1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
|
Require Import Unicode.Utf8.
Module No1.
Import Unicode.Utf8.
(*We first give the axioms of Principia
for the propositional calculus in *1.*)
Axiom MP1_1 : ∀ P Q : Prop,
(P → Q) → P → Q. (*Modus ponens*)
(**1.11 ommitted: it is MP for propositions containing variables. Likewise, ommitted the well-formedness rules 1.7, 1.71, 1.72*)
Axiom Taut1_2 : ∀ P : Prop, P ∨ P→ P. (*Tautology*)
Axiom Add1_3 : ∀ P Q : Prop, Q → P ∨ Q. (*Addition*)
Axiom Perm1_4 : ∀ P Q : Prop, P ∨ Q → Q ∨ P. (*Permutation*)
Axiom Assoc1_5 : ∀ P Q R : Prop, P ∨ (Q ∨ R) → Q ∨ (P ∨ R).
Axiom Sum1_6: ∀ P Q R : Prop, (Q → R) → (P ∨ Q → P ∨ R).
(*These are all the propositional axioms of Principia Mathematica.*)
Axiom Impl1_01 : ∀ P Q : Prop, (P → Q) = (~P ∨ Q).
(*This is a definition in Principia: there → is a defined sign and ∨, ~ are primitive ones. The purposes of giving this as an Axiom are two: first, to allow for the use of definitions in proofs, and second, to circumvent Coq's definitions of these primitive notions in Coq.*)
End No1.
Module No2.
Import No1.
(*We proceed to the deductions of *2 of Principia.*)
Theorem Abs2_01 : ∀ P : Prop,
(P → ~P) → ~P.
Proof. intros P.
specialize Taut1_2 with (~P).
replace (~P ∨ ~P) with (P → ~P).
apply MP1_1.
apply Impl1_01.
Qed.
Theorem n2_02 : ∀ P Q : Prop,
Q → (P → Q).
Proof. intros P Q.
specialize Add1_3 with (~P) Q.
replace (~P ∨ Q) with (P → Q).
apply (MP1_1 Q (P → Q)).
apply Impl1_01.
Qed.
Theorem n2_03 : ∀ P Q : Prop,
(P → ~Q) → (Q → ~P).
Proof. intros P Q.
specialize Perm1_4 with (~P) (~Q).
replace (~P ∨ ~Q) with (P → ~Q). replace (~Q ∨ ~P) with (Q → ~P).
apply (MP1_1 (P → ~Q) (Q → ~P)).
apply Impl1_01.
apply Impl1_01.
Qed.
Theorem Comm2_04 : ∀ P Q R : Prop,
(P → (Q → R)) → (Q → (P → R)).
Proof. intros P Q R.
specialize Assoc1_5 with (~P) (~Q) R.
replace (~Q ∨ R) with (Q → R).
replace (~P ∨ (Q → R)) with (P → (Q → R)).
replace (~P ∨ R) with (P → R).
replace (~Q ∨ (P → R)) with (Q → (P → R)).
apply (MP1_1 (P → Q → R) (Q → P → R)).
apply Impl1_01. apply Impl1_01.
apply Impl1_01. apply Impl1_01.
Qed.
Theorem Syll2_05 : ∀ P Q R : Prop,
(Q → R) → ((P → Q) → (P → R)).
Proof. intros P Q R.
specialize Sum1_6 with (~P) Q R.
replace (~P ∨ Q) with (P → Q). replace (~P ∨ R) with (P → R).
apply (MP1_1 (Q → R) ((P → Q) → (P → R))).
apply Impl1_01. apply Impl1_01.
Qed.
Theorem Syll2_06 : ∀ P Q R : Prop,
(P → Q) → ((Q → R) → (P → R)).
Proof. intros P Q R.
specialize Comm2_04 with (Q → R) (P → Q) (P → R). intros Comm2_04.
specialize Syll2_05 with P Q R. intros Syll2_05.
specialize MP1_1 with ((Q → R) → (P → Q) → P → R) ((P → Q) → ((Q → R) → (P → R))). intros MP1_1.
apply MP1_1.
apply Comm2_04.
apply Syll2_05.
