summaryrefslogtreecommitdiff
path: root/No2.v
diff options
context:
space:
mode:
Diffstat (limited to 'No2.v')
-rw-r--r--No2.v538
1 files changed, 353 insertions, 185 deletions
diff --git a/No2.v b/No2.v
index fba4ae8..5ad1a24 100644
--- a/No2.v
+++ b/No2.v
@@ -10,26 +10,30 @@ Axiom MP1_1 : ∀ P Q : Prop,
(**1.11 ommitted: it is MP for propositions containing variables. Likewise, ommitted the well-formedness rules 1.7, 1.71, 1.72*)
-Axiom Taut1_2 : ∀ P : Prop, P ∨ P→ P. (*Tautology*)
+Axiom Taut1_2 : ∀ P : Prop,
+ P ∨ P→ P. (*Tautology*)
-Axiom Add1_3 : ∀ P Q : Prop, Q → P ∨ Q. (*Addition*)
+Axiom Add1_3 : ∀ P Q : Prop,
+ Q → P ∨ Q. (*Addition*)
-Axiom Perm1_4 : ∀ P Q : Prop, P ∨ Q → Q ∨ P. (*Permutation*)
+Axiom Perm1_4 : ∀ P Q : Prop,
+ P ∨ Q → Q ∨ P. (*Permutation*)
-Axiom Assoc1_5 : ∀ P Q R : Prop, P ∨ (Q ∨ R) → Q ∨ (P ∨ R).
+Axiom Assoc1_5 : ∀ P Q R : Prop,
+ P ∨ (Q ∨ R) → Q ∨ (P ∨ R).
-Axiom Sum1_6: ∀ P Q R : Prop, (Q → R) → (P ∨ Q → P ∨ R).
- (*These are all the propositional axioms of Principia Mathematica.*)
+Axiom Sum1_6: ∀ P Q R : Prop,
+ (Q → R) → (P ∨ Q → P ∨ R). (*These are all the propositional axioms of Principia Mathematica.*)
-Axiom Impl1_01 : ∀ P Q : Prop, (P → Q) = (~P ∨ Q).
- (*This is a definition in Principia: there → is a defined sign and ∨, ~ are primitive ones. The purposes of giving this as an Axiom are two: first, to allow for the use of definitions in proofs, and second, to circumvent Coq's definitions of these primitive notions in Coq.*)
+Axiom Impl1_01 : ∀ P Q : Prop,
+ (P → Q) = (~P ∨ Q). (*This is a definition in Principia: there → is a defined sign and ∨, ~ are primitive ones. So we will use this axiom to switch between disjunction and implication.*)
End No1.
Module No2.
Import No1.
-(*We proceed to the deductions of *2 of Principia.*)
+(*We proceed to the deductions of of Principia.*)
Theorem Abs2_01 : ∀ P : Prop,
(P → ~P) → ~P.
@@ -53,7 +57,8 @@ Theorem n2_03 : ∀ P Q : Prop,
(P → ~Q) → (Q → ~P).
Proof. intros P Q.
specialize Perm1_4 with (~P) (~Q).
- replace (~P ∨ ~Q) with (P → ~Q). replace (~Q ∨ ~P) with (Q → ~P).
+ replace (~P ∨ ~Q) with (P → ~Q).
+ replace (~Q ∨ ~P) with (Q → ~P).
apply (MP1_1 (P → ~Q) (Q → ~P)).
apply Impl1_01.
apply Impl1_01.
@@ -68,25 +73,32 @@ Proof. intros P Q R.
replace (~P ∨ R) with (P → R).
replace (~Q ∨ (P → R)) with (Q → (P → R)).
apply (MP1_1 (P → Q → R) (Q → P → R)).
- apply Impl1_01. apply Impl1_01.
- apply Impl1_01. apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
Qed.
Theorem Syll2_05 : ∀ P Q R : Prop,
(Q → R) → ((P → Q) → (P → R)).
Proof. intros P Q R.
specialize Sum1_6 with (~P) Q R.
- replace (~P ∨ Q) with (P → Q). replace (~P ∨ R) with (P → R).
+ replace (~P ∨ Q) with (P → Q).
+ replace (~P ∨ R) with (P → R).
apply (MP1_1 (Q → R) ((P → Q) → (P → R))).
- apply Impl1_01. apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
Qed.
Theorem Syll2_06 : ∀ P Q R : Prop,
(P → Q) → ((Q → R) → (P → R)).
Proof. intros P Q R.
- specialize Comm2_04 with (Q → R) (P → Q) (P → R). intros Comm2_04.
- specialize Syll2_05 with P Q R. intros Syll2_05.
- specialize MP1_1 with ((Q → R) → (P → Q) → P → R) ((P → Q) → ((Q → R) → (P → R))). intros MP1_1.
+ specialize Comm2_04 with (Q → R) (P → Q) (P → R).
+ intros Comm2_04.
+ specialize Syll2_05 with P Q R.
+ intros Syll2_05.
+ specialize MP1_1 with ((Q → R) → (P → Q) → P → R) ((P → Q) → ((Q → R) → (P → R))).
+ intros MP1_1.
apply MP1_1.
apply Comm2_04.
apply Syll2_05.
@@ -102,9 +114,12 @@ Qed.
Theorem n2_08 : ∀ P : Prop,
P → P.
Proof. intros P.
- specialize Syll2_05 with P (P ∨ P) P. intros Syll2_05.
- specialize Taut1_2 with P. intros Taut1_2.
- specialize MP1_1 with ((P ∨ P) → P) (P → P). intros MP1_1.
+ specialize Syll2_05 with P (P ∨ P) P.
+ intros Syll2_05.
+ specialize Taut1_2 with P.
+ intros Taut1_2.
+ specialize MP1_1 with ((P ∨ P) → P) (P → P).
+ intros MP1_1.
apply Syll2_05.
apply Taut1_2.
apply n2_07.
@@ -122,8 +137,10 @@ Qed.
Theorem n2_11 : ∀ P : Prop,
P ∨ ~P.
