diff options
Diffstat (limited to 'mathcomp/algebra')
| -rw-r--r-- | mathcomp/algebra/interval.v | 8 | ||||
| -rw-r--r-- | mathcomp/algebra/ssrnum.v | 416 |
2 files changed, 263 insertions, 161 deletions
diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v index 3ed2825..950546b 100644 --- a/mathcomp/algebra/interval.v +++ b/mathcomp/algebra/interval.v @@ -210,19 +210,19 @@ Proof. by case: b; apply lter_distl. Qed. Lemma lersif_minr : (x <= Num.min y z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b). -Proof. by case: b; rewrite /= ltexI. Qed. +Proof. by case: b; rewrite /= (le_minr, lt_minr). Qed. Lemma lersif_minl : (Num.min y z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b). -Proof. by case: b; rewrite /= lteIx. Qed. +Proof. by case: b; rewrite /= (le_minl, lt_minl). Qed. Lemma lersif_maxr : (x <= Num.max y z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b). -Proof. by case: b; rewrite /= ltexU. Qed. +Proof. by case: b; rewrite /= (le_maxr, lt_maxr). Qed. Lemma lersif_maxl : (Num.max y z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b). -Proof. by case: b; rewrite /= lteUx. Qed. +Proof. by case: b; rewrite /= (le_maxl, lt_maxl). Qed. End LersifOrdered. diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v index 95c40cd..6dbfaf7 100644 --- a/mathcomp/algebra/ssrnum.v +++ b/mathcomp/algebra/ssrnum.v @@ -389,10 +389,10 @@ Notation "@ 'lerif' R" := (@Order.leif ring_display R) Notation comparabler := (@Order.comparable ring_display _) (only parsing). Notation "@ 'comparabler' R" := (@Order.comparable ring_display R) (at level 10, R at level 8, only parsing) : fun_scope. -Notation maxr := (@Order.join ring_display _). +Notation maxr := (@Order.max ring_display _). Notation "@ 'maxr' R" := (@Order.join ring_display R) (at level 10, R at level 8, only parsing) : fun_scope. -Notation minr := (@Order.meet ring_display _). +Notation minr := (@Order.min ring_display _). Notation "@ 'minr' R" := (@Order.meet ring_display R) (at level 10, R at level 8, only parsing) : fun_scope. @@ -1550,6 +1550,8 @@ Definition subr_cp0 := (subr_lte0, subr_gte0). (* Comparability in a numDomain *) +Lemma comparable0r x : (0 >=< x)%R = (x \is Num.real). Proof. by []. Qed. + Lemma comparabler0 x : (x >=< 0)%R = (x \is Num.real). Proof. by rewrite comparable_sym. Qed. @@ -1676,11 +1678,7 @@ Lemma ler_leVge x y : x <= 0 -> y <= 0 -> (x <= y) || (y <= x). Proof. by rewrite -!oppr_ge0 => /(ger_leVge _) h /h; rewrite !ler_opp2. Qed. Lemma real_leVge x y : x \is real -> y \is real -> (x <= y) || (y <= x). -Proof. -rewrite !realE; have [x_ge0 _|x_nge0 /= x_le0] := boolP (_ <= _); last first. - by have [/(le_trans x_le0)->|_ /(ler_leVge x_le0) //] := boolP (0 <= _). -by have [/(ger_leVge x_ge0)|_ /le_trans->] := boolP (0 <= _); rewrite ?orbT. -Qed. +Proof. by rewrite -comparabler0 -comparable0r => /comparabler_trans P/P. Qed. Lemma real_comparable x y : x \is real -> y \is real -> x >=< y. Proof. exact: real_leVge. Qed. @@ -1699,35 +1697,37 @@ Proof. exact: rpredD. Qed. (* dichotomy and trichotomy *) -Variant ler_xor_gt (x y : R) : R -> R -> bool -> bool -> Set := - | LerNotGt of x <= y : ler_xor_gt