blob: a079d672d315bc2e776a9d2304abe0a8a9443725 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
Set Printing Universes.
Inductive Foo@{i} (A:Type@{i}) : Type := foo : (Set:Type@{i}) -> Foo A.
Arguments foo {_} _.
Print Universes Subgraph (Foo.i).
Definition bar : Foo True -> Set := fun '(foo x) => x.
Definition foo_bar (n : Foo True) : foo (bar n) = n.
Proof. destruct n;reflexivity. Qed.
Definition bar_foo (n : Set) : bar (foo n) = n.
Proof. reflexivity. Qed.
Require Import Hurkens.
Inductive box (A : Set) : Prop := Box : A -> box A.
Definition Paradox : False.
Proof.
Fail unshelve refine (
NoRetractFromSmallPropositionToProp.paradox
(Foo True)
(fun A => foo A)
(fun A => box (bar A))
_
_
False
).
Abort.
|