diff options
Diffstat (limited to 'No1.v')
| -rw-r--r-- | No1.v | 27 |
1 files changed, 15 insertions, 12 deletions
@@ -1,27 +1,30 @@ Require Import Unicode.Utf8. -Module No1. -Import Unicode.Utf8. - (*We first give the axioms of Principia -for the propositional calculus in *1.*) +Module No1. + +Import Unicode.Utf8. (*We first give the axioms of Principia for the propositional calculus in *1.*) Axiom MP1_1 : ∀ P Q : Prop, (P → Q) → P → Q. (*Modus ponens*) (**1.11 ommitted: it is MP for propositions containing variables. Likewise, ommitted the well-formedness rules 1.7, 1.71, 1.72*) -Axiom Taut1_2 : ∀ P : Prop, P ∨ P→ P. (*Tautology*) +Axiom Taut1_2 : ∀ P : Prop, + P ∨ P→ P. (*Tautology*) -Axiom Add1_3 : ∀ P Q : Prop, Q → P ∨ Q. (*Addition*) +Axiom Add1_3 : ∀ P Q : Prop, + Q → P ∨ Q. (*Addition*) -Axiom Perm1_4 : ∀ P Q : Prop, P ∨ Q → Q ∨ P. (*Permutation*) +Axiom Perm1_4 : ∀ P Q : Prop, + P ∨ Q → Q ∨ P. (*Permutation*) -Axiom Assoc1_5 : ∀ P Q R : Prop, P ∨ (Q ∨ R) → Q ∨ (P ∨ R). +Axiom Assoc1_5 : ∀ P Q R : Prop, + P ∨ (Q ∨ R) → Q ∨ (P ∨ R). -Axiom Sum1_6: ∀ P Q R : Prop, (Q → R) → (P ∨ Q → P ∨ R). - (*These are all the propositional axioms of Principia Mathematica.*) +Axiom Sum1_6: ∀ P Q R : Prop, + (Q → R) → (P ∨ Q → P ∨ R). (*These are all the propositional axioms of Principia Mathematica.*) -Axiom Impl1_01 : ∀ P Q : Prop, (P → Q) = (~P ∨ Q). - (*This is a definition in Principia: there → is a defined sign and ∨, ~ are primitive ones. The purposes of giving this as an Axiom are two: first, to allow for the use of definitions in proofs, and second, to circumvent Coq's definitions of these primitive notions in Coq.*) +Axiom Impl1_01 : ∀ P Q : Prop, + (P → Q) = (~P ∨ Q). (*This is a definition in Principia: there → is a defined sign and ∨, ~ are primitive ones. So we will use this axiom to switch between disjunction and implication.*) End No1.
\ No newline at end of file |