x y (y - x) (y - x) true false - | GtrNotLe of y < x : ler_xor_gt x y (x - y) (x - y) false true. +Variant ler_xor_gt (x y : R) : R -> R -> R -> R -> R -> R -> + bool -> bool -> Set := + | LerNotGt of x <= y : ler_xor_gt x y x x y y (y - x) (y - x) true false + | GtrNotLe of y < x : ler_xor_gt x y y y x x (x - y) (x - y) false true. -Variant ltr_xor_ge (x y : R) : R -> R -> bool -> bool -> Set := - | LtrNotGe of x < y : ltr_xor_ge x y (y - x) (y - x) false true - | GerNotLt of y <= x : ltr_xor_ge x y (x - y) (x - y) true false. +Variant ltr_xor_ge (x y : R) : R -> R -> R -> R -> R -> R -> + bool -> bool -> Set := + | LtrNotGe of x < y : ltr_xor_ge x y x x y y (y - x) (y - x) false true + | GerNotLt of y <= x : ltr_xor_ge x y y y x x (x - y) (x - y) true false. -Variant comparer x y : R -> R -> - bool -> bool -> bool -> bool -> bool -> bool -> Set := - | ComparerLt of x < y : comparer x y (y - x) (y - x) +Variant comparer x y : R -> R -> R -> R -> R -> R -> + bool -> bool -> bool -> bool -> bool -> bool -> Set := + | ComparerLt of x < y : comparer x y x x y y (y - x) (y - x) false false false true false true - | ComparerGt of x > y : comparer x y (x - y) (x - y) + | ComparerGt of x > y : comparer x y y y x x (x - y) (x - y) false false true false true false - | ComparerEq of x = y : comparer x y 0 0 + | ComparerEq of x = y : comparer x y x x x x 0 0 true true true true false false. -Lemma real_leP x y : - x \is real -> y \is real -> - ler_xor_gt x y `|x - y| `|y - x| (x <= y) (y < x). +Lemma real_leP x y : x \is real -> y \is real -> + ler_xor_gt x y (min y x) (min x y) (max y x) (max x y) + `|x - y| `|y - x| (x <= y) (y < x). Proof. move=> xR yR; case: (comparable_leP (real_leVge xR yR)) => xy. - by rewrite [`|x - y|]distrC !ger0_norm ?subr_cp0 //; constructor. - by rewrite [`|y - x|]distrC !gtr0_norm ?subr_cp0 //; constructor. Qed. -Lemma real_ltP x y : - x \is real -> y \is real -> - ltr_xor_ge x y `|x - y| `|y - x| (y <= x) (x < y). +Lemma real_ltP x y : x \is real -> y \is real -> + ltr_xor_ge x y (min y x) (min x y) (max y x) (max x y) + `|x - y| `|y - x| (y <= x) (x < y). Proof. by move=> xR yR; case: real_leP=> //; constructor. Qed. Lemma real_ltNge : {in real &, forall x y, (x < y) = ~~ (y <= x)}. @@ -1737,46 +1737,52 @@ Lemma real_leNgt : {in real &, forall x y, (x <= y) = ~~ (y < x)}. Proof. by move=> x y xR yR /=; case: real_leP. Qed. Lemma real_ltgtP x y : x \is real -> y \is real -> - comparer x y `|x - y| `|y - x| - (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y). + comparer x y (min y x) (min x y) (max y x) (max x y) `|x - y| `|y - x| + (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y). Proof. -move=> xR yR; case: (comparable_ltgtP (real_leVge xR yR)) => [?|?|->]. -- by rewrite [`|x - y|]distrC !gtr0_norm ?subr_gt0//; constructor. +move=> xR yR; case: (comparable_ltgtP (real_leVge yR xR)) => [?|?