diff options
Diffstat (limited to 'plugins/groebner/GroebnerZ.v')
| -rw-r--r-- | plugins/groebner/GroebnerZ.v | 73 |
1 files changed, 0 insertions, 73 deletions
diff --git a/plugins/groebner/GroebnerZ.v b/plugins/groebner/GroebnerZ.v deleted file mode 100644 index 7c40bbb70f..0000000000 --- a/plugins/groebner/GroebnerZ.v +++ /dev/null @@ -1,73 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -Require Import Reals ZArith. -Require Export GroebnerR. - -Open Scope Z_scope. - -Lemma groebnerZhypR: forall x y:Z, x=y -> IZR x = IZR y. -Proof IZR_eq. (* or f_equal ... *) - -Lemma groebnerZconclR: forall x y:Z, IZR x = IZR y -> x = y. -Proof eq_IZR. - -Lemma groebnerZhypnotR: forall x y:Z, x<>y -> IZR x <> IZR y. -Proof IZR_neq. - -Lemma groebnerZconclnotR: forall x y:Z, IZR x <> IZR y -> x <> y. -Proof. -intros x y H. contradict H. f_equal. assumption. -Qed. - -Ltac groebnerZversR1 := - repeat - (match goal with - | H:(@eq Z ?x ?y) |- _ => - generalize (@groebnerZhypR _ _ H); clear H; intro H - | |- (@eq Z ?x ?y) => apply groebnerZconclR - | H:not (@eq Z ?x ?y) |- _ => - generalize (@groebnerZhypnotR _ _ H); clear H; intro H - | |- not (@eq Z ?x ?y) => apply groebnerZconclnotR - end). - -Lemma groebnerZR1: forall x y:Z, IZR(x+y) = (IZR x + IZR y)%R. -Proof plus_IZR. - -Lemma groebnerZR2: forall x y:Z, IZR(x*y) = (IZR x * IZR y)%R. -Proof mult_IZR. - -Lemma groebnerZR3: forall x y:Z, IZR(x-y) = (IZR x - IZR y)%R. -Proof. -intros; symmetry. apply Z_R_minus. -Qed. - -Lemma groebnerZR4: forall (x:Z) p, IZR(x ^ Zpos p) = (IZR x ^ nat_of_P p)%R. -Proof. -intros. rewrite pow_IZR. -do 2 f_equal. -apply Zpos_eq_Z_of_nat_o_nat_of_P. -Qed. - -Ltac groebnerZversR2:= - repeat - (rewrite groebnerZR1 in * || - rewrite groebnerZR2 in * || - rewrite groebnerZR3 in * || - rewrite groebnerZR4 in *). - -Ltac groebnerZ_begin := - intros; - groebnerZversR1; - groebnerZversR2; - simpl in *. - (*cbv beta iota zeta delta [nat_of_P Pmult_nat plus mult] in *.*) - -Ltac groebnerZ := - groebnerZ_begin; (*idtac "groebnerZ_begin;";*) - groebnerR. |
