aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/ssreflect/ssrnat.v4
1 files changed, 2 insertions, 2 deletions
diff --git a/mathcomp/ssreflect/ssrnat.v b/mathcomp/ssreflect/ssrnat.v
index 6e54a55..d47a3ba 100644
--- a/mathcomp/ssreflect/ssrnat.v
+++ b/mathcomp/ssreflect/ssrnat.v
@@ -326,10 +326,10 @@ Hint Resolve leqnSn : core.
Lemma leq_pred n : n.-1 <= n. Proof. by case: n => /=. Qed.
Lemma leqSpred n : n <= n.-1.+1. Proof. by case: n => /=. Qed.
-Lemma ltn_predl n : (n.-1 < n) = (0 < n).
+Lemma ltn_predL n : (n.-1 < n) = (0 < n).
Proof. by case: n => [//|n]; rewrite ltnSn. Qed.
-Lemma ltn_predr m n : (m < n.-1) = (m.+1 < n).
+Lemma ltn_predRL m n : (m < n.-1) = (m.+1 < n).
Proof. by case: n => [//|n]; rewrite succnK. Qed.
Lemma ltn_predK m n : m < n -> n.-1.+1 = n.