|->]. - by rewrite [`|y - x|]distrC !gtr0_norm ?subr_gt0//; constructor. +- by rewrite [`|x - y|]distrC !gtr0_norm ?subr_gt0//; constructor. - by rewrite subrr normr0; constructor. Qed. -Variant ger0_xor_lt0 (x : R) : R -> bool -> bool -> Set := - | Ger0NotLt0 of 0 <= x : ger0_xor_lt0 x x false true - | Ltr0NotGe0 of x < 0 : ger0_xor_lt0 x (- x) true false. +Variant ger0_xor_lt0 (x : R) : R -> R -> R -> R -> R -> + bool -> bool -> Set := + | Ger0NotLt0 of 0 <= x : ger0_xor_lt0 x 0 0 x x x false true + | Ltr0NotGe0 of x < 0 : ger0_xor_lt0 x x x 0 0 (- x) true false. -Variant ler0_xor_gt0 (x : R) : R -> bool -> bool -> Set := - | Ler0NotLe0 of x <= 0 : ler0_xor_gt0 x (- x) false true - | Gtr0NotGt0 of 0 < x : ler0_xor_gt0 x x true false. +Variant ler0_xor_gt0 (x : R) : R -> R -> R -> R -> R -> + bool -> bool -> Set := + | Ler0NotLe0 of x <= 0 : ler0_xor_gt0 x x x 0 0 (- x) false true + | Gtr0NotGt0 of 0 < x : ler0_xor_gt0 x 0 0 x x x true false. -Variant comparer0 x : - R -> bool -> bool -> bool -> bool -> bool -> bool -> Set := - | ComparerGt0 of 0 < x : comparer0 x x false false false true false true - | ComparerLt0 of x < 0 : comparer0 x (- x) false false true false true false - | ComparerEq0 of x = 0 : comparer0 x 0 true true true true false false. +Variant comparer0 x : R -> R -> R -> R -> R -> + bool -> bool -> bool -> bool -> bool -> bool -> Set := + | ComparerGt0 of 0 < x : comparer0 x 0 0 x x x false false false true false true + | ComparerLt0 of x < 0 : comparer0 x x x 0 0 (- x) false false true false true false + | ComparerEq0 of x = 0 : comparer0 x 0 0 0 0 0 true true true true false false. -Lemma real_ge0P x : x \is real -> ger0_xor_lt0 x `|x| (x < 0) (0 <= x). +Lemma real_ge0P x : x \is real -> ger0_xor_lt0 x + (min 0 x) (min x 0) (max 0 x) (max x 0) + `|x| (x < 0) (0 <= x). Proof. -move=> hx; rewrite -{2}[x]subr0; case: real_ltP; +move=> hx; rewrite -[X in `|X|]subr0; case: real_leP; by rewrite ?subr0 ?sub0r //; constructor. Qed. -Lemma real_le0P x : x \is real -> ler0_xor_gt0 x `|x| (0 < x) (x <= 0). +Lemma real_le0P x : x \is real -> ler0_xor_gt0 x + (min 0 x) (min x 0) (max 0 x) (max x 0) + `|x| (0 < x) (x <= 0). Proof. -move=> hx; rewrite -{2}[x]subr0; case: real_ltP; +move=> hx; rewrite -[X in `|X|]subr0; case: real_ltP; by rewrite ?subr0 ?sub0r //; constructor. Qed. -Lemma real_ltgt0P x : - x \is real -> - comparer0 x `|x| (0 == x) (x == 0) (x <= 0) (0 <= x) (x < 0) (x > 0). +Lemma real_ltgt0P x : x \is real -> + comparer0 x (min 0 x) (min x 0) (max 0 x) (max x 0) + `|x| (0 == x) (x == 0) (x <= 0) (0 <= x) (x < 0) (x > 0). Proof. -move=> hx; rewrite -{2}[x]subr0; case: real_ltgtP; +move=> hx; rewrite -[X in `|X|]subr0; case: (@real_ltgtP 0 x); by rewrite ?subr0 ?sub0r //; constructor. Qed. @@ -2766,6 +2772,111 @@ Proof. by rewrite -invr_gt1 ?invr_gt0 ?unitrV // invrK. Qed. Definition invr_lte1 := (invr_le1, invr_lt1). Definition invr_cp1 := (invr_gte1, invr_lte1). +(* max and min *) + +Lemma addr_min_max x y : min x y + max x y = x + y. +Proof. by rewrite /min /max; case: ifP => //; rewrite addrC. Qed. + +Lemma addr_max_min x y : max x y + min x y = x + y. +Proof. by rewrite addrC addr_min_max. Qed. + +Lemma minr_to_max x y : min x y = x + y - max x y. +Proof. by rewrite -[x + y]addr_min_max addrK. Qed. + +Lemma maxr_to_min x y : max x y = x + y - min x y. +Proof. by rewrite -[x + y]addr_max_min addrK. Qed. + +Lemma real_oppr_max : {in real &, {morph -%R : x y / max x y >-> min x y : R}}. +Proof. +move=> x y x_real y_real; rewrite !