Qed.
Theorem n2_07 : ∀ P : Prop,
P → (P ∨ P).
Proof. intros P.
specialize Add1_3 with P P.
apply MP1_1.
Qed.
Theorem n2_08 : ∀ P : Prop,
P → P.
Proof. intros P.
specialize Syll2_05 with P (P ∨ P) P. intros Syll2_05.
specialize Taut1_2 with P. intros Taut1_2.
specialize MP1_1 with ((P ∨ P) → P) (P → P). intros MP1_1.
apply Syll2_05.
apply Taut1_2.
apply n2_07.
Qed.
Theorem n2_1 : ∀ P : Prop,
(~P) ∨ P.
Proof. intros P.
specialize n2_08 with P.
replace (~P ∨ P) with (P → P).
apply MP1_1.
apply Impl1_01.
Qed.
Theorem n2_11 : ∀ P : Prop,
P ∨ ~P.
Proof. intros P.
specialize Perm1_4 with (~P) P. intros Perm1_4.
specialize n2_1 with P. intros Abs2_01.
apply Perm1_4.
apply n2_1.
Qed.
Theorem n2_12 : ∀ P : Prop,
P → ~~P.
Proof. intros P.
specialize n2_11 with (~P). intros n2_11.
rewrite Impl1_01. assumption.
Qed.
Theorem n2_13 : ∀ P : Prop,
P ∨ ~~~P.
Proof. intros P.
specialize Sum1_6 with P (~P) (~~~P). intros Sum1_6.
specialize n2_12 with (~P). intros n2_12.
apply Sum1_6.
apply n2_12.
apply n2_11.
Qed.
Theorem n2_14 : ∀ P : Prop,
~~P → P.
Proof. intros P.
specialize Perm1_4 with P (~~~P). intros Perm1_4.
specialize n2_13 with P. intros n2_13.
rewrite Impl1_01.
apply Perm1_4.
apply n2_13.
Qed.
Theorem Trans2_15 : ∀ P Q : Prop,
(~P → Q) → (~Q → P).
Proof. intros P Q.
specialize Syll2_05 with (~P) Q (~~Q). intros Syll2_05a.
specialize n2_12 with Q. intros n2_12.
specialize n2_03 with (~P) (~Q). intros n2_03.
specialize Syll2_05 with (~Q) (~~P) P. intros Syll2_05b.
specialize Syll2_05 with (~P → Q) (~P → ~~Q) (~Q → ~~P). intros Syll2_05c.
specialize Syll2_05 with (~P → Q) (~Q → ~~P) (~Q → P). intros Syll2_05d.
apply Syll2_05d.
apply Syll2_05b.
apply n2_14.
apply Syll2_05c.
apply n2_03.
apply Syll2_05a.
apply n2_12.
Qed.
Ltac Syll H1 H2 S :=
let S := fresh S in match goal with
| [ H1 : ?P -> ?Q, H2 : ?Q -> ?R |- _ ] =>
assert (S : P -> R) by (intros p; apply (H2 (H1 p)))
end.
Ltac MP H1 H2 :=
match goal with
| [ H1 : ?P -> ?Q, H2 : ?P |- _ ] => specialize (H1 H2)
end.
Theorem Trans2_16 : ∀ P Q : Prop,
(P → Q) → (~Q → ~P).
Proof. intros P Q.
specialize n2_12 with Q. intros n2_12a.
specialize Syll2_05 with P Q (~~Q). intros Syll2_05a.
specialize n2_03 with P (~Q). intros n2_03a.
MP n2_12a Syll2_05a.
Syll Syll2_05a n2_03a S.
apply S.
Qed.
Theorem Trans2_17 : ∀ P Q : Prop,
(~Q → ~P) → (P → Q).
Proof. intros P Q.
specialize n2_03 with (~Q) P. intros n2_03a.
specialize n2_14 with Q. intros n2_14a.
specialize Syll2_05 with P (~~Q) Q. intros Syll2_05a.
MP n2_14a Syll2_05a.
