aboutsummaryrefslogtreecommitdiff
path: root/plugins/groebner/GroebnerZ.v
diff options
context:
space:
mode:
authorpottier2010-06-03 09:27:00 +0000
committerpottier2010-06-03 09:27:00 +0000
commitcc197b0decd566a3ec28ac1ab58de4dcbfa0ea77 (patch)
tree61c773dc218e467bdf96b4db267b171078ec1203 /plugins/groebner/GroebnerZ.v
parent2349d832f3141ef33c1097e7ad6255ba5be9461e (diff)
plugin groebner updated and renamed as nsatz; first version of the doc of nsatz in the refman
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13056 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'plugins/groebner/GroebnerZ.v')
-rw-r--r--plugins/groebner/GroebnerZ.v73
1 files changed, 0 insertions, 73 deletions
diff --git a/plugins/groebner/GroebnerZ.v b/plugins/groebner/GroebnerZ.v
deleted file mode 100644
index 7c40bbb70f..0000000000
--- a/plugins/groebner/GroebnerZ.v
+++ /dev/null
@@ -1,73 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Import Reals ZArith.
-Require Export GroebnerR.
-
-Open Scope Z_scope.
-
-Lemma groebnerZhypR: forall x y:Z, x=y -> IZR x = IZR y.
-Proof IZR_eq. (* or f_equal ... *)
-
-Lemma groebnerZconclR: forall x y:Z, IZR x = IZR y -> x = y.
-Proof eq_IZR.
-
-Lemma groebnerZhypnotR: forall x y:Z, x<>y -> IZR x <> IZR y.
-Proof IZR_neq.
-
-Lemma groebnerZconclnotR: forall x y:Z, IZR x <> IZR y -> x <> y.
-Proof.
-intros x y H. contradict H. f_equal. assumption.
-Qed.
-
-Ltac groebnerZversR1 :=
- repeat
- (match goal with
- | H:(@eq Z ?x ?y) |- _ =>
- generalize (@groebnerZhypR _ _ H); clear H; intro H
- | |- (@eq Z ?x ?y) => apply groebnerZconclR
- | H:not (@eq Z ?x ?y) |- _ =>
- generalize (@groebnerZhypnotR _ _ H); clear H; intro H
- | |- not (@eq Z ?x ?y) => apply groebnerZconclnotR
- end).
-
-Lemma groebnerZR1: forall x y:Z, IZR(x+y) = (IZR x + IZR y)%R.
-Proof plus_IZR.
-
-Lemma groebnerZR2: forall x y:Z, IZR(x*y) = (IZR x * IZR y)%R.
-Proof mult_IZR.
-
-Lemma groebnerZR3: forall x y:Z, IZR(x-y) = (IZR x - IZR y)%R.
-Proof.
-intros; symmetry. apply Z_R_minus.
-Qed.
-
-Lemma groebnerZR4: forall (x:Z) p, IZR(x ^ Zpos p) = (IZR x ^ nat_of_P p)%R.
-Proof.
-intros. rewrite pow_IZR.
-do 2 f_equal.
-apply Zpos_eq_Z_of_nat_o_nat_of_P.
-Qed.
-
-Ltac groebnerZversR2:=
- repeat
- (rewrite groebnerZR1 in * ||
- rewrite groebnerZR2 in * ||
- rewrite groebnerZR3 in * ||
- rewrite groebnerZR4 in *).
-
-Ltac groebnerZ_begin :=
- intros;
- groebnerZversR1;
- groebnerZversR2;
- simpl in *.
- (*cbv beta iota zeta delta [nat_of_P Pmult_nat plus mult] in *.*)
-
-Ltac groebnerZ :=
- groebnerZ_begin; (*idtac "groebnerZ_begin;";*)
- groebnerR.