(fun_if, if_arg) ltr_opp2. +by case: real_ltgtP => // ->. +Qed. + +Lemma real_oppr_min : {in real &, {morph -%R : x y / min x y >-> max x y : R}}. +Proof. +by move=> x y xr yr; rewrite -[RHS]opprK real_oppr_max ?realN// !opprK. +Qed. + +Lemma real_addr_minl : {in real & real & real, @left_distributive R R +%R min}. +Proof. +by move=> x y z xr yr zr; case: (@real_leP (_ + _)); rewrite ?realD//; + rewrite lter_add2; case: real_leP. +Qed. + +Lemma real_addr_minr : {in real & real & real, @right_distributive R R +%R min}. +Proof. by move=> x y z xr yr zr; rewrite !(addrC x) real_addr_minl. Qed. + +Lemma real_addr_maxl : {in real & real & real, @left_distributive R R +%R max}. +Proof. +by move=> x y z xr yr zr; case: (@real_leP (_ + _)); rewrite ?realD//; + rewrite lter_add2; case: real_leP. +Qed. + +Lemma real_addr_maxr : {in real & real & real, @right_distributive R R +%R max}. +Proof. by move=> x y z xr yr zr; rewrite !(addrC x) real_addr_maxl. Qed. + +Lemma minr_pmulr x y z : 0 <= x -> x * min y z = min (x * y) (x * z). +Proof. +have [|x_gt0||->]// := comparableP x; last by rewrite !mul0r minxx. +by rewrite !(fun_if, if_arg) lter_pmul2l//; case: (y < z). +Qed. + +Lemma maxr_pmulr x y z : 0 <= x -> x * max y z = max (x * y) (x * z). +Proof. +have [|x_gt0||->]// := comparableP x; last by rewrite !mul0r maxxx. +by rewrite !(fun_if, if_arg) lter_pmul2l//; case: (y < z). +Qed. + +Lemma real_maxr_nmulr x y z : x <= 0 -> y \is real -> z \is real -> + x * max y z = min (x * y) (x * z). +Proof. +move=> x0 yr zr; rewrite -[_ * _]opprK -mulrN real_oppr_max// -mulNr. +by rewrite minr_pmulr ?oppr_ge0// !(mulNr, mulrN, opprK). +Qed. + +Lemma real_minr_nmulr x y z : x <= 0 -> y \is real -> z \is real -> + x * min y z = max (x * y) (x * z). +Proof. +move=> x0 yr zr; rewrite -[_ * _]opprK -mulrN real_oppr_min// -mulNr. +by rewrite maxr_pmulr ?oppr_ge0// !(mulNr, mulrN, opprK). +Qed. + +Lemma minr_pmull x y z : 0 <= x -> min y z * x = min (y * x) (z * x). +Proof. by move=> *; rewrite mulrC minr_pmulr // ![_ * x]mulrC. Qed. + +Lemma maxr_pmull x y z : 0 <= x -> max y z * x = max (y * x) (z * x). +Proof. by move=> *; rewrite mulrC maxr_pmulr // ![_ * x]mulrC. Qed. + +Lemma real_minr_nmull x y z : x <= 0 -> y \is real -> z \is real -> + min y z * x = max (y * x) (z * x). +Proof. by move=> *; rewrite mulrC real_minr_nmulr // ![_ * x]mulrC. Qed. + +Lemma real_maxr_nmull x y z : x <= 0 -> y \is real -> z \is real -> + max y z * x = min (y * x) (z * x). +Proof. by move=> *; rewrite mulrC real_maxr_nmulr // ![_ * x]mulrC. Qed. + +Lemma real_maxrN x : x \is real -> max x (- x) = `|x|. +Proof. +move=> x_real; rewrite /max. +by case: real_ge0P => // [/ge0_cp [] | /lt0_cp []]; + case: (@real_leP (- x) x); rewrite ?realN. +Qed. + +Lemma real_maxNr x : x \is real -> max (- x) x = `|x|. +Proof. +by move=> x_real; rewrite comparable_maxC ?real_maxrN ?real_comparable ?realN. +Qed. + +Lemma real_minrN x : x \is real -> min x (- x) = - `|x|. +Proof. +by move=> x_real; rewrite -[LHS]opprK real_oppr_min ?opprK ?real_maxNr ?realN. +Qed. + +Lemma