Syll n2_03a Syll2_05a S.
apply S.
Qed.
Theorem n2_18 : ∀ P : Prop,
(~P → P) → P.
Proof. intros P.
specialize n2_12 with P. intro n2_12a.
specialize Syll2_05 with (~P) P (~~P). intro Syll2_05a.
MP Syll2_05a n2_12.
specialize Abs2_01 with (~P). intros Abs2_01a.
Syll Syll2_05a Abs2_01a Sa.
specialize n2_14 with P. intros n2_14a.
Syll H n2_14a Sb.
apply Sb.
Qed.
Theorem n2_2 : ∀ P Q : Prop,
P → (P ∨ Q).
Proof. intros P Q.
specialize Add1_3 with Q P. intros Add1_3a.
specialize Perm1_4 with Q P. intros Perm1_4a.
Syll Add1_3a Perm1_4a S.
apply S.
Qed.
Theorem n2_21 : ∀ P Q : Prop,
~P → (P → Q).
Proof. intros P Q.
specialize n2_2 with (~P) Q. intros n2_2a.
specialize Impl1_01 with P Q. intros Impl1_01a.
replace (~P∨Q) with (P→Q) in n2_2a.
apply n2_2a.
Qed.
Theorem n2_24 : ∀ P Q : Prop,
P → (~P → Q).
Proof. intros P Q.
specialize n2_21 with P Q. intros n2_21a.
specialize Comm2_04 with (~P) P Q. intros Comm2_04a.
apply Comm2_04a.
apply n2_21a.
Qed.
Theorem n2_25 : ∀ P Q : Prop,
P ∨ ((P ∨ Q) → Q).
Proof. intros P Q.
specialize n2_1 with (P ∨ Q). intros n2_1a.
specialize Assoc1_5 with (~(P∨Q)) P Q. intros Assoc1_5a.
MP Assoc1_5a n2_1a.
replace (~(P∨Q)∨Q) with (P∨Q→Q) in Assoc1_5a.
apply Assoc1_5a.
apply Impl1_01.
Qed.
Theorem n2_26 : ∀ P Q : Prop,
~P ∨ ((P → Q) → Q).
Proof. intros P Q.
specialize n2_25 with (~P) Q. intros n2_25a.
replace (~P∨Q) with (P→Q) in n2_25a.
apply n2_25a.
apply Impl1_01.
Qed.
Theorem n2_27 : ∀ P Q : Prop,
P → ((P → Q) → Q).
Proof. intros P Q.
specialize n2_26 with P Q. intros n2_26a.
replace (~P∨((P→Q)→Q)) with (P→(P→Q)→Q) in n2_26a.
apply n2_26a.
apply Impl1_01.
Qed.
Theorem n2_3 : ∀ P Q R : Prop,
(P ∨ (Q ∨ R)) → (P ∨ (R ∨ Q)).
Proof. intros P Q R.
specialize Perm1_4 with Q R. intros Perm1_4a.
specialize Sum1_6 with P (Q∨R) (R∨Q). intros Sum1_6a.
MP Sum1_6a Perm1_4a.
apply Sum1_6a.
Qed.
Theorem n2_31 : ∀ P Q R : Prop,
(P ∨ (Q ∨ R)) → ((P ∨ Q) ∨ R).
Proof. intros P Q R.
specialize n2_3 with P Q R. intros n2_3a.
specialize Assoc1_5 with P R Q. intros Assoc1_5a.
specialize Perm1_4 with R (P∨Q). intros Perm1_4a.
Syll Assoc1_5a Perm1_4a Sa.
Syll n2_3a Sa Sb.
apply Sb.
Qed.
Theorem n2_32 : ∀ P Q R : Prop,
((P ∨ Q) ∨ R) → (P ∨ (Q ∨ R)).
Proof. intros P Q R.
specialize Perm1_4 with (P∨Q) R. intros Perm1_4a.
specialize Assoc1_5 with R P Q. intros Assoc1_5a.
specialize n2_3 with P R Q. intros n2_3a.
specialize Syll2_06 with ((P∨Q)∨R) (R∨P∨Q) (P∨R∨Q). intros Syll2_06a.
