aboutsummaryrefslogtreecommitdiff
path: root/plugins
diff options
context:
space:
mode:
authorletouzey2012-07-05 16:56:37 +0000
committerletouzey2012-07-05 16:56:37 +0000
commitffb64d16132dd80f72ecb619ef87e3eee1fa8bda (patch)
tree5368562b42af1aeef7e19b4bd897c9fc5655769b /plugins
parenta46ccd71539257bb55dcddd9ae8510856a5c9a16 (diff)
Kills the useless tactic annotations "in |- *"
Most of these heavyweight annotations were introduced a long time ago by the automatic 7.x -> 8.0 translator git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15518 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'plugins')
-rw-r--r--plugins/field/LegacyField_Tactic.v20
-rw-r--r--plugins/field/LegacyField_Theory.v180
-rw-r--r--plugins/fourier/Fourier_util.v32
-rw-r--r--plugins/quote/Quote.v2
-rw-r--r--plugins/ring/LegacyArithRing.v4
-rw-r--r--plugins/ring/LegacyRing.v4
-rw-r--r--plugins/ring/LegacyRing_theory.v40
-rw-r--r--plugins/ring/Ring_abstract.v82
-rw-r--r--plugins/ring/Ring_normalize.v134
-rw-r--r--plugins/ring/Setoid_ring_normalize.v114
-rw-r--r--plugins/ring/Setoid_ring_theory.v2
-rw-r--r--plugins/romega/ReflOmegaCore.v412
-rw-r--r--plugins/setoid_ring/Field_theory.v226
-rw-r--r--plugins/setoid_ring/InitialRing.v72
-rw-r--r--plugins/setoid_ring/RealField.v50
-rw-r--r--plugins/setoid_ring/Ring.v2
16 files changed, 688 insertions, 688 deletions
diff --git a/plugins/field/LegacyField_Tactic.v b/plugins/field/LegacyField_Tactic.v
index 810443f849..0a8d27ca37 100644
--- a/plugins/field/LegacyField_Tactic.v
+++ b/plugins/field/LegacyField_Tactic.v
@@ -150,7 +150,7 @@ Ltac apply_assoc FT lvar trm :=
match constr:(t = trm) with
| (?X1 = ?X1) => idtac
| _ =>
- rewrite <- (assoc_correct FT trm); change (assoc trm) with t in |- *
+ rewrite <- (assoc_correct FT trm); change (assoc trm) with t
end.
(**** Distribution *****)
@@ -161,7 +161,7 @@ Ltac apply_distrib FT lvar trm :=
| (?X1 = ?X1) => idtac
| _ =>
rewrite <- (distrib_correct FT trm);
- change (distrib trm) with t in |- *
+ change (distrib trm) with t
end.
(**** Multiplication by the inverse product ****)
@@ -175,7 +175,7 @@ Ltac weak_reduce :=
| |- context [(interp_ExprA ?X1 ?X2 _)] =>
cbv beta iota zeta
delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list X1 X2 A Azero
- Aone Aplus Amult Aopp Ainv] in |- *
+ Aone Aplus Amult Aopp Ainv]
end.
Ltac multiply mul :=
@@ -199,7 +199,7 @@ Ltac apply_multiply FT lvar trm :=
| (?X1 = ?X1) => idtac
| _ =>
rewrite <- (multiply_correct FT trm);
- change (multiply trm) with t in |- *
+ change (multiply trm) with t
end.
(**** Permutations and simplification ****)
@@ -210,7 +210,7 @@ Ltac apply_inverse mul FT lvar trm :=
| (?X1 = ?X1) => idtac
| _ =>
rewrite <- (inverse_correct FT trm mul);
- [ change (inverse_simplif mul trm) with t in |- * | assumption ]
+ [ change (inverse_simplif mul trm) with t | assumption ]
end.
(**** Inverse test ****)
@@ -252,11 +252,11 @@ Ltac apply_simplif sfun :=
Ltac unfolds FT :=
match get_component Aminus FT with
- | Some ?X1 => unfold X1 in |- *
+ | Some ?X1 => unfold X1
| _ => idtac
end;
match get_component Adiv FT with
- | Some ?X1 => unfold X1 in |- *
+ | Some ?X1 => unfold X1
| _ => idtac
end.
@@ -267,8 +267,8 @@ Ltac reduce FT :=
with AmultT := get_component Amult FT
with AoppT := get_component Aopp FT
with AinvT := get_component Ainv FT in
- (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] in |- * ||
- compute in |- *).
+ (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] ||
+ compute).
Ltac field_gen_aux FT :=
let AplusT := get_component Aplus FT in
@@ -280,7 +280,7 @@ Ltac field_gen_aux FT :=
cut
(let ft := FT in
let vm := lvar in interp_ExprA ft vm trm1 = interp_ExprA ft vm trm2);
- [ compute in |- *; auto
+ [ compute; auto
| intros ft vm; apply_simplif apply_distrib;
apply_simplif apply_assoc; multiply mul;
[ apply_simplif apply_multiply;
diff --git a/plugins/field/LegacyField_Theory.v b/plugins/field/LegacyField_Theory.v
index 20ffbc271d..ac66e6d35e 100644
--- a/plugins/field/LegacyField_Theory.v
+++ b/plugins/field/LegacyField_Theory.v
@@ -44,20 +44,20 @@ Proof.
elim (H1 e0); intro y; elim (H2 e); intro y0;
try
(left; rewrite y; rewrite y0; auto) ||
- (right; red in |- *; intro; inversion H3; auto).
+ (right; red; intro; inversion H3; auto).
elim (H1 e0); intro y; elim (H2 e); intro y0;
try
(left; rewrite y; rewrite y0; auto) ||
- (right; red in |- *; intro; inversion H3; auto).
+ (right; red; intro; inversion H3; auto).
elim (H0 e); intro y.
left; rewrite y; auto.
- right; red in |- *; intro; inversion H1; auto.
+ right; red; intro; inversion H1; auto.
elim (H0 e); intro y.
left; rewrite y; auto.
- right; red in |- *; intro; inversion H1; auto.
+ right; red; intro; inversion H1; auto.
elim (eq_nat_dec n n0); intro y.
left; rewrite y; auto.
- right; red in |- *; intro; inversion H; auto.
+ right; red; intro; inversion H; auto.
Defined.
Definition eq_nat_dec := Eval compute in eq_nat_dec.
@@ -152,7 +152,7 @@ Lemma r_AmultT_mult :
forall r r1 r2:AT, AmultT r r1 = AmultT r r2 -> r <> AzeroT -> r1 = r2.
Proof.
intros; transitivity (AmultT (AmultT (AinvT r) r) r1).
- rewrite Th_inv_defT; [ symmetry in |- *; apply AmultT_1l; auto | auto ].
+ rewrite Th_inv_defT; [ symmetry ; apply AmultT_1l; auto | auto ].
transitivity (AmultT (AmultT (AinvT r) r) r2).
repeat rewrite AmultT_assoc; rewrite H; trivial.
rewrite Th_inv_defT; [ apply AmultT_1l; auto | auto ].
@@ -181,7 +181,7 @@ Qed.
Lemma Rmult_neq_0_reg :
forall r1 r2:AT, AmultT r1 r2 <> AzeroT -> r1 <> AzeroT /\ r2 <> AzeroT.
Proof.
- intros r1 r2 H; split; red in |- *; intro; apply H; rewrite H0; legacy ring.
+ intros r1 r2 H; split; red; intro; apply H; rewrite H0; legacy ring.
Qed.
(************************)
@@ -262,11 +262,11 @@ Lemma merge_mult_correct1 :
Proof.
intros e1 e2; generalize e1; generalize e2; clear e1 e2.
simple induction e2; auto; intros.
-unfold merge_mult at 1 in |- *; fold merge_mult in |- *;
- unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *;
- rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *;
- fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *;
- fold interp_ExprA in |- *; auto.
+unfold merge_mult at 1; fold merge_mult;
+ unfold interp_ExprA at 2; fold interp_ExprA;
+ rewrite (H0 e e3 lvar); unfold interp_ExprA at 1;
+ fold interp_ExprA; unfold interp_ExprA at 5;
+ fold interp_ExprA; auto.
Qed.
Lemma merge_mult_correct :
@@ -274,7 +274,7 @@ Lemma merge_mult_correct :
interp_ExprA lvar (merge_mult e1 e2) = interp_ExprA lvar (EAmult e1 e2).
Proof.
simple induction e1; auto; intros.
-elim e0; try (intros; simpl in |- *; legacy ring).
+elim e0; try (intros; simpl; legacy ring).
unfold interp_ExprA in H2; fold interp_ExprA in H2;
cut
(AmultT (interp_ExprA lvar e2)
@@ -284,7 +284,7 @@ unfold interp_ExprA in H2; fold interp_ExprA in H2;
(AmultT (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e4))
(interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
intro H3; rewrite H3; rewrite <- H2; rewrite merge_mult_correct1;
- simpl in |- *; legacy ring.
+ simpl; legacy ring.
legacy ring.
Qed.
@@ -295,8 +295,8 @@ Lemma assoc_mult_correct1 :
interp_ExprA lvar (assoc_mult (EAmult e1 e2)).
Proof.
simple induction e1; auto; intros.
-rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_mult_correct;
- simpl in |- *; rewrite merge_mult_correct; simpl in |- *;
+rewrite <- (H e0 lvar); simpl; rewrite merge_mult_correct;
+ simpl; rewrite merge_mult_correct; simpl;
auto.
Qed.
@@ -306,21 +306,21 @@ Lemma assoc_mult_correct :
Proof.
simple induction e; auto; intros.
elim e0; intros.
-intros; simpl in |- *; legacy ring.
-simpl in |- *; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1)));
+intros; simpl; legacy ring.
+simpl; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1)));
rewrite (AmultT_1l (interp_ExprA lvar e1)); apply H0.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite merge_mult_correct; simpl in |- *;
- rewrite merge_mult_correct; simpl in |- *; rewrite AmultT_assoc;
- rewrite assoc_mult_correct1; rewrite H2; simpl in |- *;
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite merge_mult_correct; simpl;
+ rewrite merge_mult_correct; simpl; rewrite AmultT_assoc;
+ rewrite assoc_mult_correct1; rewrite H2; simpl;
rewrite <- assoc_mult_correct1 in H1; unfold interp_ExprA at 3 in H1;
fold interp_ExprA in H1; rewrite (H0 lvar) in H1;
rewrite (AmultT_comm (interp_ExprA lvar e3) (interp_ExprA lvar e1));
rewrite <- AmultT_assoc; rewrite H1; rewrite AmultT_assoc;
legacy ring.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
Qed.
Lemma merge_plus_correct1 :
@@ -330,11 +330,11 @@ Lemma merge_plus_correct1 :
Proof.
intros e1 e2; generalize e1; generalize e2; clear e1 e2.
simple induction e2; auto; intros.
-unfold merge_plus at 1 in |- *; fold merge_plus in |- *;
- unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *;
- rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *;
- fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *;
- fold interp_ExprA in |- *; auto.
+unfold merge_plus at 1; fold merge_plus;
+ unfold interp_ExprA at 2; fold interp_ExprA;
+ rewrite (H0 e e3 lvar); unfold interp_ExprA at 1;
+ fold interp_ExprA; unfold interp_ExprA at 5;
+ fold interp_ExprA; auto.
Qed.
Lemma merge_plus_correct :
@@ -342,7 +342,7 @@ Lemma merge_plus_correct :
interp_ExprA lvar (merge_plus e1 e2) = interp_ExprA lvar (EAplus e1 e2).
Proof.
simple induction e1; auto; intros.
-elim e0; try intros; try (simpl in |- *; legacy ring).
+elim e0; try intros; try (simpl; legacy ring).
unfold interp_ExprA in H2; fold interp_ExprA in H2;
cut
(AplusT (interp_ExprA lvar e2)
@@ -352,7 +352,7 @@ unfold interp_ExprA in H2; fold interp_ExprA in H2;
(AplusT (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e4))
(interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
intro H3; rewrite H3; rewrite <- H2; rewrite merge_plus_correct1;
- simpl in |- *; legacy ring.
+ simpl; legacy ring.
legacy ring.
Qed.
@@ -362,8 +362,8 @@ Lemma assoc_plus_correct :
interp_ExprA lvar (assoc (EAplus e1 e2)).
Proof.
simple induction e1; auto; intros.
-rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_plus_correct;
- simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
+rewrite <- (H e0 lvar); simpl; rewrite merge_plus_correct;
+ simpl; rewrite merge_plus_correct; simpl;
auto.
Qed.
@@ -373,11 +373,11 @@ Lemma assoc_correct :
Proof.
simple induction e; auto; intros.
elim e0; intros.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
- rewrite merge_plus_correct; simpl in |- *; rewrite AplusT_assoc;
- rewrite assoc_plus_correct; rewrite H2; simpl in |- *;
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite merge_plus_correct; simpl;
+ rewrite merge_plus_correct; simpl; rewrite AplusT_assoc;
+ rewrite assoc_plus_correct; rewrite H2; simpl;
apply
(r_AplusT_plus (interp_ExprA lvar (assoc e1))
(AplusT (interp_ExprA lvar (assoc e2))
@@ -386,7 +386,7 @@ simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
(interp_ExprA lvar e1))); rewrite <- AplusT_assoc;
rewrite
(AplusT_comm (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)))
- ; rewrite assoc_plus_correct; rewrite H1; simpl in |- *;
+ ; rewrite assoc_plus_correct; rewrite H1; simpl;
rewrite (H0 lvar);
rewrite <-
(AplusT_assoc (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e1))
@@ -399,15 +399,15 @@ simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
rewrite <-
(AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e3)
(interp_ExprA lvar e1)); apply AplusT_comm.
-unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *;
- fold interp_ExprA in |- *; rewrite assoc_mult_correct;
- rewrite (H0 lvar); simpl in |- *; auto.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite (H0 lvar); auto.
-unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *;
- fold interp_ExprA in |- *; rewrite assoc_mult_correct;
- simpl in |- *; auto.
+unfold assoc; fold assoc; unfold interp_ExprA;
+ fold interp_ExprA; rewrite assoc_mult_correct;
+ rewrite (H0 lvar); simpl; auto.
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
+unfold assoc; fold assoc; unfold interp_ExprA;
+ fold interp_ExprA; rewrite assoc_mult_correct;
+ simpl; auto.
Qed.
(**** Distribution *****)
@@ -451,7 +451,7 @@ Lemma distrib_mult_right_correct :
interp_ExprA lvar (distrib_mult_right e1 e2) =
AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
Proof.
-simple induction e1; try intros; simpl in |- *; auto.
+simple induction e1; try intros; simpl; auto.
rewrite AmultT_comm; rewrite AmultT_AplusT_distr; rewrite (H e2 lvar);
rewrite (H0 e2 lvar); legacy ring.
Qed.
@@ -461,10 +461,10 @@ Lemma distrib_mult_left_correct :
interp_ExprA lvar (distrib_mult_left e1 e2) =
AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
Proof.
-simple induction e1; try intros; simpl in |- *.
-rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl in |- *;
+simple induction e1; try intros; simpl.
+rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl;
apply AmultT_Or.
-rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm.
+rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
rewrite AmultT_comm;
rewrite
(AmultT_AplusT_distr (interp_ExprA lvar e2) (interp_ExprA lvar e)
@@ -472,10 +472,10 @@ rewrite AmultT_comm;
rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e));
rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e0));
rewrite (H e2 lvar); rewrite (H0 e2 lvar); auto.
-rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm.
-rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm.
-rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm.
-rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm.
+rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
+rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
+rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
+rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
Qed.
Lemma distrib_correct :
@@ -483,13 +483,13 @@ Lemma distrib_correct :
interp_ExprA lvar (distrib e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
-simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar);
- unfold distrib in |- *; simpl in |- *; auto.
-simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar);
- unfold distrib in |- *; simpl in |- *; apply distrib_mult_left_correct.
-simpl in |- *; fold AoppT in |- *; rewrite <- (H lvar);
- unfold distrib in |- *; simpl in |- *; rewrite distrib_mult_right_correct;
- simpl in |- *; fold AoppT in |- *; legacy ring.
+simpl; rewrite <- (H lvar); rewrite <- (H0 lvar);
+ unfold distrib; simpl; auto.
+simpl; rewrite <- (H lvar); rewrite <- (H0 lvar);
+ unfold distrib; simpl; apply distrib_mult_left_correct.
+simpl; fold AoppT; rewrite <- (H lvar);
+ unfold distrib; simpl; rewrite distrib_mult_right_correct;
+ simpl; fold AoppT; legacy ring.
Qed.
(**** Multiplication by the inverse product ****)
@@ -500,7 +500,7 @@ Lemma mult_eq :
interp_ExprA lvar (EAmult a e1) = interp_ExprA lvar (EAmult a e2) ->
interp_ExprA lvar e1 = interp_ExprA lvar e2.
Proof.
- simpl in |- *; intros;
+ simpl; intros;
apply
(r_AmultT_mult (interp_ExprA lvar a) (interp_ExprA lvar e1)
(interp_ExprA lvar e2)); assumption.
@@ -523,16 +523,16 @@ Lemma multiply_aux_correct :
interp_ExprA lvar (multiply_aux a e) =
AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
-simple induction e; simpl in |- *; intros; try rewrite merge_mult_correct;
+simple induction e; simpl; intros; try rewrite merge_mult_correct;
auto.
- simpl in |- *; rewrite (H0 lvar); legacy ring.
+ simpl; rewrite (H0 lvar); legacy ring.
Qed.
Lemma multiply_correct :
forall (e:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (multiply e) = interp_ExprA lvar e.
Proof.
- simple induction e; simpl in |- *; auto.
+ simple induction e; simpl; auto.
intros; apply multiply_aux_correct.
Qed.
@@ -583,27 +583,27 @@ Lemma monom_remove_correct :
AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
simple induction e; intros.
-simpl in |- *; case (eqExprA EAzero (EAinv a)); intros;
- [ inversion e0 | simpl in |- *; trivial ].
-simpl in |- *; case (eqExprA EAone (EAinv a)); intros;
- [ inversion e0 | simpl in |- *; trivial ].
-simpl in |- *; case (eqExprA (EAplus e0 e1) (EAinv a)); intros;
- [ inversion e2 | simpl in |- *; trivial ].
-simpl in |- *; case (eqExprA e0 (EAinv a)); intros.
-rewrite e2; simpl in |- *; fold AinvT in |- *.
+simpl; case (eqExprA EAzero (EAinv a)); intros;
+ [ inversion e0 | simpl; trivial ].
+simpl; case (eqExprA EAone (EAinv a)); intros;
+ [ inversion e0 | simpl; trivial ].
+simpl; case (eqExprA (EAplus e0 e1) (EAinv a)); intros;
+ [ inversion e2 | simpl; trivial ].
+simpl; case (eqExprA e0 (EAinv a)); intros.
+rewrite e2; simpl; fold AinvT.
rewrite <-
(AmultT_assoc (interp_ExprA lvar a) (AinvT (interp_ExprA lvar a))
(interp_ExprA lvar e1)); rewrite AinvT_r; [ legacy ring | assumption ].
-simpl in |- *; rewrite H0; auto; legacy ring.
-simpl in |- *; fold AoppT in |- *; case (eqExprA (EAopp e0) (EAinv a));
- intros; [ inversion e1 | simpl in |- *; trivial ].
-unfold monom_remove in |- *; case (eqExprA (EAinv e0) (EAinv a)); intros.
+simpl; rewrite H0; auto; legacy ring.
+simpl; fold AoppT; case (eqExprA (EAopp e0) (EAinv a));
+ intros; [ inversion e1 | simpl; trivial ].
+unfold monom_remove; case (eqExprA (EAinv e0) (EAinv a)); intros.
case (eqExprA e0 a); intros.
-rewrite e2; simpl in |- *; fold AinvT in |- *; rewrite AinvT_r; auto.
-inversion e1; simpl in |- *; exfalso; auto.
-simpl in |- *; trivial.
-unfold monom_remove in |- *; case (eqExprA (EAvar n) (EAinv a)); intros;
- [ inversion e0 | simpl in |- *; trivial ].
+rewrite e2; simpl; fold AinvT; rewrite AinvT_r; auto.
+inversion e1; simpl; exfalso; auto.
+simpl; trivial.
+unfold monom_remove; case (eqExprA (EAvar n) (EAinv a)); intros;
+ [ inversion e0 | simpl; trivial ].
Qed.
Lemma monom_simplif_rem_correct :
@@ -612,7 +612,7 @@ Lemma monom_simplif_rem_correct :
interp_ExprA lvar (monom_simplif_rem a e) =
AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
-simple induction a; simpl in |- *; intros; try rewrite monom_remove_correct;
+simple induction a; simpl; intros; try rewrite monom_remove_correct;
auto.
elim (Rmult_neq_0_reg (interp_ExprA lvar e) (interp_ExprA lvar e0) H1);
intros.
@@ -626,9 +626,9 @@ Lemma monom_simplif_correct :
interp_ExprA lvar (monom_simplif a e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
-simpl in |- *; case (eqExprA a e0); intros.
+simpl; case (eqExprA a e0); intros.
rewrite <- e2; apply monom_simplif_rem_correct; auto.
-simpl in |- *; trivial.
+simpl; trivial.
Qed.
Lemma inverse_correct :
@@ -637,8 +637,8 @@ Lemma inverse_correct :
interp_ExprA lvar (inverse_simplif a e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
-simpl in |- *; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto.
-unfold inverse_simplif in |- *; rewrite monom_simplif_correct; auto.
+simpl; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto.
+unfold inverse_simplif; rewrite monom_simplif_correct; auto.
Qed.
End Theory_of_fields.
diff --git a/plugins/fourier/Fourier_util.v b/plugins/fourier/Fourier_util.v
index 3d16f1899b..a219dea696 100644
--- a/plugins/fourier/Fourier_util.v
+++ b/plugins/fourier/Fourier_util.v
@@ -16,7 +16,7 @@ intros; apply Rmult_lt_compat_l; assumption.
Qed.
Lemma Rfourier_le : forall x1 y1 a:R, x1 <= y1 -> 0 < a -> a * x1 <= a * y1.
-red in |- *.
+red.
intros.
case H; auto with real.
Qed.
@@ -63,19 +63,19 @@ Lemma Rfourier_le_le :
x1 <= y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 <= y1 + a * y2.
intros x1 y1 x2 y2 a H H0 H1; try assumption.
case H0; intros.
-red in |- *.
+red.
left; try assumption.
apply Rfourier_le_lt; auto with real.
rewrite H2.
case H; intros.
-red in |- *.
+red.
left; try assumption.
rewrite (Rplus_comm x1 (a * y2)).
rewrite (Rplus_comm y1 (a * y2)).
apply Rplus_lt_compat_l.
try exact H3.
rewrite H3.
-red in |- *.
+red.
right; try assumption.
auto with real.
Qed.
@@ -84,7 +84,7 @@ Lemma Rlt_zero_pos_plus1 : forall x:R, 0 < x -> 0 < 1 + x.
intros x H; try assumption.
rewrite Rplus_comm.
apply Rle_lt_0_plus_1.
-red in |- *; auto with real.
+red; auto with real.
Qed.
Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y.
@@ -101,12 +101,12 @@ Qed.
Lemma Rle_zero_pos_plus1 : forall x:R, 0 <= x -> 0 <= 1 + x.
intros x H; try assumption.
case H; intros.
-red in |- *.
+red.
left; try assumption.
apply Rlt_zero_pos_plus1; auto with real.
rewrite <- H0.
replace (1 + 0) with 1.
-red in |- *; left.
+red; left.
exact Rlt_zero_1.
ring.
Qed.
@@ -114,28 +114,28 @@ Qed.
Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y.
intros x y H H0; try assumption.
case H; intros.
-red in |- *; left.
+red; left.
apply Rlt_mult_inv_pos; auto with real.
rewrite <- H1.
-red in |- *; right; ring.
+red; right; ring.
Qed.
Lemma Rle_zero_1 : 0 <= 1.
-red in |- *; left.
+red; left.
exact Rlt_zero_1.
Qed.
Lemma Rle_not_lt : forall n d:R, 0 <= n * / d -> ~ 0 < - n * / d.
-intros n d H; red in |- *; intros H0; try exact H0.
+intros n d H; red; intros H0; try exact H0.
generalize (Rgt_not_le 0 (n * / d)).
intros H1; elim H1; try assumption.
replace (n * / d) with (- - (n * / d)).
replace 0 with (- -0).
replace (- (n * / d)) with (- n * / d).
replace (-0) with 0.
-red in |- *.
+red.
apply Ropp_gt_lt_contravar.
-red in |- *.
+red.
exact H0.
ring.
ring.
@@ -162,7 +162,7 @@ ring.
Qed.
Lemma Rnot_lt_lt : forall x y:R, ~ 0 < y - x -> ~ x < y.
-unfold not in |- *; intros.
+unfold not; intros.
apply H.
apply Rplus_lt_reg_r with x.
replace (x + 0) with x.
@@ -173,7 +173,7 @@ ring.
Qed.
Lemma Rnot_le_le : forall x y:R, ~ 0 <= y - x -> ~ x <= y.
-unfold not in |- *; intros.
+unfold not; intros.
apply H.
case H0; intros.
left.