Proof. intros P.
- specialize Perm1_4 with (~P) P. intros Perm1_4.
- specialize n2_1 with P. intros Abs2_01.
+ specialize Perm1_4 with (~P) P.
+ intros Perm1_4.
+ specialize n2_1 with P.
+ intros Abs2_01.
apply Perm1_4.
apply n2_1.
Qed.
@@ -131,15 +148,19 @@ Qed.
Theorem n2_12 : ∀ P : Prop,
P → ~~P.
Proof. intros P.
- specialize n2_11 with (~P). intros n2_11.
- rewrite Impl1_01. assumption.
+ specialize n2_11 with (~P).
+ intros n2_11.
+ rewrite Impl1_01.
+ assumption.
Qed.
Theorem n2_13 : ∀ P : Prop,
P ∨ ~~~P.
Proof. intros P.
- specialize Sum1_6 with P (~P) (~~~P). intros Sum1_6.
- specialize n2_12 with (~P). intros n2_12.
+ specialize Sum1_6 with P (~P) (~~~P).
+ intros Sum1_6.
+ specialize n2_12 with (~P).
+ intros n2_12.
apply Sum1_6.
apply n2_12.
apply n2_11.
@@ -148,8 +169,10 @@ Qed.
Theorem n2_14 : ∀ P : Prop,
~~P → P.
Proof. intros P.
- specialize Perm1_4 with P (~~~P). intros Perm1_4.
- specialize n2_13 with P. intros n2_13.
+ specialize Perm1_4 with P (~~~P).
+ intros Perm1_4.
+ specialize n2_13 with P.
+ intros n2_13.
rewrite Impl1_01.
apply Perm1_4.
apply n2_13.
@@ -158,12 +181,18 @@ Qed.
Theorem Trans2_15 : ∀ P Q : Prop,
(~P → Q) → (~Q → P).
Proof. intros P Q.
- specialize Syll2_05 with (~P) Q (~~Q). intros Syll2_05a.
- specialize n2_12 with Q. intros n2_12.
- specialize n2_03 with (~P) (~Q). intros n2_03.
- specialize Syll2_05 with (~Q) (~~P) P. intros Syll2_05b.
- specialize Syll2_05 with (~P → Q) (~P → ~~Q) (~Q → ~~P). intros Syll2_05c.
- specialize Syll2_05 with (~P → Q) (~Q → ~~P) (~Q → P). intros Syll2_05d.
+ specialize Syll2_05 with (~P) Q (~~Q).
+ intros Syll2_05a.
+ specialize n2_12 with Q.
+ intros n2_12.
+ specialize n2_03 with (~P) (~Q).
+ intros n2_03.
+ specialize Syll2_05 with (~Q) (~~P) P.
+ intros Syll2_05b.
+ specialize Syll2_05 with (~P → Q) (~P → ~~Q) (~Q → ~~P).
+ intros Syll2_05c.
+ specialize Syll2_05 with (~P → Q) (~Q → ~~P) (~Q → P).
+ intros Syll2_05d.
apply Syll2_05d.
apply Syll2_05b.
apply n2_14.
@@ -175,21 +204,24 @@ Qed.
Ltac Syll H1 H2 S :=
let S := fresh S in match goal with
- | [ H1 : ?P -> ?Q, H2 : ?Q -> ?R |- _ ] =>
- assert (S : P -> R) by (intros p; apply (H2 (H1 p)))
+ | [ H1 : ?P → ?Q, H2 : ?Q → ?R |- _ ] =>
+ assert (S : P → R) by (intros p; apply (H2 (H1 p)))
end.
Ltac MP H1 H2 :=
match goal with
- | [ H1 : ?P -> ?Q, H2 : ?P |- _ ] => specialize (H1 H2)
+ | [ H1 : ?P → ?Q, H2 : ?P |- _ ] => specialize (H1 H2)
end.
Theorem Trans2_16 : ∀ P Q : Prop,
(P → Q) → (~Q → ~P).
Proof. intros P Q.
- specialize n2_12 with Q. intros n2_12a.
- specialize Syll2_05 with P Q (~~Q). intros Syll2_05a.
- specialize n2_03 with P (~Q). intros n2_03a.
+ specialize n2_12 with Q.
+ intros n2_12a.
+ specialize Syll2_05 with P Q (~~Q).
+ intros Syll2_05a.
+ specialize n2_03 with P (~Q).
+ intros n2_03a.
MP n2_12a Syll2_05a.
Syll Syll2_05a n2_03a S.
apply S.
@@ -198,9 +230,12 @@ Qed.
Theorem Trans2_17 : ∀ P Q : Prop,
(~Q → ~P) → (P → Q).
Proof. intros P Q.
- specialize n2_03 with (~Q) P. intros n2_03a.
- specialize n2_14 with Q. intros n2_14a.
- specialize Syll2_05 with P (~~Q) Q. intros Syll2_05a.
+ specialize n2_03 with (~Q) P.
+ intros n2_03a.
+ specialize n2_14 with Q.
+ intros n2_14a.
+ specialize Syll2_05 with P (~~Q) Q.
+ intros Syll2_05a.
MP n2_14a Syll2_05a.
Syll n2_03a Syll2_05a S.
apply S.
@@ -209,12 +244,16 @@ Qed.
Theorem n2_18 : ∀ P : Prop,
(~P → P) → P.
Proof. intros P.
- specialize n2_12 with P. intro n2_12a.
- specialize Syll2_05 with (~P) P (~~P). intro Syll2_05a.
+ specialize n2_12 with P.
+ intro n2_12a.
+ specialize Syll2_05 with (~P) P (~~P).
+ intro Syll2_05a.
MP Syll2_05a n2_12.
- specialize Abs2_01 with (~P). intros Abs2_01a.
+ specialize Abs2_01 with (~P).
+ intros Abs2_01a.
Syll Syll2_05a Abs2_01a Sa.
- specialize n2_14 with P. intros n2_14a.
+ specialize n2_14 with P.
