Theorem L5_7 : ∀ P Q R S : Prop, ((P↔Q) ∧ (R↔S)) → ((P↔R) → (Q↔S)). Proof. intros P Q R S. specialize n4_22 with Q P R. intros n4_22a. specialize n4_22 with Q R S. intros n4_22b. specialize Exp3_3 with (Q↔R) (R↔S) (Q↔S). intros Exp3_3a. MP Exp3_3a n4_22b. Syll n4_22a Exp3_3a Sa. replace (Q↔P) with (P↔Q) in Sa. specialize Imp3_31 with ((P↔Q)∧(P↔R)) (R↔S) (Q↔S). intros Imp3_31a. MP Imp3_31a Sa. replace (((P ↔ Q) ∧ (P ↔ R)) ∧ (R ↔ S)) with ((P ↔ Q) ∧((P ↔ R) ∧ (R ↔ S))) in Imp3_31a. replace ((P ↔ R) ∧ (R ↔ S)) with ((R ↔ S) ∧ (P ↔ R)) in Imp3_31a. replace ((P ↔ Q) ∧ (R ↔ S) ∧ (P ↔ R)) with (((P ↔ Q) ∧ (R ↔ S)) ∧ (P ↔ R)) in Imp3_31a. specialize Exp3_3 with ((P ↔ Q) ∧ (R ↔ S)) (P↔R) (Q↔S). intros Exp3_3b. MP Exp3_3b Imp3_31a. apply Exp3_3b. apply EqBi. apply n4_32. (*With (P ↔ Q) (R ↔ S) (P ↔ R)*) apply EqBi. apply n4_3. (*With (R ↔ S) (P ↔ R)*) replace ((P ↔ Q) ∧((P ↔ R) ∧ (R ↔ S))) with (((P ↔ Q) ∧ (P ↔ R)) ∧ (R ↔ S)). reflexivity. apply EqBi. specialize n4_32 with (P↔Q) (P↔R) (R↔S). intros n4_32a. apply n4_32a. apply EqBi. apply n4_21. (*With P Q*) Qed.