MP Syll2_06a Perm1_4a.
MP Syll2_06a Assoc1_5a.
specialize Syll2_06 with ((P∨Q)∨R) (P∨R∨Q) (P∨Q∨R). intros Syll2_06b.
MP Syll2_06b Syll2_06a.
MP Syll2_06b n2_3a.
apply Syll2_06b.
Qed.
(* Axiom n2_33 : ∀ P Q R : Prop,
(P∨Q∨R)=((P∨Q)∨R)
This definition makes the default left association.*)
Theorem n2_36 : ∀ P Q R : Prop,
(Q → R) → ((P ∨ Q) → (R ∨ P)).
Proof. intros P Q R.
specialize Perm1_4 with P R. intros Perm1_4a.
specialize Syll2_05 with (P∨Q) (P∨R) (R∨P). intros Syll2_05a.
MP Syll2_05a Perm1_4a.
specialize Sum1_6 with P Q R. intros Sum1_6a.
Syll Sum1_6a Syll2_05a S.
apply S.
Qed.
Theorem n2_37 : ∀ P Q R : Prop,
(Q → R) → ((Q ∨ P) → (P ∨ R)).
Proof. intros P Q R.
specialize Perm1_4 with Q P. intros Perm1_4a.
specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R). intros Syll2_06a.
MP Syll2_05a Perm1_4a.
specialize Sum1_6 with P Q R. intros Sum1_6a.
Syll Sum1_6a Syll2_05a S.
apply S.
Qed.
Theorem n2_38 : ∀ P Q R : Prop,
(Q → R) → ((Q ∨ P) → (R ∨ P)).
Proof. intros P Q R.
specialize Perm1_4 with P R. intros Perm1_4a.
specialize Syll2_05 with (Q∨P) (P∨R) (R∨P). intros Syll2_05a.
MP Syll2_05a Perm1_4a.
specialize Perm1_4 with Q P. intros Perm1_4b.
specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R). intros Syll2_06a.
MP Syll2_06a Perm1_4b.
Syll Syll2_06a Syll2_05a H.
specialize Sum1_6 with P Q R. intros Sum1_6a.
Syll Sum1_6a H S.
apply S.
Qed.
Theorem n2_4 : ∀ P Q : Prop,
(P ∨ (P ∨ Q)) → (P ∨ Q).
Proof. intros P Q.
specialize n2_31 with P P Q. intros n2_31a.
specialize Taut1_2 with P. intros Taut1_2a.
specialize n2_38 with Q (P∨P) P. intros n2_38a.
MP n2_38a Taut1_2a.
Syll n2_31a n2_38a S.
apply S.
Qed.
Theorem n2_41 : ∀ P Q : Prop,
(Q ∨ (P ∨ Q)) → (P ∨ Q).
Proof. intros P Q.
specialize Assoc1_5 with Q P Q. intros Assoc1_5a.
specialize Taut1_2 with Q. intros Taut1_2a.
specialize Sum1_6 with P (Q∨Q) Q. intros Sum1_6a.
MP Sum1_6a Taut1_2a.
Syll Assoc1_5a Sum1_6a S.
apply S.
Qed.
Theorem n2_42 : ∀ P Q : Prop,
(~P ∨ (P → Q)) → (P → Q).
Proof. intros P Q.
specialize n2_4 with (~P) Q. intros n2_4a.
replace (~P∨Q) with (P→Q) in n2_4a.
apply n2_4a. apply Impl1_01.
Qed.
Theorem n2_43 : ∀ P Q : Prop,
(P → (P → Q)) → (P → Q).
Proof. intros P Q.
specialize n2_42 with P Q. intros n2_42a.
replace (~P ∨ (P→Q)) with (P→(P→Q)) in n2_42a.
apply n2_42a. apply Impl1_01.
Qed.
Theorem n2_45 : ∀ P Q : Prop,
~(P ∨ Q) → ~P.
Proof. intros P Q.
specialize n2_2 with P Q. intros n2_2a.
specialize Trans2_16 with P (P∨Q). intros Trans2_16a.