+ intros n2_14a.
Syll H n2_14a Sb.
apply Sb.
Qed.
@@ -222,8 +261,10 @@ Qed.
Theorem n2_2 : ∀ P Q : Prop,
P → (P ∨ Q).
Proof. intros P Q.
- specialize Add1_3 with Q P. intros Add1_3a.
- specialize Perm1_4 with Q P. intros Perm1_4a.
+ specialize Add1_3 with Q P.
+ intros Add1_3a.
+ specialize Perm1_4 with Q P.
+ intros Perm1_4a.
Syll Add1_3a Perm1_4a S.
apply S.
Qed.
@@ -231,8 +272,10 @@ Qed.
Theorem n2_21 : ∀ P Q : Prop,
~P → (P → Q).
Proof. intros P Q.
- specialize n2_2 with (~P) Q. intros n2_2a.
- specialize Impl1_01 with P Q. intros Impl1_01a.
+ specialize n2_2 with (~P) Q.
+ intros n2_2a.
+ specialize Impl1_01 with P Q.
+ intros Impl1_01a.
replace (~P∨Q) with (P→Q) in n2_2a.
apply n2_2a.
Qed.
@@ -240,8 +283,10 @@ Qed.
Theorem n2_24 : ∀ P Q : Prop,
P → (~P → Q).
Proof. intros P Q.
- specialize n2_21 with P Q. intros n2_21a.
- specialize Comm2_04 with (~P) P Q. intros Comm2_04a.
+ specialize n2_21 with P Q.
+ intros n2_21a.
+ specialize Comm2_04 with (~P) P Q.
+ intros Comm2_04a.
apply Comm2_04a.
apply n2_21a.
Qed.
@@ -249,8 +294,10 @@ Qed.
Theorem n2_25 : ∀ P Q : Prop,
P ∨ ((P ∨ Q) → Q).
Proof. intros P Q.
- specialize n2_1 with (P ∨ Q). intros n2_1a.
- specialize Assoc1_5 with (~(P∨Q)) P Q. intros Assoc1_5a.
+ specialize n2_1 with (P ∨ Q).
+ intros n2_1a.
+ specialize Assoc1_5 with (~(P∨Q)) P Q.
+ intros Assoc1_5a.
MP Assoc1_5a n2_1a.
replace (~(P∨Q)∨Q) with (P∨Q→Q) in Assoc1_5a.
apply Assoc1_5a.
@@ -260,7 +307,8 @@ Qed.
Theorem n2_26 : ∀ P Q : Prop,
~P ∨ ((P → Q) → Q).
Proof. intros P Q.
- specialize n2_25 with (~P) Q. intros n2_25a.
+ specialize n2_25 with (~P) Q.
+ intros n2_25a.
replace (~P∨Q) with (P→Q) in n2_25a.
apply n2_25a.
apply Impl1_01.
@@ -269,7 +317,8 @@ Qed.
Theorem n2_27 : ∀ P Q : Prop,
P → ((P → Q) → Q).
Proof. intros P Q.
- specialize n2_26 with P Q. intros n2_26a.
+ specialize n2_26 with P Q.
+ intros n2_26a.
replace (~P∨((P→Q)→Q)) with (P→(P→Q)→Q) in n2_26a.
apply n2_26a.
apply Impl1_01.
@@ -278,8 +327,10 @@ Qed.
Theorem n2_3 : ∀ P Q R : Prop,
(P ∨ (Q ∨ R)) → (P ∨ (R ∨ Q)).
Proof. intros P Q R.
- specialize Perm1_4 with Q R. intros Perm1_4a.
- specialize Sum1_6 with P (Q∨R) (R∨Q). intros Sum1_6a.
+ specialize Perm1_4 with Q R.
+ intros Perm1_4a.
+ specialize Sum1_6 with P (Q∨R) (R∨Q).
+ intros Sum1_6a.
MP Sum1_6a Perm1_4a.
apply Sum1_6a.
Qed.
@@ -287,9 +338,12 @@ Qed.
Theorem n2_31 : ∀ P Q R : Prop,
(P ∨ (Q ∨ R)) → ((P ∨ Q) ∨ R).
Proof. intros P Q R.
- specialize n2_3 with P Q R. intros n2_3a.
- specialize Assoc1_5 with P R Q. intros Assoc1_5a.
- specialize Perm1_4 with R (P∨Q). intros Perm1_4a.
+ specialize n2_3 with P Q R.
+ intros n2_3a.
+ specialize Assoc1_5 with P R Q.
+ intros Assoc1_5a.
+ specialize Perm1_4 with R (P∨Q).
+ intros Perm1_4a.
Syll Assoc1_5a Perm1_4a Sa.
Syll n2_3a Sa Sb.
apply Sb.
@@ -298,29 +352,36 @@ Qed.
Theorem n2_32 : ∀ P Q R : Prop,
((P ∨ Q) ∨ R) → (P ∨ (Q ∨ R)).
Proof. intros P Q R.
- specialize Perm1_4 with (P∨Q) R. intros Perm1_4a.
- specialize Assoc1_5 with R P Q. intros Assoc1_5a.
- specialize n2_3 with P R Q. intros n2_3a.
- specialize Syll2_06 with ((P∨Q)∨R) (R∨P∨Q) (P∨R∨Q). intros Syll2_06a.
+ specialize Perm1_4 with (P∨Q) R.
+ intros Perm1_4a.
+ specialize Assoc1_5 with R P Q.
+ intros Assoc1_5a.
+ specialize n2_3 with P R Q.
+ intros n2_3a.
+ specialize Syll2_06 with ((P∨Q)∨R) (R∨P∨Q) (P∨R∨Q).
+ intros Syll2_06a.
MP Syll2_06a Perm1_4a.
MP Syll2_06a Assoc1_5a.
- specialize Syll2_06 with ((P∨Q)∨R) (P∨R∨Q) (P∨Q∨R). intros Syll2_06b.
+ specialize Syll2_06 with ((P∨Q)∨R) (P∨R∨Q) (P∨Q∨R).
