diff options
| author | Samuel Gruetter | 2018-08-09 19:40:47 -0400 |
|---|---|---|
| committer | Samuel Gruetter | 2018-08-09 19:40:47 -0400 |
| commit | 33805c4e94c5ea06e800da22733dc0cbbdff0e8e (patch) | |
| tree | 15e5d1ef071b95cf17a360a37134236f90d2a936 /theories/Numbers/Integer | |
| parent | 18b662aa306c58d46292bdf79a2929c91d7d96fd (diff) | |
fix formulation of the Euclid Theorem in comment
Diffstat (limited to 'theories/Numbers/Integer')
| -rw-r--r-- | theories/Numbers/Integer/Abstract/ZDivEucl.v | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivEucl.v b/theories/Numbers/Integer/Abstract/ZDivEucl.v index d7f25a6613..63f17341af 100644 --- a/theories/Numbers/Integer/Abstract/ZDivEucl.v +++ b/theories/Numbers/Integer/Abstract/ZDivEucl.v @@ -13,7 +13,7 @@ Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv. (** * Euclidean Division for integers, Euclid convention We use here the "usual" formulation of the Euclid Theorem - [forall a b, b<>0 -> exists b q, a = b*q+r /\ 0 < r < |b| ] + [forall a b, b<>0 -> exists r q, a = b*q+r /\ 0 < r < |b| ] The outcome of the modulo function is hence always positive. This corresponds to convention "E" in the following paper: |