MP n2_2 Trans2_16a.
apply Trans2_16a.
Qed.
Theorem n2_46 : ∀ P Q : Prop,
~(P ∨ Q) → ~Q.
Proof. intros P Q.
specialize Add1_3 with P Q. intros Add1_3a.
specialize Trans2_16 with Q (P∨Q). intros Trans2_16a.
MP Add1_3a Trans2_16a.
apply Trans2_16a.
Qed.
Theorem n2_47 : ∀ P Q : Prop,
~(P ∨ Q) → (~P ∨ Q).
Proof. intros P Q.
specialize n2_45 with P Q. intros n2_45a.
specialize n2_2 with (~P) Q. intros n2_2a.
Syll n2_45a n2_2a S.
apply S.
Qed.
Theorem n2_48 : ∀ P Q : Prop,
~(P ∨ Q) → (P ∨ ~Q).
Proof. intros P Q.
specialize n2_46 with P Q. intros n2_46a.
specialize Add1_3 with P (~Q). intros Add1_3a.
Syll n2_46a Add1_3a S.
apply S.
Qed.
Theorem n2_49 : ∀ P Q : Prop,
~(P ∨ Q) → (~P ∨ ~Q).
Proof. intros P Q.
specialize n2_45 with P Q. intros n2_45a.
specialize n2_2 with (~P) (~Q). intros n2_2a.
Syll n2_45a n2_2a S.
apply S.
Qed.
Theorem n2_5 : ∀ P Q : Prop,
~(P → Q) → (~P → Q).
Proof. intros P Q.
specialize n2_47 with (~P) Q. intros n2_47a.
replace (~P∨Q) with (P→Q) in n2_47a.
replace (~~P∨Q) with (~P→Q) in n2_47a.
apply n2_47a.
apply Impl1_01. apply Impl1_01.
Qed.
Theorem n2_51 : ∀ P Q : Prop,
~(P → Q) → (P → ~Q).
Proof. intros P Q.
specialize n2_48 with (~P) Q. intros n2_48a.
replace (~P∨Q) with (P→Q) in n2_48a.
replace (~P∨~Q) with (P→~Q) in n2_48a.
apply n2_48a.
apply Impl1_01. apply Impl1_01.
Qed.
Theorem n2_52 : ∀ P Q : Prop,
~(P → Q) → (~P → ~Q).
Proof. intros P Q.
specialize n2_49 with (~P) Q. intros n2_49a.
replace (~P∨Q) with (P→Q) in n2_49a.
replace (~~P∨~Q) with (~P→~Q) in n2_49a.
apply n2_49a.
apply Impl1_01. apply Impl1_01.
Qed.
Theorem n2_521 : ∀ P Q : Prop,
~(P→Q)→(Q→P).
Proof. intros P Q.
specialize n2_52 with P Q. intros n2_52a.
specialize Trans2_17 with Q P. intros Trans2_17a.
Syll n2_52a Trans2_17a S.
apply S.
Qed.
Theorem n2_53 : ∀ P Q : Prop,
(P ∨ Q) → (~P -> Q).
Proof. intros P Q.
specialize n2_12 with P. intros n2_12a.
specialize n2_38 with Q P (~~P). intros n2_38a.
MP n2_38a n2_12a.
replace (~~P∨Q) with (~P→Q) in n2_38a.
apply n2_38a. apply Impl1_01.
Qed.
Theorem n2_54 : ∀ P Q : Prop,
(~P → Q) → (P ∨ Q).
Proof. intros P Q.
specialize n2_14 with P. intros n2_14a.
specialize n2_38 with Q (~~P) P. intros n2_38a.
MP n2_38a n2_12a.
replace (~~P∨Q) with (~P→Q) in n2_38a.
apply n2_38a. apply Impl1_01.
Qed.
Theorem n2_55 : ∀ P Q : Prop,
~P → ((P ∨ Q) → Q).
Proof. intros P Q.
specialize n2_53 with P Q. intros n2_53a.
specialize Comm2_04 with (P∨Q) (~P) Q. intros Comm2_04a.
