aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/interval.v
diff options
context:
space:
mode:
authorCyril Cohen2020-05-30 05:29:37 +0200
committerCyril Cohen2020-06-06 01:43:35 +0200
commitefed1800a4f2eaa942704ab8bebc60d9a3ac8dfd (patch)
treeb4e1d699b276ad442fa872b0eaf759bf50cbe693 /mathcomp/algebra/interval.v
parent19d189999527434c51b1dabe9d073c673e1fd1cf (diff)
General theory of min and max, and use in ssrnum
- min and max can now be used in a partial order (sometimes under preconditions) - min and max can now be used in a numDomainType (sometimes under preconditions)
Diffstat (limited to 'mathcomp/algebra/interval.v')
-rw-r--r--mathcomp/algebra/interval.v8
1 files changed, 4 insertions, 4 deletions
diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v
index 3ed2825..950546b 100644
--- a/mathcomp/algebra/interval.v
+++ b/mathcomp/algebra/interval.v
@@ -210,19 +210,19 @@ Proof. by case: b; apply lter_distl. Qed.
Lemma lersif_minr :
(x <= Num.min y z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b).
-Proof. by case: b; rewrite /= ltexI. Qed.
+Proof. by case: b; rewrite /= (le_minr, lt_minr). Qed.
Lemma lersif_minl :
(Num.min y z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b).
-Proof. by case: b; rewrite /= lteIx. Qed.
+Proof. by case: b; rewrite /= (le_minl, lt_minl). Qed.
Lemma lersif_maxr :
(x <= Num.max y z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b).
-Proof. by case: b; rewrite /= ltexU. Qed.
+Proof. by case: b; rewrite /= (le_maxr, lt_maxr). Qed.
Lemma lersif_maxl :
(Num.max y z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b).
-Proof. by case: b; rewrite /= lteUx. Qed.
+Proof. by case: b; rewrite /= (le_maxl, lt_maxl). Qed.
End LersifOrdered.