real_minNr x : x \is real -> min (- x) x = - `|x|. +Proof. +by move=> x_real; rewrite -[LHS]opprK real_oppr_min ?opprK ?real_maxrN ?realN. +Qed. + (* norm *) Lemma real_ler_norm x : x \is real -> x <= `|x|. @@ -3594,25 +3705,30 @@ Implicit Types x y z t : R. Lemma num_real x : x \is real. Proof. exact: num_real. Qed. Hint Resolve num_real : core. -Lemma lerP x y : ler_xor_gt x y `|x - y| `|y - x| (x <= y) (y < x). +Lemma lerP x y : ler_xor_gt x y (min y x) (min x y) (max y x) (max x y) + `|x - y| `|y - x| (x <= y) (y < x). Proof. exact: real_leP. Qed. -Lemma ltrP x y : ltr_xor_ge x y `|x - y| `|y - x| (y <= x) (x < y). +Lemma ltrP x y : ltr_xor_ge x y (min y x) (min x y) (max y x) (max x y) + `|x - y| `|y - x| (y <= x) (x < y). Proof. exact: real_ltP. Qed. Lemma ltrgtP x y : - comparer x y `|x - y| `|y - x| (y == x) (x == y) + comparer x y (min y x) (min x y) (max y x) (max x y) + `|x - y| `|y - x| (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y) . Proof. exact: real_ltgtP. Qed. -Lemma ger0P x : ger0_xor_lt0 x `|x| (x < 0) (0 <= x). +Lemma ger0P x : ger0_xor_lt0 x (min 0 x) (min x 0) (max 0 x) (max x 0) + `|x| (x < 0) (0 <= x). Proof. exact: real_ge0P. Qed. -Lemma ler0P x : ler0_xor_gt0 x `|x| (0 < x) (x <= 0). +Lemma ler0P x : ler0_xor_gt0 x (min 0 x) (min x 0) (max 0 x) (max x 0) + `|x| (0 < x) (x <= 0). Proof. exact: real_le0P. Qed. -Lemma ltrgt0P x : - comparer0 x `|x| (0 == x) (x == 0) (x <= 0) (0 <= x) (x < 0) (x > 0). +Lemma ltrgt0P x : comparer0 x (min 0 x) (min x 0) (max 0 x) (max x 0) + `|x| (0 == x) (x == 0) (x <= 0) (0 <= x) (x < 0) (x > 0). Proof. exact: real_ltgt0P. Qed. (* sign *) @@ -3862,93 +3978,40 @@ Proof. exact: real_leif_AGM2_scaled. Qed. Section MinMax. -(* GG: Many of the first lemmas hold unconditionally, and others hold for *) -(* the real subset of a general domain. *) - -Lemma addr_min_max x y : min x y + max x y = x + y. -Proof. -case: (lerP x y)=> [| /ltW] hxy; - first by rewrite (meet_idPl hxy) (join_idPl hxy). -by rewrite (meet_idPr hxy) (join_idPr hxy) addrC. -Qed. - -Lemma addr_max_min x y : max x y + min x y = x + y. -Proof. by rewrite addrC addr_min_max. Qed. - -Lemma minr_to_max x y : min x y = x + y - max x y. -Proof. by rewrite -[x + y]addr_min_max addrK. Qed. - -Lemma maxr_to_min x y : max x y = x + y - min x y. -Proof. by rewrite -[x + y]addr_max_min addrK. Qed. - Lemma oppr_max : {morph -%R : x y / max x y >-> min x y : R}. -Proof. -by move=> x y; case: leP; rewrite -lter_opp2 => hxy; - rewrite ?(meet_idPr hxy) ?(meet_idPl (ltW hxy)). -Qed. +Proof. by move=> x y; apply: real_oppr_max. Qed. -Lemma oppr_min : {morph -%R : x y / min x y >-> max x y : R}. -Proof. by move=> x y; rewrite -[max _ _]opprK oppr_max !opprK. Qed. +Lemma oppr_min : {in real &, {morph -%R : x y / min x y >-> max x y : R}}. +Proof. by move=> x y; apply: real_oppr_min. Qed. Lemma addr_minl : @left_distributive R R +%R min. -Proof. by move=> x y z; case: (leP (_ + _)); rewrite lter_add2; case: leP. Qed. +Proof. by move=> x y z; apply: real_addr_minl. Qed. Lemma addr_minr : @right_distributive R R +%R min. -Proof. by move=> x y z; rewrite !