1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
// SPDX-License-Identifier: Apache-2.0
package firrtl.passes
package memlib
import firrtl._
import firrtl.ir._
import firrtl.Utils._
import firrtl.Mappers._
import firrtl.traversals.Foreachers._
import firrtl.transforms
import firrtl.options.Dependency
import firrtl.annotations.NoTargetAnnotation
import MemPortUtils._
import WrappedExpression._
import collection.mutable
/**
* Adding this annotation will allow the [[VerilogMemDelays]] transform to let 'simple' synchronous-read memories to
* pass through without explicitly breaking them apart into combinational-read memories and pipeline registers. Here,
* 'simple' memories are defined as those that have one-cycle read and write latencies AND either no readwrite ports or
* read-under-write behavior that is either 'undefined' or 'old'. This second restriction avoids the particularly
* complex case of blending FIRRTL readwrite port semantics with cross-port 'bypassing' of new data on collisions.
*/
case object PassthroughSimpleSyncReadMemsAnnotation extends NoTargetAnnotation
object MemDelayAndReadwriteTransformer {
// Representation of a group of signals and associated valid signals
case class WithValid(valid: Expression, payload: Seq[Expression])
// Grouped statements that are split into declarations and connects to ease ordering
case class SplitStatements(decls: Seq[Statement], conns: Seq[Connect])
// Utilities for generating hardware
def NOT(e: Expression) = DoPrim(PrimOps.Not, Seq(e), Nil, BoolType)
def AND(e1: Expression, e2: Expression) = DoPrim(PrimOps.And, Seq(e1, e2), Nil, BoolType)
def connect(l: Expression, r: Expression): Connect = Connect(NoInfo, l, r)
def condConnect(c: Expression)(l: Expression, r: Expression): Connect = connect(l, Mux(c, r, l, l.tpe))
// Utilities for working with WithValid groups
def connect(l: WithValid, r: WithValid): Seq[Connect] = {
val paired = (l.valid +: l.payload).zip(r.valid +: r.payload)
paired.map { case (le, re) => connect(le, re) }
}
def condConnect(l: WithValid, r: WithValid): Seq[Connect] = {
connect(l.valid, r.valid) +: (l.payload.zip(r.payload)).map { case (le, re) => condConnect(r.valid)(le, re) }
}
// Internal representation of a pipeline stage with an associated valid signal
private case class PipeStageWithValid(idx: Int, ref: WithValid, stmts: SplitStatements = SplitStatements(Nil, Nil))
// Utilities for creating legal names for registers
private val metaChars = raw"[\[\]\.]".r
private def flatName(e: Expression) = metaChars.replaceAllIn(e.serialize, "_")
/** Determines if all `RefLikeExpression` in this Expression are of kind [[PortKind]] */
def allPortKinds(expr: Expression): Boolean = expr match {
case reflike: RefLikeExpression => kind(expr) == PortKind
case other =>
other.foreach { (e: Expression) => if (!allPortKinds(e)) return false } // Early out
true
}
// Pipeline a group of signals with an associated valid signal. Gate registers when possible.
def pipelineWithValid(
ns: Namespace
)(clock: Expression,
depth: Int,
src: WithValid,
nameTemplate: Option[WithValid] = None
): (WithValid, Seq[Statement], Seq[Connect]) = {
def asReg(e: Expression) = DefRegister(NoInfo, e.serialize, e.tpe, clock, zero, e)
val template = nameTemplate.getOrElse(src)
val stages = Seq.iterate(PipeStageWithValid(0, src), depth + 1) {
case prev =>
def pipeRegRef(e: Expression) = WRef(ns.newName(s"${flatName(e)}_pipe_${prev.idx}"), e.tpe, RegKind)
val ref = WithValid(pipeRegRef(template.valid), template.payload.map(pipeRegRef))
val regs = (ref.valid +: ref.payload).map(asReg)
PipeStageWithValid(prev.idx + 1, ref, SplitStatements(regs, condConnect(ref, prev.ref)))
}
(stages.last.ref, stages.flatMap(_.stmts.decls), stages.flatMap(_.stmts.conns))
}
}
/**
* This class performs the primary work of the transform: splitting readwrite ports into separate
* read and write ports while simultaneously compiling memory latencies to combinational-read
* memories with delay pipelines. It is represented as a class that takes a module as a constructor
* argument, as it encapsulates the mutable state required to analyze and transform one module.
