diff options
| author | Guillaume Melquiond | 2021-02-19 19:05:35 +0100 |
|---|---|---|
| committer | Guillaume Melquiond | 2021-02-19 19:05:35 +0100 |
| commit | 19752f81e096daac43119a144f8065dabbdb1e82 (patch) | |
| tree | fd18c0da5d6b463bcde8aa03c7befde09f281897 /theories | |
| parent | cec70c45e25d9a2a53ada7b9941b92663b08c7e0 (diff) | |
Make intermediate lemmas more explicit, so that they can be terminated by Qed.
Diffstat (limited to 'theories')
| -rw-r--r-- | theories/Reals/Rtrigo_def.v | 14 |
1 files changed, 6 insertions, 8 deletions
diff --git a/theories/Reals/Rtrigo_def.v b/theories/Reals/Rtrigo_def.v index 7f5a859c81..9aed67657a 100644 --- a/theories/Reals/Rtrigo_def.v +++ b/theories/Reals/Rtrigo_def.v @@ -41,9 +41,8 @@ Proof. red; intro; rewrite H0 in H; elim (lt_irrefl _ H). Qed. -Lemma exist_exp0 : { l:R | exp_in 0 l }. +Lemma exist_exp0 : exp_in 0 1. Proof. - exists 1. unfold exp_in; unfold infinite_sum; intros. exists 0%nat. intros; replace (sum_f_R0 (fun i:nat => / INR (fact i) * 0 ^ i) n) with 1. @@ -56,7 +55,7 @@ Proof. simpl. ring. unfold ge; apply le_O_n. -Defined. +Qed. (* Value of [exp 0] *) Lemma exp_0 : exp 0 = 1. @@ -66,7 +65,7 @@ Proof. unfold exp_in; intros; eapply uniqueness_sum. apply H0. apply H. - exact (proj2_sig exist_exp0). + exact exist_exp0. exact (proj2_sig (exist_exp 0)). Qed. @@ -384,9 +383,8 @@ Proof. intros; ring. Qed. -Lemma exist_cos0 : { l:R | cos_in 0 l }. +Lemma exist_cos0 : cos_in 0 1. Proof. - exists 1. unfold cos_in; unfold infinite_sum; intros; exists 0%nat. intros. unfold R_dist. @@ -400,7 +398,7 @@ Proof. rewrite Rplus_0_r. apply Hrecn; unfold ge; apply le_O_n. simpl; ring. -Defined. +Qed. (* Value of [cos 0] *) Lemma cos_0 : cos 0 = 1. @@ -410,7 +408,7 @@ Proof. unfold cos_in; intros; eapply uniqueness_sum. apply H0. apply H. - exact (proj2_sig exist_cos0). + exact exist_cos0. assert (H := proj2_sig (exist_cos (Rsqr 0))); unfold cos; pattern 0 at 1; replace 0 with (Rsqr 0); [ exact H | apply Rsqr_0 ]. Qed. |