@@ -188,7 +188,7 @@ rewrite H1; ring.
Qed.
Lemma Rfourier_gt_to_lt : forall x y:R, y > x -> x < y.
-unfold Rgt in |- *; intros; assumption.
+unfold Rgt; intros; assumption.
Qed.
Lemma Rfourier_ge_to_le : forall x y:R, y >= x -> x <= y.
diff --git a/plugins/quote/Quote.v b/plugins/quote/Quote.v
index e2d8e67e6b..66789e45c3 100644
--- a/plugins/quote/Quote.v
+++ b/plugins/quote/Quote.v
@@ -67,7 +67,7 @@ Fixpoint index_lt (n m:index) {struct m} : bool :=
end.
Lemma index_eq_prop : forall n m:index, index_eq n m = true -> n = m.
- simple induction n; simple induction m; simpl in |- *; intros.
+ simple induction n; simple induction m; simpl; intros.
rewrite (H i0 H1); reflexivity.
discriminate.
discriminate.
diff --git a/plugins/ring/LegacyArithRing.v b/plugins/ring/LegacyArithRing.v
index 94dc48a733..9c059cea17 100644
--- a/plugins/ring/LegacyArithRing.v
+++ b/plugins/ring/LegacyArithRing.v
@@ -75,14 +75,14 @@ Ltac rewrite_S_to_plus :=
(**) (**)
rewrite_S_to_plus_term X1
with t2 := rewrite_S_to_plus_term X2 in
- change (t1 = t2) in |- *
+ change (t1 = t2)
| |- (?X1 = ?X2) =>
try
let t1 :=
(**) (**)
rewrite_S_to_plus_term X1
with t2 := rewrite_S_to_plus_term X2 in
- change (t1 = t2) in |- *
+ change (t1 = t2)
end.
Ltac ring_nat := rewrite_S_to_plus; ring.
diff --git a/plugins/ring/LegacyRing.v b/plugins/ring/LegacyRing.v
index d19e9f589a..132014331b 100644
--- a/plugins/ring/LegacyRing.v
+++ b/plugins/ring/LegacyRing.v
@@ -19,7 +19,7 @@ Declare ML Module "ring_plugin".
Definition BoolTheory :
Ring_Theory xorb andb true false (fun b:bool => b) eqb.
-split; simpl in |- *.
+split; simpl.
destruct n; destruct m; reflexivity.
destruct n; destruct m; destruct p; reflexivity.
destruct n; destruct m; reflexivity.
@@ -28,7 +28,7 @@ destruct n; reflexivity.
destruct n; reflexivity.
destruct n; reflexivity.
destruct n; destruct m; destruct p; reflexivity.
-destruct x; destruct y; reflexivity || simpl in |- *; tauto.
+destruct x; destruct y; reflexivity || simpl; tauto.
Defined.
Add Legacy Ring bool xorb andb true false (fun b:bool => b) eqb BoolTheory
diff --git a/plugins/ring/LegacyRing_theory.v b/plugins/ring/LegacyRing_theory.v
index ca3355a6ec..d0bc46ea48 100644
--- a/plugins/ring/LegacyRing_theory.v
+++ b/plugins/ring/LegacyRing_theory.v
@@ -58,22 +58,22 @@ Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
Lemma SR_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_plus_zero_left2 : forall n:A, n = 0 + n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_mult_one_left2 : forall n:A, n = 1 * n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_mult_zero_left2 : forall n:A, 0 = 0 * n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
intros.
@@ -100,7 +100,7 @@ eauto.
Qed.
Lemma SR_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
-symmetry in |- *; apply SR_distr_right. Qed.
+symmetry ; apply SR_distr_right. Qed.
Lemma SR_mult_zero_right : forall n:A, n * 0 = 0.
intro; rewrite mult_comm; eauto.
@@ -176,22 +176,22 @@ Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
Lemma Th_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_plus_zero_left2 : forall n:A, n = 0 + n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_mult_one_left2 : forall n:A, n = 1 * n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_opp_def2 : forall n:A, 0 = n + - n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
intros.
@@ -214,7 +214,7 @@ Hint Resolve Th_plus_permute Th_mult_permute.
Lemma aux1 : forall a:A, a + a = a -> a = 0.
intros.
generalize (opp_def a).
-pattern a at 1 in |- *.
+pattern a at 1.
rewrite <- H.
rewrite <- plus_assoc.
rewrite opp_def.
@@ -233,7 +233,7 @@ Qed.
Hint Resolve Th_mult_zero_left.
Lemma Th_mult_zero_left2 : forall n:A, 0 = 0 * n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma aux2 : forall x y z:A, x + y = 0 -> x + z = 0 -> y = z.
intros.
@@ -255,7 +255,7 @@ Qed.
Hint Resolve Th_opp_mult_left.
Lemma Th_opp_mult_left2 : forall x y:A, - x * y = - (x * y).
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_mult_zero_right : forall n:A, n * 0 = 0.
intro; elim mult_comm; eauto.
@@ -306,14 +306,14 @@ Qed.
Hint Resolve Th_opp_opp.
Lemma Th_opp_opp2 : forall n:A, n = - - n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_mult_opp_opp : forall x y:A, - x * - y = x * y.
intros; rewrite <- Th_opp_mult_left; rewrite <- Th_opp_mult_right; auto.
Qed.
Lemma Th_mult_opp_opp2 : forall x y:A, x * y = - x * - y.
-symmetry in |- *; apply Th_mult_opp_opp. Qed.
+symmetry ; apply Th_mult_opp_opp. Qed.
Lemma Th_opp_zero : - 0 = 0.
rewrite <- (plus_zero_left (- 0)).
@@ -342,7 +342,7 @@ eauto.
Qed.
Lemma Th_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
-symmetry in |- *; apply Th_distr_right.
+symmetry ; apply Th_distr_right.
Qed.
End Theory_of_rings.
@@ -357,7 +357,7 @@ Definition Semi_Ring_Theory_of :
Ring_Theory Aplus Amult Aone Azero Aopp Aeq ->
Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
intros until 1; case H.
-split; intros; simpl in |- *; eauto.
+split; intros; simpl; eauto.
Defined.
(* Every ring can be viewed as a semi-ring : this property will be used
diff --git a/plugins/ring/Ring_abstract.v b/plugins/ring/Ring_abstract.v
index 5358941605..7995696ffb 100644
--- a/plugins/ring/Ring_abstract.v
+++ b/plugins/ring/Ring_abstract.v
@@ -143,7 +143,7 @@ Hint Immediate T.
Remark iacs_aux_ok :
forall (x:A) (s:abstract_sum), iacs_aux x s = Aplus x (interp_acs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
trivial.
reflexivity.
Qed.
@@ -158,8 +158,8 @@ Lemma abstract_varlist_insert_ok :
simple induction s.
trivial.
- simpl in |- *; intros.
- elim (varlist_lt l v); simpl in |- *.
+ simpl; intros.
+ elim (varlist_lt l v); simpl.
eauto.
rewrite iacs_aux_ok.
rewrite H; auto.
@@ -177,13 +177,13 @@ Proof.
auto.
- simpl in |- *; elim (varlist_lt v v0); simpl in |- *.
+ simpl; elim (varlist_lt v v0); simpl.
repeat rewrite iacs_aux_ok.
- rewrite H; simpl in |- *; auto.
+ rewrite H; simpl; auto.
simpl in H0.
repeat rewrite iacs_aux_ok.
- rewrite H0. simpl in |- *; auto.
+ rewrite H0. simpl; auto.
Qed.
Lemma abstract_sum_scalar_ok :
@@ -192,9 +192,9 @@ Lemma abstract_sum_scalar_ok :
Amult (interp_vl Amult Aone Azero vm l) (interp_acs s).
Proof.
simple induction s.
- simpl in |- *; eauto.
+ simpl; eauto.
- simpl in |- *; intros.
+ simpl; intros.
rewrite iacs_aux_ok.
rewrite abstract_varlist_insert_ok.
rewrite H.
@@ -208,22 +208,22 @@ Lemma abstract_sum_prod_ok :
Proof.
simple induction x.
- intros; simpl in |- *; eauto.
+ intros; simpl; eauto.
destruct y as [| v0 a0]; intros.
- simpl in |- *; rewrite H; eauto.
+ simpl; rewrite H; eauto.
- unfold abstract_sum_prod in |- *; fold abstract_sum_prod in |- *.
+ unfold abstract_sum_prod; fold abstract_sum_prod.
rewrite abstract_sum_merge_ok.
rewrite abstract_sum_scalar_ok.
- rewrite H; simpl in |- *; auto.
