aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGuillaume Melquiond2021-02-19 19:05:35 +0100
committerGuillaume Melquiond2021-02-19 19:05:35 +0100
commit19752f81e096daac43119a144f8065dabbdb1e82 (patch)
treefd18c0da5d6b463bcde8aa03c7befde09f281897
parentcec70c45e25d9a2a53ada7b9941b92663b08c7e0 (diff)
Make intermediate lemmas more explicit, so that they can be terminated by Qed.
-rw-r--r--theories/Reals/Rtrigo_def.v14
1 files changed, 6 insertions, 8 deletions
diff --git a/theories/Reals/Rtrigo_def.v b/theories/Reals/Rtrigo_def.v
index 7f5a859c81..9aed67657a 100644
--- a/theories/Reals/Rtrigo_def.v
+++ b/theories/Reals/Rtrigo_def.v
@@ -41,9 +41,8 @@ Proof.
red; intro; rewrite H0 in H; elim (lt_irrefl _ H).
Qed.
-Lemma exist_exp0 : { l:R | exp_in 0 l }.
+Lemma exist_exp0 : exp_in 0 1.
Proof.
- exists 1.
unfold exp_in; unfold infinite_sum; intros.
exists 0%nat.
intros; replace (sum_f_R0 (fun i:nat => / INR (fact i) * 0 ^ i) n) with 1.
@@ -56,7 +55,7 @@ Proof.
simpl.
ring.
unfold ge; apply le_O_n.
-Defined.
+Qed.
(* Value of [exp 0] *)
Lemma exp_0 : exp 0 = 1.
@@ -66,7 +65,7 @@ Proof.
unfold exp_in; intros; eapply uniqueness_sum.
apply H0.
apply H.
- exact (proj2_sig exist_exp0).
+ exact exist_exp0.
exact (proj2_sig (exist_exp 0)).
Qed.
@@ -384,9 +383,8 @@ Proof.
intros; ring.
Qed.
-Lemma exist_cos0 : { l:R | cos_in 0 l }.
+Lemma exist_cos0 : cos_in 0 1.
Proof.
- exists 1.
unfold cos_in; unfold infinite_sum; intros; exists 0%nat.
intros.
unfold R_dist.
@@ -400,7 +398,7 @@ Proof.
rewrite Rplus_0_r.
apply Hrecn; unfold ge; apply le_O_n.
simpl; ring.
-Defined.
+Qed.
(* Value of [cos 0] *)
Lemma cos_0 : cos 0 = 1.
@@ -410,7 +408,7 @@ Proof.
unfold cos_in; intros; eapply uniqueness_sum.
apply H0.
apply H.
- exact (proj2_sig exist_cos0).
+ exact exist_cos0.
assert (H := proj2_sig (exist_cos (Rsqr 0))); unfold cos;
pattern 0 at 1; replace 0 with (Rsqr 0); [ exact H | apply Rsqr_0 ].
Qed.