summaryrefslogtreecommitdiff
path: root/Lemma5_7.v
blob: ff600cd17979fbc2544c07e2b209ada55cae9131 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Theorem L5_7 :  P Q R S : Prop,
  ((PQ)  (RS))  ((PR)  (QS)).
Proof.  intros P Q R S.
  specialize n4_22 with Q P R.
  intros n4_22a.
  specialize n4_22 with Q R S.
  intros n4_22b.
  specialize Exp3_3 with (QR) (RS) (QS).
  intros Exp3_3a.
  MP Exp3_3a n4_22b.
  Syll n4_22a Exp3_3a Sa.
  replace (QP) with (PQ) in Sa.
  specialize Imp3_31 with ((PQ)∧(PR)) (RS) (QS).
  intros Imp3_31a.
  MP Imp3_31a Sa.
  replace (((P  Q)  (P  R))  (R  S)) with 
    ((P  Q) ∧((P  R)  (R  S))) in Imp3_31a.
  replace ((P  R)  (R  S)) with 
    ((R  S)  (P  R)) in Imp3_31a.
  replace ((P  Q)  (R  S)  (P  R)) with 
    (((P  Q)  (R  S))  (P  R)) in Imp3_31a.
  specialize Exp3_3 with ((P  Q)  (R  S)) (PR) (QS).
  intros Exp3_3b.
  MP Exp3_3b Imp3_31a.
  apply Exp3_3b.
  apply EqBi.
  apply n4_32. (*With (P ↔ Q) (R ↔ S) (P ↔ R)*)
  apply EqBi. 
  apply n4_3. (*With (R ↔ S) (P ↔ R)*)
  replace ((P  Q) ∧((P  R)  (R  S))) with 
    (((P  Q)  (P  R))  (R  S)).
  reflexivity.
  apply EqBi.
  specialize n4_32 with (PQ) (PR) (RS).
  intros n4_32a.
  apply n4_32a.
  apply EqBi.
  apply n4_21. (*With P Q*)
Qed.