aboutsummaryrefslogtreecommitdiff
path: root/theories/Numbers
diff options
context:
space:
mode:
authorSamuel Gruetter2018-08-09 19:40:47 -0400
committerSamuel Gruetter2018-08-09 19:40:47 -0400
commit33805c4e94c5ea06e800da22733dc0cbbdff0e8e (patch)
tree15e5d1ef071b95cf17a360a37134236f90d2a936 /theories/Numbers
parent18b662aa306c58d46292bdf79a2929c91d7d96fd (diff)
fix formulation of the Euclid Theorem in comment
Diffstat (limited to 'theories/Numbers')
-rw-r--r--theories/Numbers/Integer/Abstract/ZDivEucl.v2
1 files changed, 1 insertions, 1 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZDivEucl.v b/theories/Numbers/Integer/Abstract/ZDivEucl.v
index d7f25a6613..63f17341af 100644
--- a/theories/Numbers/Integer/Abstract/ZDivEucl.v
+++ b/theories/Numbers/Integer/Abstract/ZDivEucl.v
@@ -13,7 +13,7 @@ Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv.
(** * Euclidean Division for integers, Euclid convention
We use here the "usual" formulation of the Euclid Theorem
- [forall a b, b<>0 -> exists b q, a = b*q+r /\ 0 < r < |b| ]
+ [forall a b, b<>0 -> exists r q, a = b*q+r /\ 0 < r < |b| ]
The outcome of the modulo function is hence always positive.
This corresponds to convention "E" in the following paper: