diff options
| author | David Aspinall | 2010-08-03 12:48:09 +0000 |
|---|---|---|
| committer | David Aspinall | 2010-08-03 12:48:09 +0000 |
| commit | 417a4ed168b8982f7f8db417e2deb23693beedc7 (patch) | |
| tree | 974d75035a7ba28425d4c8e2727c8a3ea22a79ee /isar/ex/Sqrt_Script.thy | |
| parent | 5903d4c5739d899a6b2fcb7574814ebb9d37d4f0 (diff) | |
Move distribution examples into subdir
Diffstat (limited to 'isar/ex/Sqrt_Script.thy')
| -rw-r--r-- | isar/ex/Sqrt_Script.thy | 70 |
1 files changed, 70 insertions, 0 deletions
diff --git a/isar/ex/Sqrt_Script.thy b/isar/ex/Sqrt_Script.thy new file mode 100644 index 00000000..08634ea7 --- /dev/null +++ b/isar/ex/Sqrt_Script.thy @@ -0,0 +1,70 @@ +(* Title: HOL/ex/Sqrt_Script.thy + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 2001 University of Cambridge +*) + +header {* Square roots of primes are irrational (script version) *} + +theory Sqrt_Script +imports Complex_Main "~~/src/HOL/Number_Theory/Primes" +begin + +text {* + \medskip Contrast this linear Isabelle/Isar script with Markus + Wenzel's more mathematical version. +*} + +subsection {* Preliminaries *} + +lemma prime_nonzero: "prime (p::nat) \<Longrightarrow> p \<noteq> 0" + by (force simp add: prime_nat_def) + +lemma prime_dvd_other_side: + "(n::nat) * n = p * (k * k) \<Longrightarrow> prime p \<Longrightarrow> p dvd n" + apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult_nat) + apply auto + done + +lemma reduction: "prime (p::nat) \<Longrightarrow> + 0 < k \<Longrightarrow> k * k = p * (j * j) \<Longrightarrow> k < p * j \<and> 0 < j" + apply (rule ccontr) + apply (simp add: linorder_not_less) + apply (erule disjE) + apply (frule mult_le_mono, assumption) + apply auto + apply (force simp add: prime_nat_def) + done + +lemma rearrange: "(j::nat) * (p * j) = k * k \<Longrightarrow> k * k = p * (j * j)" + by (simp add: mult_ac) + +lemma prime_not_square: + "prime (p::nat) \<Longrightarrow> (\<And>k. 0 < k \<Longrightarrow> m * m \<noteq> p * (k * k))" + apply (induct m rule: nat_less_induct) + apply clarify + apply (frule prime_dvd_other_side, assumption) + apply (erule dvdE) + apply (simp add: nat_mult_eq_cancel_disj prime_nonzero) + apply (blast dest: rearrange reduction) + done + + +subsection {* Main theorem *} + +text {* + The square root of any prime number (including @{text 2}) is + irrational. +*} + +theorem prime_sqrt_irrational: + "prime (p::nat) \<Longrightarrow> x * x = real p \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<notin> \<rat>" + apply (rule notI) + apply (erule Rats_abs_nat_div_natE) + apply (simp del: real_of_nat_mult + add: abs_if divide_eq_eq prime_not_square real_of_nat_mult [symmetric]) + done + +lemmas two_sqrt_irrational = + prime_sqrt_irrational [OF two_is_prime_nat] + +end |