+ rewrite H; simpl; auto.
Qed.
Theorem aspolynomial_normalize_ok :
forall x:aspolynomial, interp_asp x = interp_acs (aspolynomial_normalize x).
Proof.
- simple induction x; simpl in |- *; intros; trivial.
+ simple induction x; simpl; intros; trivial.
rewrite abstract_sum_merge_ok.
rewrite H; rewrite H0; eauto.
rewrite abstract_sum_prod_ok.
@@ -451,7 +451,7 @@ Hint Immediate T.
Lemma isacs_aux_ok :
forall (x:A) (s:signed_sum), isacs_aux x s = Aplus x (interp_sacs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
trivial.
reflexivity.
reflexivity.
@@ -460,15 +460,15 @@ Qed.
Hint Extern 10 (_ = _ :>A) => rewrite isacs_aux_ok: core.
Ltac solve1 v v0 H H0 :=
- simpl in |- *; elim (varlist_lt v v0); simpl in |- *; rewrite isacs_aux_ok;
- [ rewrite H; simpl in |- *; auto | simpl in H0; rewrite H0; auto ].
+ simpl; elim (varlist_lt v v0); simpl; rewrite isacs_aux_ok;
+ [ rewrite H; simpl; auto | simpl in H0; rewrite H0; auto ].
Lemma signed_sum_merge_ok :
forall x y:signed_sum,
interp_sacs (signed_sum_merge x y) = Aplus (interp_sacs x) (interp_sacs y).
simple induction x.
- intro; simpl in |- *; auto.
+ intro; simpl; auto.
simple induction y; intros.
@@ -476,8 +476,8 @@ Lemma signed_sum_merge_ok :
solve1 v v0 H H0.
- simpl in |- *; generalize (varlist_eq_prop v v0).
- elim (varlist_eq v v0); simpl in |- *.
+ simpl; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl.
intro Heq; rewrite (Heq I).
rewrite H.
@@ -497,8 +497,8 @@ Lemma signed_sum_merge_ok :
auto.
- simpl in |- *; generalize (varlist_eq_prop v v0).
- elim (varlist_eq v v0); simpl in |- *.
+ simpl; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl.
intro Heq; rewrite (Heq I).
rewrite H.
@@ -516,7 +516,7 @@ Lemma signed_sum_merge_ok :
Qed.
Ltac solve2 l v H :=
- elim (varlist_lt l v); simpl in |- *; rewrite isacs_aux_ok;
+ elim (varlist_lt l v); simpl; rewrite isacs_aux_ok;
[ auto | rewrite H; auto ].
Lemma plus_varlist_insert_ok :
@@ -528,12 +528,12 @@ Proof.
simple induction s.
trivial.
- simpl in |- *; intros.
+ simpl; intros.
solve2 l v H.
- simpl in |- *; intros.
+ simpl; intros.
generalize (varlist_eq_prop l v).
- elim (varlist_eq l v); simpl in |- *.
+ elim (varlist_eq l v); simpl.
intro Heq; rewrite (Heq I).
repeat rewrite isacs_aux_ok.
@@ -555,9 +555,9 @@ Proof.
simple induction s.
trivial.
- simpl in |- *; intros.
+ simpl; intros.
generalize (varlist_eq_prop l v).
- elim (varlist_eq l v); simpl in |- *.
+ elim (varlist_eq l v); simpl.
intro Heq; rewrite (Heq I).
repeat rewrite isacs_aux_ok.
@@ -568,10 +568,10 @@ Proof.
rewrite (Th_opp_def T).
auto.
- simpl in |- *; intros.
+ simpl; intros.
solve2 l v H.
- simpl in |- *; intros; solve2 l v H.
+ simpl; intros; solve2 l v H.
Qed.
@@ -579,9 +579,9 @@ Lemma signed_sum_opp_ok :
forall s:signed_sum, interp_sacs (signed_sum_opp s) = Aopp (interp_sacs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
- symmetry in |- *; apply (Th_opp_zero T).
+ symmetry ; apply (Th_opp_zero T).
repeat rewrite isacs_aux_ok.
rewrite H.
@@ -605,14 +605,14 @@ Proof.
simple induction s.
trivial.
- simpl in |- *; intros.
+ simpl; intros.
rewrite plus_varlist_insert_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
repeat rewrite isacs_aux_ok.
rewrite H.
auto.
- simpl in |- *; intros.
+ simpl; intros.
rewrite minus_varlist_insert_ok.
repeat rewrite isacs_aux_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
@@ -629,11 +629,11 @@ Lemma minus_sum_scalar_ok :
Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
- rewrite (Th_mult_zero_right T); symmetry in |- *; apply (Th_opp_zero T).
+ rewrite (Th_mult_zero_right T); symmetry ; apply (Th_opp_zero T).
- simpl in |- *; intros.
+ simpl; intros.
rewrite minus_varlist_insert_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
repeat rewrite isacs_aux_ok.
@@ -642,7 +642,7 @@ Proof.
rewrite (Th_plus_opp_opp T).
reflexivity.
- simpl in |- *; intros.
+ simpl; intros.
rewrite plus_varlist_insert_ok.
repeat rewrite isacs_aux_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
@@ -662,16 +662,16 @@ Proof.
simple induction x.
- simpl in |- *; eauto 1.
+ simpl; eauto 1.
- intros; simpl in |- *.
+ intros; simpl.
rewrite signed_sum_merge_ok.
rewrite plus_sum_scalar_ok.
repeat rewrite isacs_aux_ok.
rewrite H.
auto.
- intros; simpl in |- *.
+ intros; simpl.
repeat rewrite isacs_aux_ok.
rewrite signed_sum_merge_ok.
rewrite minus_sum_scalar_ok.
@@ -685,7 +685,7 @@ Qed.
Theorem apolynomial_normalize_ok :
forall p:apolynomial, interp_sacs (apolynomial_normalize p) = interp_ap p.
Proof.
- simple induction p; simpl in |- *; auto 1.
+ simple induction p; simpl; auto 1.
intros.
rewrite signed_sum_merge_ok.
rewrite H; rewrite H0; reflexivity.
diff --git a/plugins/ring/Ring_normalize.v b/plugins/ring/Ring_normalize.v
index 9755d71e12..0d8393f76b 100644
--- a/plugins/ring/Ring_normalize.v
+++ b/plugins/ring/Ring_normalize.v
@@ -16,7 +16,7 @@ Proof.
intros.
apply index_eq_prop.
generalize H.
- case (index_eq n m); simpl in |- *; trivial; intros.
+ case (index_eq n m); simpl; trivial; intros.
contradiction.
Qed.
@@ -371,7 +371,7 @@ Hint Immediate T.
Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
Proof.
simple induction x; simple induction y; contradiction || (try reflexivity).
- simpl in |- *; intros.
+ simpl; intros.
generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
Qed.
@@ -380,7 +380,7 @@ Remark ivl_aux_ok :
forall (v:varlist) (i:index),
ivl_aux i v = Amult (interp_var i) (interp_vl v).
Proof.
- simple induction v; simpl in |- *; intros.
+ simple induction v; simpl; intros.
trivial.
rewrite H; trivial.
Qed.
@@ -390,14 +390,14 @@ Lemma varlist_merge_ok :
interp_vl (varlist_merge x y) = Amult (interp_vl x) (interp_vl y).
Proof.
simple induction x.
- simpl in |- *; trivial.
+ simpl; trivial.
simple induction y.
- simpl in |- *; trivial.
- simpl in |- *; intros.
- elim (index_lt i i0); simpl in |- *; intros.
+ simpl; trivial.
+ simpl; intros.
+ elim (index_lt i i0); simpl; intros.
repeat rewrite ivl_aux_ok.
- rewrite H. simpl in |- *.
+ rewrite H. simpl.
rewrite ivl_aux_ok.
eauto.
@@ -410,7 +410,7 @@ Qed.
Remark ics_aux_ok :
forall (x:A) (s:canonical_sum), ics_aux x s = Aplus x (interp_cs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
trivial.
reflexivity.
reflexivity.
@@ -420,7 +420,7 @@ Remark interp_m_ok :
forall (x:A) (l:varlist), interp_m x l = Amult x (interp_vl l).
Proof.
destruct l as [| i v].
- simpl in |- *; trivial.
+ simpl; trivial.
reflexivity.
Qed.
@@ -428,10 +428,10 @@ Lemma canonical_sum_merge_ok :
forall x y:canonical_sum,
interp_cs (canonical_sum_merge x y) = Aplus (interp_cs x) (interp_cs y).
-simple induction x; simpl in |- *.
