aboutsummaryrefslogtreecommitdiff
path: root/isar/ex/Sqrt_Script.thy
diff options
context:
space:
mode:
authorDavid Aspinall2010-08-03 12:48:09 +0000
committerDavid Aspinall2010-08-03 12:48:09 +0000
commit417a4ed168b8982f7f8db417e2deb23693beedc7 (patch)
tree974d75035a7ba28425d4c8e2727c8a3ea22a79ee /isar/ex/Sqrt_Script.thy
parent5903d4c5739d899a6b2fcb7574814ebb9d37d4f0 (diff)
Move distribution examples into subdir
Diffstat (limited to 'isar/ex/Sqrt_Script.thy')
-rw-r--r--isar/ex/Sqrt_Script.thy70
1 files changed, 70 insertions, 0 deletions
diff --git a/isar/ex/Sqrt_Script.thy b/isar/ex/Sqrt_Script.thy
new file mode 100644
index 00000000..08634ea7
--- /dev/null
+++ b/isar/ex/Sqrt_Script.thy
@@ -0,0 +1,70 @@
+(* Title: HOL/ex/Sqrt_Script.thy
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 2001 University of Cambridge
+*)
+
+header {* Square roots of primes are irrational (script version) *}
+
+theory Sqrt_Script
+imports Complex_Main "~~/src/HOL/Number_Theory/Primes"
+begin
+
+text {*
+ \medskip Contrast this linear Isabelle/Isar script with Markus
+ Wenzel's more mathematical version.
+*}
+
+subsection {* Preliminaries *}
+
+lemma prime_nonzero: "prime (p::nat) \<Longrightarrow> p \<noteq> 0"
+ by (force simp add: prime_nat_def)
+
+lemma prime_dvd_other_side:
+ "(n::nat) * n = p * (k * k) \<Longrightarrow> prime p \<Longrightarrow> p dvd n"
+ apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult_nat)
+ apply auto
+ done
+
+lemma reduction: "prime (p::nat) \<Longrightarrow>
+ 0 < k \<Longrightarrow> k * k = p * (j * j) \<Longrightarrow> k < p * j \<and> 0 < j"
+ apply (rule ccontr)
+ apply (simp add: linorder_not_less)
+ apply (erule disjE)
+ apply (frule mult_le_mono, assumption)
+ apply auto
+ apply (force simp add: prime_nat_def)
+ done
+
+lemma rearrange: "(j::nat) * (p * j) = k * k \<Longrightarrow> k * k = p * (j * j)"
+ by (simp add: mult_ac)
+
+lemma prime_not_square:
+ "prime (p::nat) \<Longrightarrow> (\<And>k. 0 < k \<Longrightarrow> m * m \<noteq> p * (k * k))"
+ apply (induct m rule: nat_less_induct)
+ apply clarify
+ apply (frule prime_dvd_other_side, assumption)
+ apply (erule dvdE)
+ apply (simp add: nat_mult_eq_cancel_disj prime_nonzero)
+ apply (blast dest: rearrange reduction)
+ done
+
+
+subsection {* Main theorem *}
+
+text {*
+ The square root of any prime number (including @{text 2}) is
+ irrational.
+*}
+
+theorem prime_sqrt_irrational:
+ "prime (p::nat) \<Longrightarrow> x * x = real p \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<notin> \<rat>"
+ apply (rule notI)
+ apply (erule Rats_abs_nat_div_natE)
+ apply (simp del: real_of_nat_mult
+ add: abs_if divide_eq_eq prime_not_square real_of_nat_mult [symmetric])
+ done
+
+lemmas two_sqrt_irrational =
+ prime_sqrt_irrational [OF two_is_prime_nat]
+
+end