From efed1800a4f2eaa942704ab8bebc60d9a3ac8dfd Mon Sep 17 00:00:00 2001 From: Cyril Cohen Date: Sat, 30 May 2020 05:29:37 +0200 Subject: General theory of min and max, and use in ssrnum - min and max can now be used in a partial order (sometimes under preconditions) - min and max can now be used in a numDomainType (sometimes under preconditions) --- mathcomp/algebra/interval.v | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'mathcomp/algebra/interval.v') diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v index 3ed2825..950546b 100644 --- a/mathcomp/algebra/interval.v +++ b/mathcomp/algebra/interval.v @@ -210,19 +210,19 @@ Proof. by case: b; apply lter_distl. Qed. Lemma lersif_minr : (x <= Num.min y z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b). -Proof. by case: b; rewrite /= ltexI. Qed. +Proof. by case: b; rewrite /= (le_minr, lt_minr). Qed. Lemma lersif_minl : (Num.min y z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b). -Proof. by case: b; rewrite /= lteIx. Qed. +Proof. by case: b; rewrite /= (le_minl, lt_minl). Qed. Lemma lersif_maxr : (x <= Num.max y z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b). -Proof. by case: b; rewrite /= ltexU. Qed. +Proof. by case: b; rewrite /= (le_maxr, lt_maxr). Qed. Lemma lersif_maxl : (Num.max y z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b). -Proof. by case: b; rewrite /= lteUx. Qed. +Proof. by case: b; rewrite /= (le_maxl, lt_maxl). Qed. End LersifOrdered. -- cgit v1.2.3