_nat] *) + +Lemma cancel_to_of n : to_nat (of_nat n) = n. +Proof. + induction n as [|n IHn]; [reflexivity|]. + cbn. fold (of_nat n). destruct (of_nat n) as [[|x] y]. + - rewrite <- IHn. cbn. now rewrite PeanoNat.Nat.add_0_r. + - rewrite <- IHn. cbn. now rewrite (Nat.add_succ_r y x). +Qed. + +(** [of_nat] is injective *) + +Corollary of_nat_inj n m : of_nat n = of_nat m -> n = m. +Proof. + intros H %(f_equal to_nat). now rewrite ?cancel_to_of in H. +Qed. + +(** Polynomial specifications of [to_nat] *) + +Lemma to_nat_spec x y : + to_nat (x, y) * 2 = y * 2 + (y + x) * S (y + x). +Proof. + cbn. induction (y + x) as [|n IHn]; cbn; lia. +Qed. + +Lemma to_nat_spec2 x y : + to_nat (x, y) = y + (y + x) * S (y + x) / 2. +Proof. + now rewrite <- Nat.div_add_l, <- to_nat_spec, Nat.div_mul. +Qed. + +(** [to_nat] is non-decreasing in (the sum of) pair components *) + +Lemma to_nat_non_decreasing x y : y + x <= to_nat (x, y). +Proof. + pose proof (to_nat_spec x y). nia. +Qed. -- cgit v1.2.3