From 19752f81e096daac43119a144f8065dabbdb1e82 Mon Sep 17 00:00:00 2001 From: Guillaume Melquiond Date: Fri, 19 Feb 2021 19:05:35 +0100 Subject: Make intermediate lemmas more explicit, so that they can be terminated by Qed. --- theories/Reals/Rtrigo_def.v | 14 ++++++-------- 1 file changed, 6 insertions(+), 8 deletions(-) (limited to 'theories') diff --git a/theories/Reals/Rtrigo_def.v b/theories/Reals/Rtrigo_def.v index 7f5a859c81..9aed67657a 100644 --- a/theories/Reals/Rtrigo_def.v +++ b/theories/Reals/Rtrigo_def.v @@ -41,9 +41,8 @@ Proof. red; intro; rewrite H0 in H; elim (lt_irrefl _ H). Qed. -Lemma exist_exp0 : { l:R | exp_in 0 l }. +Lemma exist_exp0 : exp_in 0 1. Proof. - exists 1. unfold exp_in; unfold infinite_sum; intros. exists 0%nat. intros; replace (sum_f_R0 (fun i:nat => / INR (fact i) * 0 ^ i) n) with 1. @@ -56,7 +55,7 @@ Proof. simpl. ring. unfold ge; apply le_O_n. -Defined. +Qed. (* Value of [exp 0] *) Lemma exp_0 : exp 0 = 1. @@ -66,7 +65,7 @@ Proof. unfold exp_in; intros; eapply uniqueness_sum. apply H0. apply H. - exact (proj2_sig exist_exp0). + exact exist_exp0. exact (proj2_sig (exist_exp 0)). Qed. @@ -384,9 +383,8 @@ Proof. intros; ring. Qed. -Lemma exist_cos0 : { l:R | cos_in 0 l }. +Lemma exist_cos0 : cos_in 0 1. Proof. - exists 1. unfold cos_in; unfold infinite_sum; intros; exists 0%nat. intros. unfold R_dist. @@ -400,7 +398,7 @@ Proof. rewrite Rplus_0_r. apply Hrecn; unfold ge; apply le_O_n. simpl; ring. -Defined. +Qed. (* Value of [cos 0] *) Lemma cos_0 : cos 0 = 1. @@ -410,7 +408,7 @@ Proof. unfold cos_in; intros; eapply uniqueness_sum. apply H0. apply H. - exact (proj2_sig exist_cos0). + exact exist_cos0. assert (H := proj2_sig (exist_cos (Rsqr 0))); unfold cos; pattern 0 at 1; replace 0 with (Rsqr 0); [ exact H | apply Rsqr_0 ]. Qed. -- cgit v1.2.3