MP n2_53a Comm2_04a.
apply Comm2_04a.
Qed.
Theorem n2_56 : ∀ P Q : Prop,
~Q → ((P ∨ Q) → P).
Proof. intros P Q.
specialize n2_55 with Q P. intros n2_55a.
specialize Perm1_4 with P Q. intros Perm1_4a.
specialize Syll2_06 with (P∨Q) (Q∨P) P. intros Syll2_06a.
MP Syll2_06a Perm1_4a.
Syll n2_55a Syll2_06a S.
apply S.
Qed.
Theorem n2_6 : ∀ P Q : Prop,
(~P→Q) → ((P → Q) → Q).
Proof. intros P Q.
specialize n2_38 with Q (~P) Q. intros n2_38a.
specialize Taut1_2 with Q. intros Taut1_2a.
specialize Syll2_05 with (~P∨Q) (Q∨Q) Q. intros Syll2_05a.
MP Syll2_05a Taut1_2a.
Syll n2_38a Syll2_05a S.
replace (~P∨Q) with (P→Q) in S.
apply S.
apply Impl1_01.
Qed.
Theorem n2_61 : ∀ P Q : Prop,
(P → Q) → ((~P → Q) → Q).
Proof. intros P Q.
specialize n2_6 with P Q. intros n2_6a.
specialize Comm2_04 with (~P→Q) (P→Q) Q. intros Comm2_04a.
MP Comm2_04a n2_6a.
apply Comm2_04a.
Qed.
Theorem n2_62 : ∀ P Q : Prop,
(P ∨ Q) → ((P → Q) → Q).
Proof. intros P Q.
specialize n2_53 with P Q. intros n2_53a.
specialize n2_6 with P Q. intros n2_6a.
Syll n2_53a n2_6a S.
apply S.
Qed.
Theorem n2_621 : ∀ P Q : Prop,
(P → Q) → ((P ∨ Q) → Q).
Proof. intros P Q.
specialize n2_62 with P Q. intros n2_62a.
specialize Comm2_04 with (P ∨ Q) (P→Q) Q. intros Comm2_04a.
MP Comm2_04a n2_62a. apply Comm2_04a.
Qed.
Theorem n2_63 : ∀ P Q : Prop,
(P ∨ Q) → ((~P ∨ Q) → Q).
Proof. intros P Q.
specialize n2_62 with P Q. intros n2_62a.
replace (~P∨Q) with (P→Q).
apply n2_62a.
apply Impl1_01.
Qed.
Theorem n2_64 : ∀ P Q : Prop,
(P ∨ Q) → ((P ∨ ~Q) → P).
Proof. intros P Q.
specialize n2_63 with Q P. intros n2_63a.
specialize Perm1_4 with P Q. intros Perm1_4a.
Syll n2_63a Perm1_4a Ha.
specialize Syll2_06 with (P∨~Q) (~Q∨P) P. intros Syll2_06a.
specialize Perm1_4 with P (~Q). intros Perm1_4b.
MP Syll2_05a Perm1_4b.
Syll Syll2_05a Ha S.
apply S.
Qed.
Theorem n2_65 : ∀ P Q : Prop,
(P → Q) → ((P → ~Q) → ~P).
Proof. intros P Q.
specialize n2_64 with (~P) Q. intros n2_64a.
replace (~P∨Q) with (P→Q) in n2_64a.
replace (~P∨~Q) with (P→~Q) in n2_64a.
apply n2_64a.
apply Impl1_01. apply Impl1_01.
Qed.
Theorem n2_67 : ∀ P Q : Prop,
((P ∨ Q) → Q) → (P → Q).
Proof. intros P Q.
specialize n2_54 with P Q. intros n2_54a.
specialize Syll2_06 with (~P→Q) (P∨Q) Q. intros Syll2_06a.
MP Syll2_06a n2_54a.
specialize n2_24 with P Q. intros n2_24.
specialize Syll2_06 with P (~P→Q) Q. intros Syll2_06b.
MP Syll2_06b n2_24a.
Syll Syll2_06b Syll2_06a S.
apply S.