+simple induction x; simpl.
trivial.
-simple induction y; simpl in |- *; intros.
+simple induction y; simpl; intros.
(* monom and nil *)
eauto.
@@ -439,25 +439,25 @@ eauto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
(* monom and varlist *)
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
@@ -465,13 +465,13 @@ apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
rewrite (SR_mult_one_left T).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
-simple induction y; simpl in |- *; intros.
+simple induction y; simpl; intros.
(* varlist and nil *)
trivial.
@@ -479,7 +479,7 @@ trivial.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
@@ -487,17 +487,17 @@ rewrite (SR_mult_one_left T).
apply f_equal with (f := Aplus (interp_vl v0)).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
(* varlist and varlist *)
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
@@ -505,10 +505,10 @@ rewrite (SR_mult_one_left T).
apply f_equal with (f := Aplus (interp_vl v0)).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
Qed.
@@ -518,24 +518,24 @@ Lemma monom_insert_ok :
Aplus (Amult a (interp_vl l)) (interp_cs s).
intros; generalize s; simple induction s0.
-simpl in |- *; rewrite interp_m_ok; trivial.
+simpl; rewrite interp_m_ok; trivial.
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
@@ -546,24 +546,24 @@ Lemma varlist_insert_ok :
interp_cs (varlist_insert l s) = Aplus (interp_vl l) (interp_cs s).
intros; generalize s; simple induction s0.
-simpl in |- *; trivial.
+simpl; trivial.
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
@@ -573,9 +573,9 @@ Lemma canonical_sum_scalar_ok :
forall (a:A) (s:canonical_sum),
interp_cs (canonical_sum_scalar a s) = Amult a (interp_cs s).
simple induction s.
-simpl in |- *; eauto.
+simpl; eauto.
-simpl in |- *; intros.
+simpl; intros.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
@@ -583,7 +583,7 @@ rewrite (SR_distr_right T).
repeat rewrite <- (SR_mult_assoc T).
reflexivity.
-simpl in |- *; intros.
+simpl; intros.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
@@ -596,9 +596,9 @@ Lemma canonical_sum_scalar2_ok :
forall (l:varlist) (s:canonical_sum),
interp_cs (canonical_sum_scalar2 l s) = Amult (interp_vl l) (interp_cs s).
simple induction s.
-simpl in |- *; trivial.
+simpl; trivial.
-simpl in |- *; intros.
+simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -610,7 +610,7 @@ repeat rewrite <- (SR_plus_assoc T).
rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
reflexivity.
-simpl in |- *; intros.
+simpl; intros.
rewrite varlist_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -627,9 +627,9 @@ Lemma canonical_sum_scalar3_ok :
interp_cs (canonical_sum_scalar3 c l s) =
Amult c (Amult (interp_vl l) (interp_cs s)).
simple induction s.
-simpl in |- *; repeat rewrite (SR_mult_zero_right T); reflexivity.
+simpl; repeat rewrite (SR_mult_zero_right T); reflexivity.
-simpl in |- *; intros.
+simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -641,7 +641,7 @@ repeat rewrite <- (SR_plus_assoc T).
rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
reflexivity.
-simpl in |- *; intros.
+simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -657,7 +657,7 @@ Qed.
Lemma canonical_sum_prod_ok :
forall x y:canonical_sum,
interp_cs (canonical_sum_prod x y) = Amult (interp_cs x) (interp_cs y).
-simple induction x; simpl in |- *; intros.
+simple induction x; simpl; intros.
trivial.
rewrite canonical_sum_merge_ok.
@@ -666,7 +666,7 @@ rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)).
-symmetry in |- *.
+symmetry .
eauto.
rewrite canonical_sum_merge_ok.
@@ -678,7 +678,7 @@ Qed.
Theorem spolynomial_normalize_ok :
forall p:spolynomial, interp_cs (spolynomial_normalize p) = interp_sp p.
-simple induction p; simpl in |- *; intros.
+simple induction p; simpl; intros.
reflexivity.
reflexivity.
@@ -699,7 +699,7 @@ simple induction s.
reflexivity.
(* cons_monom *)
-simpl in |- *; intros.
+simpl; intros.
generalize (SR_eq_prop T a Azero).
elim (Aeq a Azero).
intro Heq; rewrite (Heq I).
@@ -709,25 +709,25 @@ rewrite interp_m_ok.
rewrite (SR_mult_zero_left T).
trivial.
-intros; simpl in |- *.
+intros; simpl.
generalize (SR_eq_prop T a Aone).
elim (Aeq a Aone).
intro Heq; rewrite (Heq I).
-simpl in |- *.
+simpl.
repeat rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
rewrite (SR_mult_one_left T).
reflexivity.
-simpl in |- *.
+simpl.
repeat rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
reflexivity.
(* cons_varlist *)
-simpl in |- *; intros.
+simpl; intros.
repeat rewrite ics_aux_ok.
rewrite H.
reflexivity.
@@ -737,7 +737,7 @@ Qed.
Theorem spolynomial_simplify_ok :
forall p:spolynomial, interp_cs (spolynomial_simplify p) = interp_sp p.
intro.
-unfold spolynomial_simplify in |- *.
+unfold spolynomial_simplify.
rewrite canonical_sum_simplify_ok.
apply spolynomial_normalize_ok.
Qed.
@@ -850,7 +850,7 @@ Unset Implicit Arguments.
Lemma spolynomial_of_ok :
forall p:polynomial,
interp_p p = interp_sp Aplus Amult Azero vm (spolynomial_of p).
-simple induction p; reflexivity || (simpl in |- *; intros).
+simple induction p; reflexivity || (simpl; intros).
rewrite H; rewrite H0; reflexivity.
rewrite H; rewrite H0; reflexivity.
rewrite H.
@@ -863,23 +863,23 @@ Theorem polynomial_normalize_ok :
forall p:polynomial,
polynomial_normalize p =
spolynomial_normalize Aplus Amult Aone (spolynomial_of p).
-simple induction p; reflexivity || (simpl in |- *; intros).
+simple induction p; reflexivity || (simpl; intros).
rewrite H; rewrite H0; reflexivity.
rewrite H; rewrite H0; reflexivity.
-rewrite H; simpl in |- *.
+rewrite H; simpl.
elim
(canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
(spolynomial_normalize Aplus Amult Aone (spolynomial_of p0)));
[ reflexivity
- | simpl in |- *; intros; rewrite H0; reflexivity
- | simpl in |- *; intros; rewrite H0; reflexivity ].
+ | simpl; intros; rewrite H0; reflexivity
+ | simpl; intros; rewrite H0; reflexivity ].
Qed.
Theorem polynomial_simplify_ok :
forall p:polynomial,
interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p) = interp_p p.
intro.
-unfold polynomial_simplify in |- *.
+unfold polynomial_simplify.
rewrite spolynomial_of_ok.
rewrite polynomial_normalize_ok.
rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T).
diff --git a/plugins/ring/Setoid_ring_normalize.v b/plugins/ring/Setoid_ring_normalize.v
index 94b36e2467..59d86cede7 100644
--- a/plugins/ring/Setoid_ring_normalize.v
+++ b/plugins/ring/Setoid_ring_normalize.v
@@ -13,7 +13,7 @@ Set Implicit Arguments.
Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
Proof.
- simple induction n; simple induction m; simpl in |- *;
+ simple induction n; simple induction m; simpl;
try reflexivity || contradiction.
intros; rewrite (H i0); trivial.
intros; rewrite (H i0); trivial.
@@ -393,7 +393,7 @@ Hint Immediate T.
Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
Proof.
simple induction x; simple induction y; contradiction || (try reflexivity).
- simpl in |- *; intros.
+ simpl; intros.
generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
Qed.
@@ -402,7 +402,7 @@ Remark ivl_aux_ok :
forall (v:varlist) (i:index),
Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v)).
Proof.
- simple induction v; simpl in |- *; intros.
+ simple induction v; simpl; intros.
trivial.
rewrite (H i); trivial.
Qed.
@@ -412,17 +412,17 @@ Lemma varlist_merge_ok :
Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y)).
Proof.
simple induction x.
- simpl in |- *; trivial.
+ simpl; trivial.
simple induction y.
- simpl in |- *; trivial.
- simpl in |- *; intros.
- elim (index_lt i i0); simpl in |- *; intros.
+ simpl; trivial.
+ simpl; intros.
+ elim (index_lt i i0); simpl; intros.
rewrite (ivl_aux_ok v i).
rewrite (ivl_aux_ok v0 i0).
rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i).
rewrite (H (Cons_var i0 v0)).
- simpl in |- *.