+ intros Syll2_06b.
MP Syll2_06b Syll2_06a.
MP Syll2_06b n2_3a.
apply Syll2_06b.
Qed.
-(* Axiom n2_33 : ∀ P Q R : Prop,
- (P∨Q∨R)=((P∨Q)∨R)
- This definition makes the default left association.*)
+Axiom n2_33 : ∀ P Q R : Prop,
+ (P∨Q∨R)=((P∨Q)∨R). (*This definition makes the default left association. The default in Coq is right association, so this will need to be applied to underwrite some inferences.*)
Theorem n2_36 : ∀ P Q R : Prop,
(Q → R) → ((P ∨ Q) → (R ∨ P)).
Proof. intros P Q R.
- specialize Perm1_4 with P R. intros Perm1_4a.
- specialize Syll2_05 with (P∨Q) (P∨R) (R∨P). intros Syll2_05a.
+ specialize Perm1_4 with P R.
+ intros Perm1_4a.
+ specialize Syll2_05 with (P∨Q) (P∨R) (R∨P).
+ intros Syll2_05a.
MP Syll2_05a Perm1_4a.
- specialize Sum1_6 with P Q R. intros Sum1_6a.
+ specialize Sum1_6 with P Q R.
+ intros Sum1_6a.
Syll Sum1_6a Syll2_05a S.
apply S.
Qed.
@@ -328,10 +389,13 @@ Qed.
Theorem n2_37 : ∀ P Q R : Prop,
(Q → R) → ((Q ∨ P) → (P ∨ R)).
Proof. intros P Q R.
- specialize Perm1_4 with Q P. intros Perm1_4a.
- specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R). intros Syll2_06a.
+ specialize Perm1_4 with Q P.
+ intros Perm1_4a.
+ specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R).
+ intros Syll2_06a.
MP Syll2_05a Perm1_4a.
- specialize Sum1_6 with P Q R. intros Sum1_6a.
+ specialize Sum1_6 with P Q R.
+ intros Sum1_6a.
Syll Sum1_6a Syll2_05a S.
apply S.
Qed.
@@ -339,14 +403,19 @@ Qed.
Theorem n2_38 : ∀ P Q R : Prop,
(Q → R) → ((Q ∨ P) → (R ∨ P)).
Proof. intros P Q R.
- specialize Perm1_4 with P R. intros Perm1_4a.
- specialize Syll2_05 with (Q∨P) (P∨R) (R∨P). intros Syll2_05a.
+ specialize Perm1_4 with P R.
+ intros Perm1_4a.
+ specialize Syll2_05 with (Q∨P) (P∨R) (R∨P).
+ intros Syll2_05a.
MP Syll2_05a Perm1_4a.
- specialize Perm1_4 with Q P. intros Perm1_4b.
- specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R). intros Syll2_06a.
+ specialize Perm1_4 with Q P.
+ intros Perm1_4b.
+ specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R).
+ intros Syll2_06a.
MP Syll2_06a Perm1_4b.
Syll Syll2_06a Syll2_05a H.
- specialize Sum1_6 with P Q R. intros Sum1_6a.
+ specialize Sum1_6 with P Q R.
+ intros Sum1_6a.
Syll Sum1_6a H S.
apply S.
Qed.
@@ -354,9 +423,12 @@ Qed.
Theorem n2_4 : ∀ P Q : Prop,
(P ∨ (P ∨ Q)) → (P ∨ Q).
Proof. intros P Q.
- specialize n2_31 with P P Q. intros n2_31a.
- specialize Taut1_2 with P. intros Taut1_2a.
- specialize n2_38 with Q (P∨P) P. intros n2_38a.
+ specialize n2_31 with P P Q.
+ intros n2_31a.
+ specialize Taut1_2 with P.
+ intros Taut1_2a.
+ specialize n2_38 with Q (P∨P) P.
+ intros n2_38a.
MP n2_38a Taut1_2a.
Syll n2_31a n2_38a S.
apply S.
@@ -365,9 +437,12 @@ Qed.
Theorem n2_41 : ∀ P Q : Prop,
(Q ∨ (P ∨ Q)) → (P ∨ Q).
Proof. intros P Q.
- specialize Assoc1_5 with Q P Q. intros Assoc1_5a.
- specialize Taut1_2 with Q. intros Taut1_2a.
- specialize Sum1_6 with P (Q∨Q) Q. intros Sum1_6a.
+ specialize Assoc1_5 with Q P Q.
+ intros Assoc1_5a.
+ specialize Taut1_2 with Q.
+ intros Taut1_2a.
+ specialize Sum1_6 with P (Q∨Q) Q.
+ intros Sum1_6a.
MP Sum1_6a Taut1_2a.
Syll Assoc1_5a Sum1_6a S.
apply S.
@@ -376,7 +451,8 @@ Qed.
Theorem n2_42 : ∀ P Q : Prop,
(~P ∨ (P → Q)) → (P → Q).
Proof. intros P Q.
- specialize n2_4 with (~P) Q. intros n2_4a.
+ specialize n2_4 with (~P) Q.
+ intros n2_4a.
replace (~P∨Q) with (P→Q) in n2_4a.
apply n2_4a. apply Impl1_01.
Qed.
@@ -384,16 +460,20 @@ Qed.
Theorem n2_43 : ∀ P Q : Prop,
(P → (P → Q)) → (P → Q).
Proof. intros P Q.
- specialize n2_42 with P Q. intros n2_42a.
+ specialize n2_42 with P Q.
+ intros n2_42a.
replace (~P ∨ (P→Q)) with (P→(P→Q)) in n2_42a.
- apply n2_42a. apply Impl1_01.
+ apply n2_42a.
+ apply Impl1_01.
Qed.
Theorem n2_45 : ∀ P Q : Prop,
~(P ∨ Q) → ~P.
Proof. intros P Q.
- specialize n2_2 with P Q. intros n2_2a.
- specialize Trans2_16 with P (P∨Q). intros Trans2_16a.