Qed.
Theorem n2_68 : ∀ P Q : Prop,
((P → Q) → Q) → (P ∨ Q).
Proof. intros P Q.
specialize n2_67 with (~P) Q. intros n2_67a.
replace (~P∨Q) with (P→Q) in n2_67a.
specialize n2_54 with P Q. intros n2_54a.
Syll n2_67a n2_54a S.
apply S.
apply Impl1_01.
Qed.
Theorem n2_69 : ∀ P Q : Prop,
((P → Q) → Q) → ((Q → P) → P).
Proof. intros P Q.
specialize n2_68 with P Q. intros n2_68a.
specialize Perm1_4 with P Q. intros Perm1_4a.
Syll n2_68a Perm1_4a Sa.
specialize n2_62 with Q P. intros n2_62a.
Syll Sa n2_62a Sb.
apply Sb.
Qed.
Theorem n2_73 : ∀ P Q R : Prop,
(P → Q) → (((P ∨ Q) ∨ R) → (Q ∨ R)).
Proof. intros P Q R.
specialize n2_621 with P Q. intros n2_621a.
specialize n2_38 with R (P∨Q) Q. intros n2_38a.
Syll n2_621a n2_38a S.
apply S.
Qed.
Theorem n2_74 : ∀ P Q R : Prop,
(Q → P) → ((P ∨ Q) ∨ R) → (P ∨ R).
Proof. intros P Q R.
specialize n2_73 with Q P R. intros n2_73a.
specialize Assoc1_5 with P Q R. intros Assoc1_5a.
specialize n2_31 with Q P R. intros n2_31a. (*not cited explicitly!*)
Syll Assoc1_5a n2_31a Sa.
specialize n2_32 with P Q R. intros n2_32a. (*not cited explicitly!*)
Syll n2_32a Sa Sb.
specialize Syll2_06 with ((P∨Q)∨R) ((Q∨P)∨R) (P∨R). intros Syll2_06a.
MP Syll2_06a Sb.
Syll n2_73a Syll2_05a H.
apply H.
Qed.
Theorem n2_75 : ∀ P Q R : Prop,
(P ∨ Q) → ((P ∨ (Q → R)) → (P ∨ R)).
Proof. intros P Q R.
specialize n2_74 with P (~Q) R. intros n2_74a.
specialize n2_53 with Q P. intros n2_53a.
Syll n2_53a n2_74a Sa.
specialize n2_31 with P (~Q) R. intros n2_31a.
specialize Syll2_06 with (P∨(~Q)∨R)((P∨(~Q))∨R) (P∨R). intros Syll2_06a.
MP Syll2_06a n2_31a.
Syll Sa Syll2_06a Sb.
specialize Perm1_4 with P Q. intros Perm1_4a. (*not cited!*)
Syll Perm1_4a Sb Sc.
replace (~Q∨R) with (Q→R) in Sc.
apply Sc.
apply Impl1_01.
Qed.
Theorem n2_76 : ∀ P Q R : Prop,
(P ∨ (Q → R)) → ((P ∨ Q) → (P ∨ R)).
Proof. intros P Q R.
specialize n2_75 with P Q R. intros n2_75a.
specialize Comm2_04 with (P∨Q) (P∨(Q→R)) (P∨R). intros Comm2_04a.
MP Comm2_04a n2_75a.
apply Comm2_04a.
Qed.
Theorem n2_77 : ∀ P Q R : Prop,
(P → (Q → R)) → ((P → Q) → (P → R)).
Proof. intros P Q R.
specialize n2_76 with (~P) Q R. intros n2_76a.
replace (~P∨(Q→R)) with (P→Q→R) in n2_76a.
replace (~P∨Q) with (P→Q) in n2_76a.
replace (~P∨R) with (P→R) in n2_76a.
apply n2_76a.
apply Impl1_01. apply Impl1_01. apply Impl1_01.
Qed.
Theorem n2_8 : ∀ Q R S : Prop,
(Q ∨ R) → ((~R ∨ S) → (Q ∨ S)).