+ simpl.
rewrite (ivl_aux_ok v0 i0).
eauto.
@@ -447,7 +447,7 @@ Remark ics_aux_ok :
forall (x:A) (s:canonical_sum),
Aequiv (ics_aux x s) (Aplus x (interp_setcs s)).
Proof.
- simple induction s; simpl in |- *; intros; trivial.
+ simple induction s; simpl; intros; trivial.
Qed.
Remark interp_m_ok :
@@ -467,16 +467,16 @@ Lemma canonical_sum_merge_ok :
Aequiv (interp_setcs (canonical_sum_merge x y))
(Aplus (interp_setcs x) (interp_setcs y)).
Proof.
-simple induction x; simpl in |- *.
+simple induction x; simpl.
trivial.
-simple induction y; simpl in |- *; intros.
+simple induction y; simpl; intros.
eauto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *.
+simpl.
rewrite (ics_aux_ok (interp_m a v0) c).
rewrite (ics_aux_ok (interp_m a0 v0) c0).
rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) (canonical_sum_merge c c0)).
@@ -503,14 +503,14 @@ setoid_replace
[ idtac | trivial ].
auto.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
intro.
rewrite
(ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_monom a0 v0 c0)))
.
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (ics_aux_ok (interp_m a0 v0) c0).
-rewrite (H (Cons_monom a0 v0 c0)); simpl in |- *.
+rewrite (H (Cons_monom a0 v0 c0)); simpl.
rewrite (ics_aux_ok (interp_m a0 v0) c0); auto.
intro.
@@ -536,13 +536,13 @@ rewrite
end) c0)).
rewrite H0.
rewrite (ics_aux_ok (interp_m a v) c);
- rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl in |- *;
+ rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl;
auto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *.
+simpl.
rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) (canonical_sum_merge c c0));
rewrite (ics_aux_ok (interp_m a v0) c);
rewrite (ics_aux_ok (interp_vl v0) c0).
@@ -569,13 +569,13 @@ setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0);
[ idtac | trivial ].
auto.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
intro.
rewrite
(ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_varlist v0 c0)))
; rewrite (ics_aux_ok (interp_m a v) c);
rewrite (ics_aux_ok (interp_vl v0) c0).
-rewrite (H (Cons_varlist v0 c0)); simpl in |- *.
+rewrite (H (Cons_varlist v0 c0)); simpl.
rewrite (ics_aux_ok (interp_vl v0) c0).
auto.
@@ -601,16 +601,16 @@ rewrite
else Cons_varlist l2 (csm_aux t2)
end) c0)); rewrite H0.
rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
- simpl in |- *.
+ simpl.
auto.
-simple induction y; simpl in |- *; intros.
+simple induction y; simpl; intros.
trivial.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *.
+simpl.
rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) (canonical_sum_merge c c0));
rewrite (ics_aux_ok (interp_vl v0) c);
rewrite (ics_aux_ok (interp_m a v0) c0); rewrite (H c0).
@@ -634,12 +634,12 @@ setoid_replace
[ idtac | trivial ].
auto.
-elim (varlist_lt v v0); simpl in |- *; intros.
+elim (varlist_lt v v0); simpl; intros.
rewrite
(ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_monom a v0 c0)))
; rewrite (ics_aux_ok (interp_vl v) c);
rewrite (ics_aux_ok (interp_m a v0) c0).
-rewrite (H (Cons_monom a v0 c0)); simpl in |- *.
+rewrite (H (Cons_monom a v0 c0)); simpl.
rewrite (ics_aux_ok (interp_m a v0) c0); auto.
rewrite
@@ -663,11 +663,11 @@ rewrite
else Cons_varlist l2 (csm_aux2 t2)
end) c0)); rewrite H0.
rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0);
- simpl in |- *; auto.
+ simpl; auto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0); intros.
-rewrite (H1 I); simpl in |- *.
+rewrite (H1 I); simpl.
rewrite
(ics_aux_ok (interp_m (Aplus Aone Aone) v0) (canonical_sum_merge c c0))
; rewrite (ics_aux_ok (interp_vl v0) c);
@@ -691,12 +691,12 @@ setoid_replace
[ idtac | trivial ].
setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); auto.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
rewrite
(ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_varlist v0 c0)))
; rewrite (ics_aux_ok (interp_vl v) c);
rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H (Cons_varlist v0 c0));
- simpl in |- *.
+ simpl.
rewrite (ics_aux_ok (interp_vl v0) c0); auto.
rewrite
@@ -720,7 +720,7 @@ rewrite
else Cons_varlist l2 (csm_aux2 t2)
end) c0)); rewrite H0.
rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
- simpl in |- *; auto.
+ simpl; auto.
Qed.
Lemma monom_insert_ok :
@@ -729,10 +729,10 @@ Lemma monom_insert_ok :
(Aplus (Amult a (interp_vl l)) (interp_setcs s)).
Proof.
simple induction s; intros.
-simpl in |- *; rewrite (interp_m_ok a l); trivial.
+simpl; rewrite (interp_m_ok a l); trivial.
-simpl in |- *; generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *.
+simpl; generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c);
rewrite (ics_aux_ok (interp_m a0 v) c).
rewrite (interp_m_ok (Aplus a a0) v); rewrite (interp_m_ok a0 v).
@@ -741,7 +741,7 @@ setoid_replace (Amult (Aplus a a0) (interp_vl v)) with
[ idtac | trivial ].
auto.
-elim (varlist_lt l v); simpl in |- *; intros.
+elim (varlist_lt l v); simpl; intros.
rewrite (ics_aux_ok (interp_m a0 v) c).
rewrite (interp_m_ok a0 v); rewrite (interp_m_ok a l).
auto.
@@ -750,9 +750,9 @@ rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c));
rewrite (ics_aux_ok (interp_m a0 v) c); rewrite H.
auto.
-simpl in |- *.
+simpl.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *.
+intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c);
rewrite (ics_aux_ok (interp_vl v) c).
rewrite (interp_m_ok (Aplus a Aone) v).
@@ -763,7 +763,7 @@ setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v);
[ idtac | trivial ].
auto.
-elim (varlist_lt l v); simpl in |- *; intros; auto.
+elim (varlist_lt l v); simpl; intros; auto.
rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); rewrite H.
rewrite (ics_aux_ok (interp_vl v) c); auto.
Qed.
@@ -773,11 +773,11 @@ Lemma varlist_insert_ok :
Aequiv (interp_setcs (varlist_insert l s))
(Aplus (interp_vl l) (interp_setcs s)).
Proof.
-simple induction s; simpl in |- *; intros.
+simple induction s; simpl; intros.
trivial.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *.
+intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c);
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok (Aplus Aone a) v); rewrite (interp_m_ok a v).
@@ -786,14 +786,14 @@ setoid_replace (Amult (Aplus Aone a) (interp_vl v)) with
[ idtac | trivial ].
setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
-elim (varlist_lt l v); simpl in |- *; intros; auto.
+elim (varlist_lt l v); simpl; intros; auto.
rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c));
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
rewrite H; auto.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *.
+intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c);
rewrite (ics_aux_ok (interp_vl v) c).
rewrite (interp_m_ok (Aplus Aone Aone) v).
@@ -802,7 +802,7 @@ setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) with
[ idtac | trivial ].
setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
-elim (varlist_lt l v); simpl in |- *; intros; auto.
+elim (varlist_lt l v); simpl; intros; auto.
rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)).
rewrite H.
rewrite (ics_aux_ok (interp_vl v) c); auto.
@@ -813,7 +813,7 @@ Lemma canonical_sum_scalar_ok :
Aequiv (interp_setcs (canonical_sum_scalar a s))
(Amult a (interp_setcs s)).
Proof.
-simple induction s; simpl in |- *; intros.
+simple induction s; simpl; intros.
trivial.
rewrite (ics_aux_ok (interp_m (Amult a a0) v) (canonical_sum_scalar a c));
@@ -836,7 +836,7 @@ Lemma canonical_sum_scalar2_ok :
Aequiv (interp_setcs (canonical_sum_scalar2 l s))
(Amult (interp_vl l) (interp_setcs s)).
Proof.
-simple induction s; simpl in |- *; intros; auto.
+simple induction s; simpl; intros; auto.
rewrite (monom_insert_ok a (varlist_merge l v) (canonical_sum_scalar2 l c)).
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
@@ -861,7 +861,7 @@ Lemma canonical_sum_scalar3_ok :
Aequiv (interp_setcs (canonical_sum_scalar3 c l s))
(Amult c (Amult (interp_vl l) (interp_setcs s))).
Proof.