*
* @note The final transformed module is found in the (sole public) field [[transformed]]
*/
class MemDelayAndReadwriteTransformer(m: DefModule, passthroughSimpleSyncReadMems: Boolean = false) {
import MemDelayAndReadwriteTransformer._
private val ns = Namespace(m)
private val netlist = new collection.mutable.HashMap[WrappedExpression, Expression]
private val exprReplacements = new collection.mutable.HashMap[WrappedExpression, Expression]
private val newConns = new mutable.ArrayBuffer[Connect]
private val passthroughMems = new collection.mutable.HashSet[WrappedExpression]
private def findMemConns(s: Statement): Unit = s match {
case Connect(_, loc, expr) if (kind(loc) == MemKind) => netlist(we(loc)) = expr
case _ => s.foreach(findMemConns)
}
private def swapMemRefs(e: Expression): Expression = e.map(swapMemRefs) match {
case sf: WSubField => exprReplacements.getOrElse(we(sf), sf)
case ex => ex
}
def canPassthrough(mem: DefMemory): Boolean = {
(mem.readLatency <= 1 && mem.writeLatency == 1 &&
(mem.readwriters.isEmpty || (mem.readLatency == 1 && mem.readUnderWrite != ReadUnderWrite.New)))
}
private def transform(s: Statement): Statement = s.map(transform) match {
case mem: DefMemory if passthroughSimpleSyncReadMems && canPassthrough(mem) =>
passthroughMems += WRef(mem)
mem
case mem: DefMemory =>
// Per-memory bookkeeping
val portNS = Namespace(mem.readers ++ mem.writers)
val rMap = mem.readwriters.map(rw => (rw -> portNS.newName(s"${rw}_r"))).toMap
val wMap = mem.readwriters.map(rw => (rw -> portNS.newName(s"${rw}_w"))).toMap
val newReaders = mem.readers ++ mem.readwriters.map(rMap(_))
val newWriters = mem.writers ++ mem.readwriters.map(wMap(_))
val newMem = DefMemory(mem.info, mem.name, mem.dataType, mem.depth, 1, 0, newReaders, newWriters, Nil)
val rCmdDelay = if (mem.readUnderWrite == ReadUnderWrite.Old) 0 else mem.readLatency
val rRespDelay = if (mem.readUnderWrite == ReadUnderWrite.Old) mem.readLatency else 0
val wCmdDelay = mem.writeLatency - 1
val clockWires = new mutable.LinkedHashMap[WrappedExpression, (DefWire, Connect, Reference)]
// Memory port clocks may depend on something defined after the memory, create wires for clock
// Expressions that contain non-port references
def maybeInsertWire(expr: Expression): Expression = {
if (allPortKinds(expr)) expr
else {
def mkWire() = {
val wire = DefWire(NoInfo, ns.newName(s"${mem.name}_clock"), expr.tpe)
val ref = Reference(wire).copy(flow = SourceFlow)
val con = Connect(NoInfo, ref.copy(flow = SinkFlow), expr)
(wire, con, ref)
}
clockWires.getOrElseUpdate(we(expr), mkWire())._3
}
}
val readStmts = (mem.readers ++ mem.readwriters).map {
case r =>
def oldDriver(f: String) = swapMemRefs(netlist(we(memPortField(mem, r, f))))
def newField(f: String) = memPortField(newMem, rMap.getOrElse(r, r), f)
// The memory port clock could depend on something defined after the memory
val clk = maybeInsertWire(oldDriver("clk"))
// Pack sources of read command inputs into WithValid object -> different for readwriter
val enSrc = if (rMap.contains(r)) AND(oldDriver("en"), NOT(oldDriver("wmode"))) else oldDriver("en")
val cmdSrc = WithValid(enSrc, Seq(oldDriver("addr")))
val cmdSink = WithValid(newField("en"), Seq(newField("addr")))
val (cmdPiped, cmdDecls, cmdConns) =
pipelineWithValid(ns)(clk, rCmdDelay, cmdSrc, nameTemplate = Some(cmdSink))
val cmdPortConns = connect(cmdSink, cmdPiped) :+ connect(newField("clk"), clk)
// Pipeline read response using *last* command pipe stage enable as the valid signal
val resp = WithValid(cmdPiped.valid, Seq(newField("data")))
val respPipeNameTemplate =
Some(resp.copy(valid = cmdSink.valid)) // base pipeline register names off field names
val (respPiped, respDecls, respConns) =
pipelineWithValid(ns)(clk, rRespDelay, resp, nameTemplate = respPipeNameTemplate)
// Make sure references to the read data get appropriately substituted
val oldRDataName = if (rMap.contains(r)) "rdata" else "data"
exprReplacements(we(memPortField(mem, r, oldRDataName))) = respPiped.payload.head
// Return all statements; they're separated so connects can go after all declarations
SplitStatements(cmdDecls ++ respDecls, cmdConns ++ cmdPortConns ++ respConns)
}
val writeStmts = (mem.writers ++ mem.readwriters).map {
case w =>
def oldDriver(f: String) = swapMemRefs(netlist(we(memPortField(mem, w, f))))
def newField(f: String) = memPortField(newMem, wMap.getOrElse(w, w), f)
// The memory port clock could depend on something defined after the memory
val clk = maybeInsertWire(oldDriver("clk"))
// Pack sources of write command inputs into WithValid object -> different for readwriter
val cmdSrc = if (wMap.contains(w)) {
val en = AND(oldDriver("en"), oldDriver("wmode"))
WithValid(en, Seq(oldDriver("addr"), oldDriver("wmask"), oldDriver("wdata")))
} else {
WithValid(oldDriver("en"), Seq(oldDriver("addr"), oldDriver("mask"), oldDriver("data")))
}
// Pipeline write command, connect to memory
val cmdSink = WithValid(newField("en"), Seq(newField("addr"), newField("mask"), newField("data")))
val (cmdPiped, cmdDecls, cmdConns) =
pipelineWithValid(ns)(clk, wCmdDelay, cmdSrc, nameTemplate = Some(cmdSink))
val cmdPortConns = connect(cmdSink, cmdPiped) :+ connect(newField("clk"), clk)
// Return all statements; they're separated so connects can go after all declarations
SplitStatements(cmdDecls, cmdConns ++ cmdPortConns)
}
newConns ++= clockWires.values.map(_._2)
newConns ++= (readStmts ++ writeStmts).flatMap(_.conns)
Block(newMem +: clockWires.values.map(_._1) ++: (readStmts ++ writeStmts).flatMap(_.decls))
case sx: Connect if kind(sx.loc) == MemKind =>
val (memRef, _) = Utils.splitRef(sx.loc)
// Filter old mem connections for *transformed* memories only
if (passthroughMems(WrappedExpression(memRef)))
sx
else
EmptyStmt
case sx => sx.map(swapMemRefs)
}
val transformed = m match {
case mod: Module =>
findMemConns(mod.body)
val bodyx = transform(mod.body)
// Fixup any mem connections being driven by other transformed memories
val newConsx = newConns.map {
case sx if kind(sx.loc) == MemKind =>
val (memRef, _) = Utils.splitRef(sx.loc)
if (passthroughMems(WrappedExpression(memRef)))
sx
else
sx.mapExpr(swapMemRefs)
case sx => sx
}
mod.copy(body = Block(bodyx +: newConsx.toSeq))
case mod => mod
}
}
object VerilogMemDelays extends Pass {
override def prerequisites = firrtl.stage.Forms.LowForm
override val optionalPrerequisites = Seq(Dependency(firrtl.passes.RemoveValidIf))
override val optionalPrerequisiteOf =
Seq(Dependency[VerilogEmitter], Dependency[SystemVerilogEmitter])
override def invalidates(a: Transform): Boolean = a match {
case ResolveFlows => true
case _ => false
}
private def transform(m: DefModule): DefModule = (new MemDelayAndReadwriteTransformer(m)).transformed
@deprecated("VerilogMemDelays will change from a Pass to a Transform in FIRRTL 1.6.", "FIRRTL 1.5")
def run(c: Circuit): Circuit = c.copy(modules = c.modules.map(transform))
override def execute(state: CircuitState): CircuitState = {
val enablePassthrough = state.annotations.contains(PassthroughSimpleSyncReadMemsAnnotation)
def transform(m: DefModule) = (new MemDelayAndReadwriteTransformer(m, enablePassthrough)).transformed
state.copy(circuit = state.circuit.copy(modules = state.circuit.modules.map(transform)))
}
}
|