diff options
Diffstat (limited to 'mathcomp/algebra/interval.v')
| -rw-r--r-- | mathcomp/algebra/interval.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v index 3ed2825..950546b 100644 --- a/mathcomp/algebra/interval.v +++ b/mathcomp/algebra/interval.v @@ -210,19 +210,19 @@ Proof. by case: b; apply lter_distl. Qed. Lemma lersif_minr : (x <= Num.min y z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b). -Proof. by case: b; rewrite /= ltexI. Qed. +Proof. by case: b; rewrite /= (le_minr, lt_minr). Qed. Lemma lersif_minl : (Num.min y z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b). -Proof. by case: b; rewrite /= lteIx. Qed. +Proof. by case: b; rewrite /= (le_minl, lt_minl). Qed. Lemma lersif_maxr : (x <= Num.max y z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b). -Proof. by case: b; rewrite /= ltexU. Qed. +Proof. by case: b; rewrite /= (le_maxr, lt_maxr). Qed. Lemma lersif_maxl : (Num.max y z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b). -Proof. by case: b; rewrite /= lteUx. Qed. +Proof. by case: b; rewrite /= (le_maxl, lt_maxl). Qed. End LersifOrdered. |