+ specialize n2_2 with P Q.
+ intros n2_2a.
+ specialize Trans2_16 with P (P∨Q).
+ intros Trans2_16a.
MP n2_2 Trans2_16a.
apply Trans2_16a.
Qed.
@@ -401,8 +481,10 @@ Qed.
Theorem n2_46 : ∀ P Q : Prop,
~(P ∨ Q) → ~Q.
Proof. intros P Q.
- specialize Add1_3 with P Q. intros Add1_3a.
- specialize Trans2_16 with Q (P∨Q). intros Trans2_16a.
+ specialize Add1_3 with P Q.
+ intros Add1_3a.
+ specialize Trans2_16 with Q (P∨Q).
+ intros Trans2_16a.
MP Add1_3a Trans2_16a.
apply Trans2_16a.
Qed.
@@ -410,8 +492,10 @@ Qed.
Theorem n2_47 : ∀ P Q : Prop,
~(P ∨ Q) → (~P ∨ Q).
Proof. intros P Q.
- specialize n2_45 with P Q. intros n2_45a.
- specialize n2_2 with (~P) Q. intros n2_2a.
+ specialize n2_45 with P Q.
+ intros n2_45a.
+ specialize n2_2 with (~P) Q.
+ intros n2_2a.
Syll n2_45a n2_2a S.
apply S.
Qed.
@@ -419,8 +503,10 @@ Qed.
Theorem n2_48 : ∀ P Q : Prop,
~(P ∨ Q) → (P ∨ ~Q).
Proof. intros P Q.
- specialize n2_46 with P Q. intros n2_46a.
- specialize Add1_3 with P (~Q). intros Add1_3a.
+ specialize n2_46 with P Q.
+ intros n2_46a.
+ specialize Add1_3 with P (~Q).
+ intros Add1_3a.
Syll n2_46a Add1_3a S.
apply S.
Qed.
@@ -428,8 +514,10 @@ Qed.
Theorem n2_49 : ∀ P Q : Prop,
~(P ∨ Q) → (~P ∨ ~Q).
Proof. intros P Q.
- specialize n2_45 with P Q. intros n2_45a.
- specialize n2_2 with (~P) (~Q). intros n2_2a.
+ specialize n2_45 with P Q.
+ intros n2_45a.
+ specialize n2_2 with (~P) (~Q).
+ intros n2_2a.
Syll n2_45a n2_2a S.
apply S.
Qed.
@@ -437,67 +525,83 @@ Qed.
Theorem n2_5 : ∀ P Q : Prop,
~(P → Q) → (~P → Q).
Proof. intros P Q.
- specialize n2_47 with (~P) Q. intros n2_47a.
+ specialize n2_47 with (~P) Q.
+ intros n2_47a.
replace (~P∨Q) with (P→Q) in n2_47a.
replace (~~P∨Q) with (~P→Q) in n2_47a.
apply n2_47a.
- apply Impl1_01. apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
Qed.
Theorem n2_51 : ∀ P Q : Prop,
~(P → Q) → (P → ~Q).
Proof. intros P Q.
- specialize n2_48 with (~P) Q. intros n2_48a.
+ specialize n2_48 with (~P) Q.
+ intros n2_48a.
replace (~P∨Q) with (P→Q) in n2_48a.
replace (~P∨~Q) with (P→~Q) in n2_48a.
apply n2_48a.
- apply Impl1_01. apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
Qed.
Theorem n2_52 : ∀ P Q : Prop,
~(P → Q) → (~P → ~Q).
Proof. intros P Q.
- specialize n2_49 with (~P) Q. intros n2_49a.
+ specialize n2_49 with (~P) Q.
+ intros n2_49a.
replace (~P∨Q) with (P→Q) in n2_49a.
replace (~~P∨~Q) with (~P→~Q) in n2_49a.
apply n2_49a.
- apply Impl1_01. apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
Qed.
Theorem n2_521 : ∀ P Q : Prop,
~(P→Q)→(Q→P).
Proof. intros P Q.
- specialize n2_52 with P Q. intros n2_52a.
- specialize Trans2_17 with Q P. intros Trans2_17a.
+ specialize n2_52 with P Q.
+ intros n2_52a.
+ specialize Trans2_17 with Q P.
+ intros Trans2_17a.
Syll n2_52a Trans2_17a S.
apply S.
Qed.
Theorem n2_53 : ∀ P Q : Prop,
- (P ∨ Q) → (~P -> Q).
+ (P ∨ Q) → (~P → Q).
Proof. intros P Q.
- specialize n2_12 with P. intros n2_12a.
- specialize n2_38 with Q P (~~P). intros n2_38a.
+ specialize n2_12 with P.
+ intros n2_12a.
+ specialize n2_38 with Q P (~~P).
+ intros n2_38a.
MP n2_38a n2_12a.
replace (~~P∨Q) with (~P→Q) in n2_38a.
- apply n2_38a. apply Impl1_01.
+ apply n2_38a.
+ apply Impl1_01.
Qed.
Theorem n2_54 : ∀ P Q : Prop,
(~P → Q) → (P ∨ Q).
Proof. intros P Q.
- specialize n2_14 with P. intros n2_14a.
- specialize n2_38 with Q (~~P) P. intros n2_38a.
+ specialize n2_14 with P.
+ intros n2_14a.
+ specialize n2_38 with Q (~~P) P.
+ intros n2_38a.
MP n2_38a n2_12a.
replace (~~P∨Q) with (~P→Q) in n2_38a.
- apply n2_38a. apply Impl1_01.
+ apply n2_38a.
+ apply Impl1_01.
Qed.
Theorem n2_55 : ∀ P Q : Prop,
~P → ((P ∨ Q) → Q).
Proof. intros P Q.
- specialize n2_53 with P Q. intros n2_53a.
- specialize Comm2_04 with (P∨Q) (~P) Q. intros Comm2_04a.
+ specialize n2_53 with P Q.
+ intros n2_53a.
+ specialize Comm2_04 with (P∨Q) (~P) Q.
