summaryrefslogtreecommitdiff
path: root/No1.v
blob: 89921bb340982a41e5202dfcedbce76e581e76f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Require Import Unicode.Utf8.

Module No1.
Import Unicode.Utf8.
  (*We first give the axioms of Principia
for the propositional calculus in *1.*)

Axiom MP1_1 :   P Q : Prop,
  (P  Q)  P  Q. (*Modus ponens*)

  (**1.11 ommitted: it is MP for propositions containing variables. Likewise, ommitted the well-formedness rules 1.7, 1.71, 1.72*)

Axiom Taut1_2 :  P : Prop, P  P P. (*Tautology*)

Axiom Add1_3 :  P Q : Prop, Q  P  Q. (*Addition*)

Axiom Perm1_4 :  P Q : Prop, P  Q  Q  P. (*Permutation*)

Axiom Assoc1_5 :  P Q R : Prop, P  (Q  R)  Q  (P  R).

Axiom Sum1_6:  P Q R : Prop, (Q  R)  (P  Q  P  R).
  (*These are all the propositional axioms of Principia Mathematica.*)

Axiom Impl1_01 :  P Q : Prop, (P  Q) = (~P  Q).
    (*This is a definition in Principia: there  is a defined sign and , ~ are primitive ones. The purposes of giving this as an Axiom are two: first, to allow for the use of definitions in proofs, and second, to circumvent Coq's definitions of these primitive notions in Coq.*)

End No1.