aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/interval.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/algebra/interval.v')
-rw-r--r--mathcomp/algebra/interval.v8
1 files changed, 4 insertions, 4 deletions
diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v
index 3ed2825..950546b 100644
--- a/mathcomp/algebra/interval.v
+++ b/mathcomp/algebra/interval.v
@@ -210,19 +210,19 @@ Proof. by case: b; apply lter_distl. Qed.
Lemma lersif_minr :
(x <= Num.min y z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b).
-Proof. by case: b; rewrite /= ltexI. Qed.
+Proof. by case: b; rewrite /= (le_minr, lt_minr). Qed.
Lemma lersif_minl :
(Num.min y z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b).
-Proof. by case: b; rewrite /= lteIx. Qed.
+Proof. by case: b; rewrite /= (le_minl, lt_minl). Qed.
Lemma lersif_maxr :
(x <= Num.max y z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b).
-Proof. by case: b; rewrite /= ltexU. Qed.
+Proof. by case: b; rewrite /= (le_maxr, lt_maxr). Qed.
Lemma lersif_maxl :
(Num.max y z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b).
-Proof. by case: b; rewrite /= lteUx. Qed.
+Proof. by case: b; rewrite /= (le_maxl, lt_maxl). Qed.
End LersifOrdered.