+ intros Comm2_04a.
MP n2_53a Comm2_04a.
apply Comm2_04a.
Qed.
@@ -505,20 +609,24 @@ Qed.
Theorem n2_56 : ∀ P Q : Prop,
~Q → ((P ∨ Q) → P).
Proof. intros P Q.
- specialize n2_55 with Q P. intros n2_55a.
- specialize Perm1_4 with P Q. intros Perm1_4a.
- specialize Syll2_06 with (P∨Q) (Q∨P) P. intros Syll2_06a.
+ specialize n2_55 with Q P.
+ intros n2_55a.
+ specialize Perm1_4 with P Q.
+ intros Perm1_4a.
+ specialize Syll2_06 with (P∨Q) (Q∨P) P.
+ intros Syll2_06a.
MP Syll2_06a Perm1_4a.
- Syll n2_55a Syll2_06a S.
- apply S.
-Qed.
+Qed.
Theorem n2_6 : ∀ P Q : Prop,
(~P→Q) → ((P → Q) → Q).
Proof. intros P Q.
- specialize n2_38 with Q (~P) Q. intros n2_38a.
- specialize Taut1_2 with Q. intros Taut1_2a.
- specialize Syll2_05 with (~P∨Q) (Q∨Q) Q. intros Syll2_05a.
+ specialize n2_38 with Q (~P) Q.
+ intros n2_38a.
+ specialize Taut1_2 with Q.
+ intros Taut1_2a.
+ specialize Syll2_05 with (~P∨Q) (Q∨Q) Q.
+ intros Syll2_05a.
MP Syll2_05a Taut1_2a.
Syll n2_38a Syll2_05a S.
replace (~P∨Q) with (P→Q) in S.
@@ -529,8 +637,10 @@ Qed.
Theorem n2_61 : ∀ P Q : Prop,
(P → Q) → ((~P → Q) → Q).
Proof. intros P Q.
- specialize n2_6 with P Q. intros n2_6a.
- specialize Comm2_04 with (~P→Q) (P→Q) Q. intros Comm2_04a.
+ specialize n2_6 with P Q.
+ intros n2_6a.
+ specialize Comm2_04 with (~P→Q) (P→Q) Q.
+ intros Comm2_04a.
MP Comm2_04a n2_6a.
apply Comm2_04a.
Qed.
@@ -538,8 +648,10 @@ Qed.
Theorem n2_62 : ∀ P Q : Prop,
(P ∨ Q) → ((P → Q) → Q).
Proof. intros P Q.
- specialize n2_53 with P Q. intros n2_53a.
- specialize n2_6 with P Q. intros n2_6a.
+ specialize n2_53 with P Q.
+ intros n2_53a.
+ specialize n2_6 with P Q.
+ intros n2_6a.
Syll n2_53a n2_6a S.
apply S.
Qed.
@@ -547,15 +659,19 @@ Qed.
Theorem n2_621 : ∀ P Q : Prop,
(P → Q) → ((P ∨ Q) → Q).
Proof. intros P Q.
- specialize n2_62 with P Q. intros n2_62a.
- specialize Comm2_04 with (P ∨ Q) (P→Q) Q. intros Comm2_04a.
- MP Comm2_04a n2_62a. apply Comm2_04a.
+ specialize n2_62 with P Q.
+ intros n2_62a.
+ specialize Comm2_04 with (P ∨ Q) (P→Q) Q.
+ intros Comm2_04a.
+ MP Comm2_04a n2_62a.
+ apply Comm2_04a.
Qed.
Theorem n2_63 : ∀ P Q : Prop,
(P ∨ Q) → ((~P ∨ Q) → Q).
Proof. intros P Q.
- specialize n2_62 with P Q. intros n2_62a.
+ specialize n2_62 with P Q.
+ intros n2_62a.
replace (~P∨Q) with (P→Q).
apply n2_62a.
apply Impl1_01.
@@ -564,11 +680,15 @@ Qed.
Theorem n2_64 : ∀ P Q : Prop,
(P ∨ Q) → ((P ∨ ~Q) → P).
Proof. intros P Q.
- specialize n2_63 with Q P. intros n2_63a.
- specialize Perm1_4 with P Q. intros Perm1_4a.
+ specialize n2_63 with Q P.
+ intros n2_63a.
+ specialize Perm1_4 with P Q.
+ intros Perm1_4a.
Syll n2_63a Perm1_4a Ha.
- specialize Syll2_06 with (P∨~Q) (~Q∨P) P. intros Syll2_06a.
- specialize Perm1_4 with P (~Q). intros Perm1_4b.
+ specialize Syll2_06 with (P∨~Q) (~Q∨P) P.
+ intros Syll2_06a.
+ specialize Perm1_4 with P (~Q).
+ intros Perm1_4b.
MP Syll2_05a Perm1_4b.
Syll Syll2_05a Ha S.
apply S.
@@ -577,21 +697,27 @@ Qed.
Theorem n2_65 : ∀ P Q : Prop,
(P → Q) → ((P → ~Q) → ~P).
Proof. intros P Q.
- specialize n2_64 with (~P) Q. intros n2_64a.
+ specialize n2_64 with (~P) Q.
+ intros n2_64a.
replace (~P∨Q) with (P→Q) in n2_64a.
replace (~P∨~Q) with (P→~Q) in n2_64a.
apply n2_64a.
- apply Impl1_01. apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
Qed.
Theorem n2_67 : ∀ P Q : Prop,
((P ∨ Q) → Q) → (P → Q).
Proof. intros P Q.
- specialize n2_54 with P Q. intros n2_54a.
- specialize Syll2_06 with (~P→Q) (P∨Q) Q. intros Syll2_06a.
+ specialize n2_54 with P Q.
+ intros n2_54a.
+ specialize Syll2_06 with (~P→Q) (P∨Q) Q.
+ intros Syll2_06a.
MP Syll2_06a n2_54a.
- specialize n2_24 with P Q. intros n2_24.