(addrC x) addr_minl. Qed. +Proof. by move=> x y z; apply: real_addr_minr. Qed. Lemma addr_maxl : @left_distributive R R +%R max. -Proof. by move=> x y z; case: (leP (_ + _)); rewrite lter_add2; case: leP. Qed. +Proof. by move=> x y z; apply: real_addr_maxl. Qed. Lemma addr_maxr : @right_distributive R R +%R max. -Proof. by move=> x y z; rewrite !(addrC x) addr_maxl. Qed. - -Lemma minr_pmulr x y z : 0 <= x -> x * min y z = min (x * y) (x * z). -Proof. -case: sgrP=> // hx _; first by rewrite hx !mul0r meetxx. -by case: (leP (_ * _)); rewrite lter_pmul2l //; case: leP. -Qed. +Proof. by move=> x y z; apply: real_addr_maxr. Qed. Lemma minr_nmulr x y z : x <= 0 -> x * min y z = max (x * y) (x * z). -Proof. -move=> hx; rewrite -[_ * _]opprK -mulNr minr_pmulr ?oppr_cp0 //. -by rewrite oppr_min !mulNr !opprK. -Qed. - -Lemma maxr_pmulr x y z : 0 <= x -> x * max y z = max (x * y) (x * z). -Proof. -move=> hx; rewrite -[_ * _]opprK -mulrN oppr_max minr_pmulr //. -by rewrite oppr_min !mulrN !opprK. -Qed. +Proof. by move=> x_le0; apply: real_minr_nmulr. Qed. Lemma maxr_nmulr x y z : x <= 0 -> x * max y z = min (x * y) (x * z). -Proof. -move=> hx; rewrite -[_ * _]opprK -mulrN oppr_max minr_nmulr //. -by rewrite oppr_max !mulrN !opprK. -Qed. - -Lemma minr_pmull x y z : 0 <= x -> min y z * x = min (y * x) (z * x). -Proof. by move=> *; rewrite mulrC minr_pmulr // ![_ * x]mulrC. Qed. +Proof. by move=> x_le0; apply: real_maxr_nmulr. Qed. Lemma minr_nmull x y z : x <= 0 -> min y z * x = max (y * x) (z * x). -Proof. by move=> *; rewrite mulrC minr_nmulr // ![_ * x]mulrC. Qed. - -Lemma maxr_pmull x y z : 0 <= x -> max y z * x = max (y * x) (z * x). -Proof. by move=> *; rewrite mulrC maxr_pmulr // ![_ * x]mulrC. Qed. +Proof. by move=> x_le0; apply: real_minr_nmull. Qed. Lemma maxr_nmull x y z : x <= 0 -> max y z * x = min (y * x) (z * x). -Proof. by move=> *; rewrite mulrC maxr_nmulr // ![_ * x]mulrC. Qed. - -Lemma maxrN x : max x (- x) = `|x|. -Proof. by case: ger0P=> [/ge0_cp [] | /lt0_cp []]; case: (leP (- x) x). Qed. +Proof. by move=> x_le0; apply: real_maxr_nmull. Qed. -Lemma maxNr x : max (- x) x = `|x|. -Proof. by rewrite joinC maxrN. Qed. - -Lemma minrN x : min x (- x) = - `|x|. -Proof. by rewrite -[min _ _]opprK oppr_min opprK maxNr. Qed. - -Lemma minNr x : min (- x) x = - `|x|. -Proof. by rewrite -[min _ _]opprK oppr_min opprK maxrN. Qed. +Lemma maxrN x : max x (- x) = `|x|. Proof. exact: real_maxrN. Qed. +Lemma maxNr x : max (- x) x = `|x|. Proof. exact: real_maxNr. Qed. +Lemma minrN x : min x (- x) = - `|x|. Proof. exact: real_minrN. Qed. +Lemma minNr x : min (- x) x = - `|x|. Proof. exact: real_minNr. Qed. End MinMax. @@ -3959,7 +4022,7 @@ Variable p : {poly R}. Lemma poly_itv_bound a b : {ub | forall x, a <= x <= b -> `|p.