Set Printing Universes. Inductive Foo@{i} (A:Type@{i}) : Type := foo : (Set:Type@{i}) -> Foo A. Arguments foo {_} _. Print Universes Subgraph (Foo.i). Definition bar : Foo True -> Set := fun '(foo x) => x. Definition foo_bar (n : Foo True) : foo (bar n) = n. Proof. destruct n;reflexivity. Qed. Definition bar_foo (n : Set) : bar (foo n) = n. Proof. reflexivity. Qed. Require Import Hurkens. Inductive box (A : Set) : Prop := Box : A -> box A. Definition Paradox : False. Proof. Fail unshelve refine ( NoRetractFromSmallPropositionToProp.paradox (Foo True) (fun A => foo A) (fun A => box (bar A)) _ _ False ). Abort.