- specialize Syll2_06 with P (~P→Q) Q. intros Syll2_06b.
+ specialize n2_24 with P Q.
+ intros n2_24.
+ specialize Syll2_06 with P (~P→Q) Q.
+ intros Syll2_06b.
MP Syll2_06b n2_24a.
Syll Syll2_06b Syll2_06a S.
apply S.
@@ -600,9 +726,11 @@ Qed.
Theorem n2_68 : ∀ P Q : Prop,
((P → Q) → Q) → (P ∨ Q).
Proof. intros P Q.
- specialize n2_67 with (~P) Q. intros n2_67a.
+ specialize n2_67 with (~P) Q.
+ intros n2_67a.
replace (~P∨Q) with (P→Q) in n2_67a.
- specialize n2_54 with P Q. intros n2_54a.
+ specialize n2_54 with P Q.
+ intros n2_54a.
Syll n2_67a n2_54a S.
apply S.
apply Impl1_01.
@@ -611,10 +739,13 @@ Qed.
Theorem n2_69 : ∀ P Q : Prop,
((P → Q) → Q) → ((Q → P) → P).
Proof. intros P Q.
- specialize n2_68 with P Q. intros n2_68a.
- specialize Perm1_4 with P Q. intros Perm1_4a.
+ specialize n2_68 with P Q.
+ intros n2_68a.
+ specialize Perm1_4 with P Q.
+ intros Perm1_4a.
Syll n2_68a Perm1_4a Sa.
- specialize n2_62 with Q P. intros n2_62a.
+ specialize n2_62 with Q P.
+ intros n2_62a.
Syll Sa n2_62a Sb.
apply Sb.
Qed.
@@ -622,8 +753,10 @@ Qed.
Theorem n2_73 : ∀ P Q R : Prop,
(P → Q) → (((P ∨ Q) ∨ R) → (Q ∨ R)).
Proof. intros P Q R.
- specialize n2_621 with P Q. intros n2_621a.
- specialize n2_38 with R (P∨Q) Q. intros n2_38a.
+ specialize n2_621 with P Q.
+ intros n2_621a.
+ specialize n2_38 with R (P∨Q) Q.
+ intros n2_38a.
Syll n2_621a n2_38a S.
apply S.
Qed.
@@ -631,13 +764,18 @@ Qed.
Theorem n2_74 : ∀ P Q R : Prop,
(Q → P) → ((P ∨ Q) ∨ R) → (P ∨ R).
Proof. intros P Q R.
- specialize n2_73 with Q P R. intros n2_73a.
- specialize Assoc1_5 with P Q R. intros Assoc1_5a.
- specialize n2_31 with Q P R. intros n2_31a. (*not cited explicitly!*)
+ specialize n2_73 with Q P R.
+ intros n2_73a.
+ specialize Assoc1_5 with P Q R.
+ intros Assoc1_5a.
+ specialize n2_31 with Q P R.
+ intros n2_31a. (*not cited explicitly!*)
Syll Assoc1_5a n2_31a Sa.
- specialize n2_32 with P Q R. intros n2_32a. (*not cited explicitly!*)
+ specialize n2_32 with P Q R.
+ intros n2_32a. (*not cited explicitly!*)
Syll n2_32a Sa Sb.
- specialize Syll2_06 with ((P∨Q)∨R) ((Q∨P)∨R) (P∨R). intros Syll2_06a.
+ specialize Syll2_06 with ((P∨Q)∨R) ((Q∨P)∨R) (P∨R).
+ intros Syll2_06a.
MP Syll2_06a Sb.
Syll n2_73a Syll2_05a H.
apply H.
@@ -646,14 +784,19 @@ Qed.
Theorem n2_75 : ∀ P Q R : Prop,
(P ∨ Q) → ((P ∨ (Q → R)) → (P ∨ R)).
Proof. intros P Q R.
- specialize n2_74 with P (~Q) R. intros n2_74a.
- specialize n2_53 with Q P. intros n2_53a.
+ specialize n2_74 with P (~Q) R.
+ intros n2_74a.
+ specialize n2_53 with Q P.
+ intros n2_53a.
Syll n2_53a n2_74a Sa.
- specialize n2_31 with P (~Q) R. intros n2_31a.
- specialize Syll2_06 with (P∨(~Q)∨R)((P∨(~Q))∨R) (P∨R). intros Syll2_06a.
+ specialize n2_31 with P (~Q) R.
+ intros n2_31a.
+ specialize Syll2_06 with (P∨(~Q)∨R)((P∨(~Q))∨R) (P∨R).
+ intros Syll2_06a.
MP Syll2_06a n2_31a.
Syll Sa Syll2_06a Sb.
- specialize Perm1_4 with P Q. intros Perm1_4a. (*not cited!*)
+ specialize Perm1_4 with P Q.
+ intros Perm1_4a. (*not cited!*)
Syll Perm1_4a Sb Sc.
replace (~Q∨R) with (Q→R) in Sc.
apply Sc.
@@ -663,30 +806,38 @@ Qed.
Theorem n2_76 : ∀ P Q R : Prop,
(P ∨ (Q → R)) → ((P ∨ Q) → (P ∨ R)).
Proof. intros P Q R.
- specialize n2_75 with P Q R. intros n2_75a.
- specialize Comm2_04 with (P∨Q) (P∨(Q→R)) (P∨R). intros Comm2_04a.
- MP Comm2_04a n2_75a.
+ specialize n2_75 with P Q R.
+ intros n2_75a.
+ specialize Comm2_04 with (P∨Q) (P∨(Q→R)) (P∨R).
+ intros Comm2_04a.
apply Comm2_04a.
+ apply n2_75a.
Qed.
Theorem n2_77 : ∀ P Q R : Prop,
(P → (Q → R)) → ((P → Q) → (P → R)).
Proof. intros P Q R.
- specialize n2_76 with (~P) Q R. intros n2_76a.
+ specialize n2_76 with (~P) Q R.