Proof. intros Q R S.
specialize n2_53 with R Q. intros n2_53a.
specialize Perm1_4 with Q R. intros Perm1_4a.
Syll Perm1_4a n2_53a Ha.
specialize n2_38 with S (~R) Q. intros n2_38a.
Syll H n2_38a Hb.
apply Hb.
Qed.
Theorem n2_81 : ∀ P Q R S : Prop,
(Q → (R → S)) → ((P ∨ Q) → ((P ∨ R) → (P ∨ S))).
Proof. intros P Q R S.
specialize Sum1_6 with P Q (R→S). intros Sum1_6a.
specialize n2_76 with P R S. intros n2_76a.
specialize Syll2_05 with (P∨Q) (P∨(R→S)) ((P∨R)→(P∨S)). intros Syll2_05a.
MP Syll2_05a n2_76a.
Syll Sum1_6a Syll2_05a H.
apply H.
Qed.
Theorem n2_82 : ∀ P Q R S : Prop,
(P ∨ Q ∨ R)→((P ∨ ~R ∨ S)→(P ∨ Q ∨ S)).
Proof. intros P Q R S.
specialize n2_8 with Q R S. intros n2_8a.
specialize n2_81 with P (Q∨R) (~R∨S) (Q∨S). intros n2_81a.
MP n2_81a n2_8a.
apply n2_81a.
Qed.
Theorem n2_83 : ∀ P Q R S : Prop,
(P→(Q→R))→((P→(R→S))→(P→(Q→S))).
Proof. intros P Q R S.
specialize n2_82 with (~P) (~Q) R S. intros n2_82a.
replace (~Q∨R) with (Q→R) in n2_82a.
replace (~P∨(Q→R)) with (P→Q→R) in n2_82a.
replace (~R∨S) with (R→S) in n2_82a.
replace (~P∨(R→S)) with (P→R→S) in n2_82a.
replace (~Q∨S) with (Q→S) in n2_82a.
replace (~Q∨S) with (Q→S) in n2_82a.
replace (~P∨(Q→S)) with (P→Q→S) in n2_82a.
apply n2_82a.
apply Impl1_01.
apply Impl1_01.
apply Impl1_01.
apply Impl1_01.
apply Impl1_01.
apply Impl1_01.
apply Impl1_01.
Qed.
Theorem n2_85 : ∀ P Q R : Prop,
((P ∨ Q) → (P ∨ R)) → (P ∨ (Q → R)).
Proof. intros P Q R.
specialize Add1_3 with P Q. intros Add1_3a.
specialize Syll2_06 with Q (P∨Q) R. intros Syll2_06a.
MP Syll2_06a Add1_3a.
specialize n2_55 with P R. intros n2_55a.
specialize Syll2_05 with (P∨Q) (P∨R) R. intros Syll2_05a.
Syll n2_55a Syll2_05a Ha.
specialize n2_83 with (~P) ((P∨Q)→(P∨R)) ((P∨Q)→R) (Q→R). intros n2_83a.
MP n2_83a Ha.
specialize Comm2_04 with (~P) (P∨Q→P∨R) (Q→R). intros Comm2_04a.
Syll Ha Comm2_04a Hb.
specialize n2_54 with P (Q→R). intros n2_54a.
specialize n2_02 with (~P) ((P∨Q→R)→(Q→R)). intros n2_02a. (*Not mentioned! Greg's suggestion per the BRS list in June 25, 2017.*)
MP Syll2_06a n2_02a.
MP Hb n2_02a.
Syll Hb n2_54a Hc.
apply Hc.
Qed.
Theorem n2_86 : ∀ P Q R : Prop,
((P → Q) → (P → R)) → (P → (Q → R)).
Proof. intros P Q R.
specialize n2_85 with (~P) Q R. intros n2_85a.
replace (~P∨Q) with (P→Q) in n2_85a.
replace (~P∨R) with (P→R) in n2_85a.
replace (~P∨(Q→R)) with (P→Q→R) in n2_85a.
apply n2_85a.
apply Impl1_01. apply Impl1_01. apply Impl1_01.
Qed.
End No2.
|