[x]| <= ub}. Proof. have [ub le_p_ub] := poly_disk_bound p (Num.max `|a| `|b|). -exists ub => x /andP[le_a_x le_x_b]; rewrite le_p_ub // lexU !ler_normr. +exists ub => x /andP[le_a_x le_x_b]; rewrite le_p_ub // le_maxr !ler_normr. by have [_|_] := ler0P x; rewrite ?ler_opp2 ?le_a_x ?le_x_b orbT. Qed. @@ -5231,7 +5294,11 @@ Definition normr_lt0 x : `|x| < 0 = false := normr_lt0 x. Definition normr_gt0 x : (`|x| > 0) = (x != 0) := normr_gt0 x. Definition normrE := (normr_id, normr0, @normr1 R, @normrN1 R, normr_ge0, normr_eq0, normr_lt0, normr_le0, normr_gt0, normrN). +Definition minr x y := if x <= y then x else y. +Definition maxr x y := if x <= y then y else x. End NumIntegralDomainTheory. +Arguments minr {_}. +Arguments maxr {_}. Section NumIntegralDomainMonotonyTheory. Variables R R' : numDomainType. @@ -5543,52 +5610,87 @@ Section RealDomainOperations. Variable R : realDomainType. Implicit Types x y z : R. Section MinMax. -Definition minrC : @commutative R R min := @meetC _ R. -Definition minrr : @idempotent R min := @meetxx _ R. -Definition minr_l x y : x <= y -> min x y = x := @meet_l _ _ x y. -Definition minr_r x y : y <= x -> min x y = y := @meet_r _ _ x y. -Definition maxrC : @commutative R R max := @joinC _ R. -Definition maxrr : @idempotent R max := @joinxx _ R. -Definition maxr_l x y : y <= x -> max x y = x := @join_l _ _ x y. -Definition maxr_r x y : x <= y -> max x y = y := @join_r _ _ x y. -Definition minrA x y z : min x (min y z) = min (min x y) z := meetA x y z. -Definition minrCA : @left_commutative R R min := meetCA. -Definition minrAC : @right_commutative R R min := meetAC. -Definition maxrA x y z : max x (max y z) = max (max x y) z := joinA x y z. -Definition maxrCA : @left_commutative R R max := joinCA. -Definition maxrAC : @right_commutative R R max := joinAC. -Definition eqr_minl x y : (min x y == x) = (x <= y) := eq_meetl x y. -Definition eqr_minr x y : (min x y == y) = (y <= x) := eq_meetr x y. -Definition eqr_maxl x y : (max x y == x) = (y <= x) := eq_joinl x y. -Definition eqr_maxr x y : (max x y == y) = (x <= y) := eq_joinr x y. -Definition ler_minr x y z : (x <= min y z) = (x <= y) && (x <= z) := lexI x y z. -Definition ler_minl x y z : (min y z <= x) = (y <= x) || (z <= x) := leIx x y z. -Definition ler_maxr x y z : (x <= max y z) = (x <= y) || (x <= z) := lexU x y z. -Definition ler_maxl x y z : (max y z <= x) = (y <= x) && (z <= x) := leUx y z x. -Definition ltr_minr x y z : (x < min y z) = (x < y) && (x < z) := ltxI x y z. -Definition ltr_minl x y z : (min y z < x) = (y < x) || (z < x) := ltIx x y z. -Definition ltr_maxr x y z : (x < max y z) = (x < y) || (x < z) := ltxU x y z. -Definition ltr_maxl x y z : (max y z < x) = (y < x) && (z < x) := ltUx x y z. + +Let mrE x y : ((minr x y = min x y) * (maxr x y = max x y))%type. +Proof. by rewrite /minr /min /maxr /max; case: comparableP. Qed. +Ltac mapply x := do ?[rewrite !mrE|apply: x|move=> ?]. +Ltac mexact x := by mapply x. + +Local Notation min := minr. +Local Notation max := maxr. + +Lemma minrr : @idempotent R min. Proof. mexact @minxx. Qed. +Lemma minr_l x y : x <= y -> min x y = x. Proof. mexact @min_l. Qed. +Lemma minr_r x y : y <= x -> min x y = y. Proof. mexact @min_r. Qed. +Lemma maxrC : @commutative R R max. Proof. mexact @maxC. Qed. +Lemma maxrr : @idempotent R max. Proof. mexact @maxxx. Qed. +Lemma maxr_l x y : y <= x -> max x y = x. Proof. mexact @max_l. Qed. +Lemma maxr_r x y : x <= y -> max x y = y. Proof. mexact @max_r. Qed. + +Lemma minrA x y z : min x (min y z) = min (min x y) z. +Proof. mexact @minA. Qed. + +Lemma minrCA : @left_commutative R R min. Proof. mexact @minCA. Qed. +Lemma minrAC : @right_commutative R R min. Proof. mexact @minAC. Qed. +Lemma maxrA x y z : max x (max y z) = max (max x y) z. +Proof. mexact @maxA. Qed. + +Lemma maxrCA : @left_commutative R R max. Proof. mexact @maxCA. Qed. +Lemma maxrAC : @right_commutative R R max. Proof. mexact @maxAC. Qed. +Lemma eqr_minl x y : (min x y == x) = (x <= y). Proof. mexact @eq_minl. Qed. +Lemma eqr_minr x y : (min x y == y) = (y <= x). Proof. mexact @eq_minr. Qed. +Lemma eqr_maxl x y : (max x y == x) = (y <= x). Proof. mexact @eq_maxl. Qed. +Lemma eqr_maxr x y : (max x y == y) = (x <= y). Proof. mexact @eq_maxr. Qed. + +Lemma ler_minr x y z : (x <= min y z) = (x <= y) && (x <= z). +Proof. mexact @le_minr. Qed. + +Lemma ler_minl x y z : (min y z <= x) = (y <= x) || (z <= x). +Proof. mexact @le_minl. Qed. + +Lemma ler_maxr x y z : (x <= max y z) = (x <= y) || (x <= z). +Proof. mexact @le_maxr. Qed. + +Lemma ler_maxl x y z : (max y z <= x) = (y <= x) && (z <= x). +Proof. mexact @le_maxl. Qed. + +Lemma ltr_minr x y z : (x < min y z) = (x < y) && (x < z). +Proof. mexact @lt_minr. Qed. + +Lemma ltr_minl x y z : (min y z < x) = (y < x) || (z < x). +Proof. mexact @lt_minl. Qed. + +Lemma ltr_maxr x y z : (x < max y z) = (x < y) || (x < z). +Proof. mexact @lt_maxr. Qed. + +Lemma ltr_maxl x y z : (max y z < x) = (y < x) && (z < x). +Proof. mexact @lt_maxl. Qed. + Definition lter_minr := (ler_minr, ltr_minr). Definition lter_minl := (ler_minl, ltr_minl). Definition lter_maxr := (ler_maxr, ltr_maxr). Definition lter_maxl := (ler_maxl, ltr_maxl). -Definition minrK x y : max (min x y) x = x := meetUKC y x. -Definition minKr x y : min y (max x y) = y := joinKIC x y. -Definition maxr_minl : @left_distributive R R max min := @joinIl _ R. -Definition maxr_minr : @right_distributive R R max min := @joinIr _ R. -Definition minr_maxl : @left_distributive R R min max := @meetUl _ R. -Definition minr_maxr : @right_distributive R R min max := @meetUr _ R. + +Lemma minrK x y : max (min x y) x = x. Proof. mexact @minxK. Qed. +Lemma minKr x y : min y (max x y) = y. Proof. mexact @maxKx. Qed. + +Lemma maxr_minl : @left_distributive R R max min. Proof. mexact @max_minl. Qed. +Lemma maxr_minr : @right_distributive R R max min. Proof. mexact @max_minr. Qed. +Lemma minr_maxl : @left_distributive R R min max. Proof. mexact @min_maxl. Qed. +Lemma minr_maxr : @right_distributive R R min max. Proof. mexact @min_maxr. Qed. + Variant minr_spec x y : bool -> bool -> R -> Type := | Minr_r of x <= y : minr_spec x y true false x | Minr_l of y < x : minr_spec x y false true y. Lemma minrP x y : minr_spec x y (x <= y) (y < x) (min x y). -Proof. by case: leP; constructor. Qed. +Proof. by rewrite mrE; case: leP; constructor. Qed. + Variant maxr_spec x y : bool -> bool -> R -> Type := | Maxr_r of y <= x : maxr_spec x y true false x | Maxr_l of x < y : maxr_spec x y false true y. Lemma maxrP x y : maxr_spec x y (y <= x) (x < y) (max x y). -Proof. by case: (leP y); constructor. Qed. +Proof. by rewrite mrE; case: (leP y); constructor. Qed. + End MinMax. End RealDomainOperations. |