+ intros n2_76a.
replace (~P∨(Q→R)) with (P→Q→R) in n2_76a.
replace (~P∨Q) with (P→Q) in n2_76a.
replace (~P∨R) with (P→R) in n2_76a.
apply n2_76a.
- apply Impl1_01. apply Impl1_01. apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
Qed.
Theorem n2_8 : ∀ Q R S : Prop,
(Q ∨ R) → ((~R ∨ S) → (Q ∨ S)).
Proof. intros Q R S.
- specialize n2_53 with R Q. intros n2_53a.
- specialize Perm1_4 with Q R. intros Perm1_4a.
+ specialize n2_53 with R Q.
+ intros n2_53a.
+ specialize Perm1_4 with Q R.
+ intros Perm1_4a.
Syll Perm1_4a n2_53a Ha.
- specialize n2_38 with S (~R) Q. intros n2_38a.
+ specialize n2_38 with S (~R) Q.
+ intros n2_38a.
Syll H n2_38a Hb.
apply Hb.
Qed.
@@ -694,9 +845,12 @@ Qed.
Theorem n2_81 : ∀ P Q R S : Prop,
(Q → (R → S)) → ((P ∨ Q) → ((P ∨ R) → (P ∨ S))).
Proof. intros P Q R S.
- specialize Sum1_6 with P Q (R→S). intros Sum1_6a.
- specialize n2_76 with P R S. intros n2_76a.
- specialize Syll2_05 with (P∨Q) (P∨(R→S)) ((P∨R)→(P∨S)). intros Syll2_05a.
+ specialize Sum1_6 with P Q (R→S).
+ intros Sum1_6a.
+ specialize n2_76 with P R S.
+ intros n2_76a.
+ specialize Syll2_05 with (P∨Q) (P∨(R→S)) ((P∨R)→(P∨S)).
+ intros Syll2_05a.
MP Syll2_05a n2_76a.
Syll Sum1_6a Syll2_05a H.
apply H.
@@ -705,8 +859,10 @@ Qed.
Theorem n2_82 : ∀ P Q R S : Prop,
(P ∨ Q ∨ R)→((P ∨ ~R ∨ S)→(P ∨ Q ∨ S)).
Proof. intros P Q R S.
- specialize n2_8 with Q R S. intros n2_8a.
- specialize n2_81 with P (Q∨R) (~R∨S) (Q∨S). intros n2_81a.
+ specialize n2_8 with Q R S.
+ intros n2_8a.
+ specialize n2_81 with P (Q∨R) (~R∨S) (Q∨S).
+ intros n2_81a.
MP n2_81a n2_8a.
apply n2_81a.
Qed.
@@ -714,7 +870,8 @@ Qed.
Theorem n2_83 : ∀ P Q R S : Prop,
(P→(Q→R))→((P→(R→S))→(P→(Q→S))).
Proof. intros P Q R S.
- specialize n2_82 with (~P) (~Q) R S. intros n2_82a.
+ specialize n2_82 with (~P) (~Q) R S.
+ intros n2_82a.
replace (~Q∨R) with (Q→R) in n2_82a.
replace (~P∨(Q→R)) with (P→Q→R) in n2_82a.
replace (~R∨S) with (R→S) in n2_82a.
@@ -735,18 +892,26 @@ Qed.
Theorem n2_85 : ∀ P Q R : Prop,
((P ∨ Q) → (P ∨ R)) → (P ∨ (Q → R)).
Proof. intros P Q R.
- specialize Add1_3 with P Q. intros Add1_3a.
- specialize Syll2_06 with Q (P∨Q) R. intros Syll2_06a.
+ specialize Add1_3 with P Q.
+ intros Add1_3a.
+ specialize Syll2_06 with Q (P∨Q) R.
+ intros Syll2_06a.
MP Syll2_06a Add1_3a.
- specialize n2_55 with P R. intros n2_55a.
- specialize Syll2_05 with (P∨Q) (P∨R) R. intros Syll2_05a.
+ specialize n2_55 with P R.
+ intros n2_55a.
+ specialize Syll2_05 with (P∨Q) (P∨R) R.
+ intros Syll2_05a.
Syll n2_55a Syll2_05a Ha.
- specialize n2_83 with (~P) ((P∨Q)→(P∨R)) ((P∨Q)→R) (Q→R). intros n2_83a.
+ specialize n2_83 with (~P) ((P∨Q)→(P∨R)) ((P∨Q)→R) (Q→R).
+ intros n2_83a.
MP n2_83a Ha.
- specialize Comm2_04 with (~P) (P∨Q→P∨R) (Q→R). intros Comm2_04a.
+ specialize Comm2_04 with (~P) (P∨Q→P∨R) (Q→R).
+ intros Comm2_04a.
Syll Ha Comm2_04a Hb.
- specialize n2_54 with P (Q→R). intros n2_54a.
- specialize n2_02 with (~P) ((P∨Q→R)→(Q→R)). intros n2_02a. (*Not mentioned! Greg's suggestion per the BRS list in June 25, 2017.*)
+ specialize n2_54 with P (Q→R).
+ intros n2_54a.
+ specialize n2_02 with (~P) ((P∨Q→R)→(Q→R)).
+ intros n2_02a. (*Not mentioned! Greg's suggestion per the BRS list in June 25, 2017.*)
MP Syll2_06a n2_02a.
MP Hb n2_02a.
Syll Hb n2_54a Hc.
@@ -756,12 +921,15 @@ Qed.
Theorem n2_86 : ∀ P Q R : Prop,
((P → Q) → (P → R)) → (P → (Q → R)).
Proof. intros P Q R.
- specialize n2_85 with (~P) Q R. intros n2_85a.
+ specialize n2_85 with (~P) Q R.
+ intros n2_85a.
replace (~P∨Q) with (P→Q) in n2_85a.
replace (~P∨R) with (P→R) in n2_85a.
replace (~P∨(Q→R)) with (P→Q→R) in n2_85a.
apply n2_85a.
- apply Impl1_01. apply Impl1_01. apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
Qed.
End No2. \ No newline at end of file