diff options
| author | Cyril Cohen | 2019-11-18 15:39:33 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2019-11-18 15:39:33 +0100 |
| commit | 95e69d88e9f629c043939b8315e73dbb58852d9a (patch) | |
| tree | 7c231baedeb8cda341785757f412bf65f4d0bbeb /mathcomp | |
| parent | 359abfc1d67843216b0362d2fee3b8d650ff7ec0 (diff) | |
fixing CHANGELOG and ltn_pred lemmas
Diffstat (limited to 'mathcomp')
| -rw-r--r-- | mathcomp/ssreflect/ssrnat.v | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/mathcomp/ssreflect/ssrnat.v b/mathcomp/ssreflect/ssrnat.v index 6e54a55..d47a3ba 100644 --- a/mathcomp/ssreflect/ssrnat.v +++ b/mathcomp/ssreflect/ssrnat.v @@ -326,10 +326,10 @@ Hint Resolve leqnSn : core. Lemma leq_pred n : n.-1 <= n. Proof. by case: n => /=. Qed. Lemma leqSpred n : n <= n.-1.+1. Proof. by case: n => /=. Qed. -Lemma ltn_predl n : (n.-1 < n) = (0 < n). +Lemma ltn_predL n : (n.-1 < n) = (0 < n). Proof. by case: n => [//|n]; rewrite ltnSn. Qed. -Lemma ltn_predr m n : (m < n.-1) = (m.+1 < n). +Lemma ltn_predRL m n : (m < n.-1) = (m.+1 < n). Proof. by case: n => [//|n]; rewrite succnK. Qed. Lemma ltn_predK m n : m < n -> n.-1.+1 = n. |
