From 417a4ed168b8982f7f8db417e2deb23693beedc7 Mon Sep 17 00:00:00 2001 From: David Aspinall Date: Tue, 3 Aug 2010 12:48:09 +0000 Subject: Move distribution examples into subdir --- isar/ex/Sqrt_Script.thy | 70 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 70 insertions(+) create mode 100644 isar/ex/Sqrt_Script.thy (limited to 'isar/ex/Sqrt_Script.thy') diff --git a/isar/ex/Sqrt_Script.thy b/isar/ex/Sqrt_Script.thy new file mode 100644 index 00000000..08634ea7 --- /dev/null +++ b/isar/ex/Sqrt_Script.thy @@ -0,0 +1,70 @@ +(* Title: HOL/ex/Sqrt_Script.thy + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 2001 University of Cambridge +*) + +header {* Square roots of primes are irrational (script version) *} + +theory Sqrt_Script +imports Complex_Main "~~/src/HOL/Number_Theory/Primes" +begin + +text {* + \medskip Contrast this linear Isabelle/Isar script with Markus + Wenzel's more mathematical version. +*} + +subsection {* Preliminaries *} + +lemma prime_nonzero: "prime (p::nat) \ p \ 0" + by (force simp add: prime_nat_def) + +lemma prime_dvd_other_side: + "(n::nat) * n = p * (k * k) \ prime p \ p dvd n" + apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult_nat) + apply auto + done + +lemma reduction: "prime (p::nat) \ + 0 < k \ k * k = p * (j * j) \ k < p * j \ 0 < j" + apply (rule ccontr) + apply (simp add: linorder_not_less) + apply (erule disjE) + apply (frule mult_le_mono, assumption) + apply auto + apply (force simp add: prime_nat_def) + done + +lemma rearrange: "(j::nat) * (p * j) = k * k \ k * k = p * (j * j)" + by (simp add: mult_ac) + +lemma prime_not_square: + "prime (p::nat) \ (\k. 0 < k \ m * m \ p * (k * k))" + apply (induct m rule: nat_less_induct) + apply clarify + apply (frule prime_dvd_other_side, assumption) + apply (erule dvdE) + apply (simp add: nat_mult_eq_cancel_disj prime_nonzero) + apply (blast dest: rearrange reduction) + done + + +subsection {* Main theorem *} + +text {* + The square root of any prime number (including @{text 2}) is + irrational. +*} + +theorem prime_sqrt_irrational: + "prime (p::nat) \ x * x = real p \ 0 \ x \ x \ \" + apply (rule notI) + apply (erule Rats_abs_nat_div_natE) + apply (simp del: real_of_nat_mult + add: abs_if divide_eq_eq prime_not_square real_of_nat_mult [symmetric]) + done + +lemmas two_sqrt_irrational = + prime_sqrt_irrational [OF two_is_prime_nat] + +end -- cgit v1.2.3