aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCyril Cohen2019-11-18 15:39:33 +0100
committerCyril Cohen2019-11-18 15:39:33 +0100
commit95e69d88e9f629c043939b8315e73dbb58852d9a (patch)
tree7c231baedeb8cda341785757f412bf65f4d0bbeb
parent359abfc1d67843216b0362d2fee3b8d650ff7ec0 (diff)
fixing CHANGELOG and ltn_pred lemmas
-rw-r--r--CHANGELOG_UNRELEASED.md6
-rw-r--r--mathcomp/ssreflect/ssrnat.v4
2 files changed, 4 insertions, 6 deletions
diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md
index 69f53ea..f0d9719 100644
--- a/CHANGELOG_UNRELEASED.md
+++ b/CHANGELOG_UNRELEASED.md
@@ -36,8 +36,8 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
`big_enum_val`, `big_enum_rank`, `big_set`.
- Arithmetic theorems in ssrnat and div:
- - some trivial results in ssrnat: `ltn_predl`, `ltn_predr`,
- `ltn_subr`, `leq_subl`, `ltn_subl` and `predn_sub`,
+ - some trivial results in ssrnat: `ltn_predL`, `ltn_predRL`,
+ `ltn_subrR`, `leq_subrR`, `ltn_subrL` and `predn_sub`,
- theorems about `n <=/< p +/- m` and `m +/- n <=/< p`:
`leq_psubRL`, `ltn_psubLR`, `leq_subRL`, `ltn_subLR`, `leq_subCl`,
`leq_psubCr`, `leq_subCr`, `ltn_subCr`, `ltn_psubCl` and
@@ -119,8 +119,6 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
`ssrnat.mc_1_9` module. One may compile proofs compatible with the version
1.9 in newer versions by using this module.
-- `leq_subr` has been renamed `leq_subl` (and the latter has been reallocated)
-
### Removed
- `fin_inj_bij` lemma is removed as a duplicate of `injF_bij` lemma
diff --git a/mathcomp/ssreflect/ssrnat.v b/mathcomp/ssreflect/ssrnat.v
index 6e54a55..d47a3ba 100644
--- a/mathcomp/ssreflect/ssrnat.v
+++ b/mathcomp/ssreflect/ssrnat.v
@@ -326,10 +326,10 @@ Hint Resolve leqnSn : core.
Lemma leq_pred n : n.-1 <= n. Proof. by case: n => /=. Qed.
Lemma leqSpred n : n <= n.-1.+1. Proof. by case: n => /=. Qed.
-Lemma ltn_predl n : (n.-1 < n) = (0 < n).
+Lemma ltn_predL n : (n.-1 < n) = (0 < n).
Proof. by case: n => [//|n]; rewrite ltnSn. Qed.
-Lemma ltn_predr m n : (m < n.-1) = (m.+1 < n).
+Lemma ltn_predRL m n : (m < n.-1) = (m.+1 < n).
Proof. by case: n => [//|n]; rewrite succnK. Qed.
Lemma ltn_predK m n : m < n -> n.-1.+1 = n.