-simple induction s; simpl in |- *; intros.
+simple induction s; simpl; intros.
rewrite (SSR_mult_zero_right S T (interp_vl l)).
auto.
@@ -910,7 +910,7 @@ Lemma canonical_sum_prod_ok :
Aequiv (interp_setcs (canonical_sum_prod x y))
(Amult (interp_setcs x) (interp_setcs y)).
Proof.
-simple induction x; simpl in |- *; intros.
+simple induction x; simpl; intros.
trivial.
rewrite
@@ -944,7 +944,7 @@ Theorem setspolynomial_normalize_ok :
forall p:setspolynomial,
Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p).
Proof.
-simple induction p; simpl in |- *; intros; trivial.
+simple induction p; simpl; intros; trivial.
rewrite
(canonical_sum_merge_ok (setspolynomial_normalize s)
(setspolynomial_normalize s0)).
@@ -960,12 +960,12 @@ Lemma canonical_sum_simplify_ok :
forall s:canonical_sum,
Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s).
Proof.
-simple induction s; simpl in |- *; intros.
+simple induction s; simpl; intros.
trivial.
generalize (SSR_eq_prop T a Azero).
elim (Aeq a Azero).
-simpl in |- *.
+simpl.
intros.
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
@@ -975,19 +975,19 @@ setoid_replace (Amult Azero (interp_vl v)) with Azero;
rewrite H.
trivial.
-intros; simpl in |- *.
+intros; simpl.
generalize (SSR_eq_prop T a Aone).
elim (Aeq a Aone).
intros.
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
rewrite (H1 I).
-simpl in |- *.
+simpl.
rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
rewrite H.
auto.
-simpl in |- *.
+simpl.
intros.
rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)).
rewrite (ics_aux_ok (interp_m a v) c).
@@ -1003,7 +1003,7 @@ Theorem setspolynomial_simplify_ok :
Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p).
Proof.
intro.
-unfold setspolynomial_simplify in |- *.
+unfold setspolynomial_simplify.
rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)).
exact (setspolynomial_normalize_ok p).
Qed.
@@ -1108,7 +1108,7 @@ Unset Implicit Arguments.
Lemma setspolynomial_of_ok :
forall p:setpolynomial,
Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p)).
-simple induction p; trivial; simpl in |- *; intros.
+simple induction p; trivial; simpl; intros.
rewrite H; rewrite H0; trivial.
rewrite H; rewrite H0; trivial.
rewrite H.
@@ -1122,23 +1122,23 @@ Qed.
Theorem setpolynomial_normalize_ok :
forall p:setpolynomial,
setpolynomial_normalize p = setspolynomial_normalize (setspolynomial_of p).
-simple induction p; trivial; simpl in |- *; intros.
+simple induction p; trivial; simpl; intros.
rewrite H; rewrite H0; reflexivity.
rewrite H; rewrite H0; reflexivity.
-rewrite H; simpl in |- *.
+rewrite H; simpl.
elim
(canonical_sum_scalar3 (Aopp Aone) Nil_var
(setspolynomial_normalize (setspolynomial_of s)));
[ reflexivity
- | simpl in |- *; intros; rewrite H0; reflexivity
- | simpl in |- *; intros; rewrite H0; reflexivity ].
+ | simpl; intros; rewrite H0; reflexivity
+ | simpl; intros; rewrite H0; reflexivity ].
Qed.
Theorem setpolynomial_simplify_ok :
forall p:setpolynomial,
Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p).
intro.
-unfold setpolynomial_simplify in |- *.
+unfold setpolynomial_simplify.
rewrite (setspolynomial_of_ok p).
rewrite setpolynomial_normalize_ok.
rewrite
diff --git a/plugins/ring/Setoid_ring_theory.v b/plugins/ring/Setoid_ring_theory.v
index dd722f8011..870fe40f1c 100644
--- a/plugins/ring/Setoid_ring_theory.v
+++ b/plugins/ring/Setoid_ring_theory.v
@@ -406,7 +406,7 @@ Unset Implicit Arguments.
Definition Semi_Setoid_Ring_Theory_of :
Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory.
intros until 1; case H.
-split; intros; simpl in |- *; eauto.
+split; intros; simpl; eauto.
Defined.
Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >->
diff --git a/plugins/romega/ReflOmegaCore.v b/plugins/romega/ReflOmegaCore.v
index dad368931d..11d9a071cf 100644
--- a/plugins/romega/ReflOmegaCore.v
+++ b/plugins/romega/ReflOmegaCore.v
@@ -340,7 +340,7 @@ Module IntProperties (I:Int).
Lemma sum1 : forall a b c d : int, 0 = a -> 0 = b -> 0 = a * c + b * d.
Proof.
- intros; elim H; elim H0; simpl in |- *; auto.
+ intros; elim H; elim H0; simpl; auto.
now rewrite mult_0_l, mult_0_l, plus_0_l.
Qed.
@@ -1053,34 +1053,34 @@ Proof.
| intros; elim beq_nat_true with (1 := H); trivial ].
Qed.
-Ltac trivial_case := unfold not in |- *; intros; discriminate.
+Ltac trivial_case := unfold not; intros; discriminate.
Theorem eq_term_false :
forall t1 t2 : term, eq_term t1 t2 = false -> t1 <> t2.
Proof.
simple induction t1;
- [ intros z t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
+ [ intros z t2; case t2; try trivial_case; simpl; unfold not;
intros; elim beq_false with (1 := H); simplify_eq H0;
auto
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
- intros t21 t22 H3; unfold not in |- *; intro H4;
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl;
+ intros t21 t22 H3; unfold not; intro H4;
elim andb_false_elim with (1 := H3); intros H5;
[ elim H1 with (1 := H5); simplify_eq H4; auto
| elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
- intros t21 t22 H3; unfold not in |- *; intro H4;
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl;
+ intros t21 t22 H3; unfold not; intro H4;
elim andb_false_elim with (1 := H3); intros H5;
[ elim H1 with (1 := H5); simplify_eq H4; auto
| elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
- intros t21 t22 H3; unfold not in |- *; intro H4;
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl;
+ intros t21 t22 H3; unfold not; intro H4;
elim andb_false_elim with (1 := H3); intros H5;
[ elim H1 with (1 := H5); simplify_eq H4; auto
| elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t2; case t2; try trivial_case; simpl in |- *; intros t21 H3;
- unfold not in |- *; intro H4; elim H1 with (1 := H3);
+ | intros t11 H1 t2; case t2; try trivial_case; simpl; intros t21 H3;
+ unfold not; intro H4; elim H1 with (1 := H3);
simplify_eq H4; auto
- | intros n t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
+ | intros n t2; case t2; try trivial_case; simpl; unfold not;
intros; elim beq_nat_false with (1 := H); simplify_eq H0;
auto ].
Qed.
@@ -1100,17 +1100,17 @@ Qed.
avait utilisé le test précédent et fait une elimination dessus. *)
Ltac elim_eq_term t1 t2 :=
- pattern (eq_term t1 t2) in |- *; apply bool_eq_ind; intro Aux;
+ pattern (eq_term t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (eq_term_true t1 t2 Aux); clear Aux
| generalize (eq_term_false t1 t2 Aux); clear Aux ].
Ltac elim_beq t1 t2 :=
- pattern (beq t1 t2) in |- *; apply bool_eq_ind; intro Aux;
+ pattern (beq t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (beq_true t1 t2 Aux); clear Aux
| generalize (beq_false t1 t2 Aux); clear Aux ].
Ltac elim_bgt t1 t2 :=
- pattern (bgt t1 t2) in |- *; apply bool_eq_ind; intro Aux;
+ pattern (bgt t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (bgt_true t1 t2 Aux); clear Aux
| generalize (bgt_false t1 t2 Aux); clear Aux ].
@@ -1186,15 +1186,15 @@ Theorem goal_to_hyps :
(interp_hyps envp env l -> False) -> interp_goal envp env l.
Proof.
simple induction l;
- [ simpl in |- *; auto
- | simpl in |- *; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ].
+ [ simpl; auto
+ | simpl; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ].
Qed.
Theorem hyps_to_goal :
forall (envp : list Prop) (env : list int) (l : hyps),
interp_goal envp env l -> interp_hyps envp env l -> False.
Proof.
- simple induction l; simpl in |- *; [ auto | intros; apply H; elim H1; auto ].
+ simple induction l; simpl; [ auto | intros; apply H; elim H1; auto ].
Qed.
(* \subsection{Manipulations sur les hypothèses} *)
@@ -1234,7 +1234,7 @@ Theorem valid_goal :
forall (ep : list Prop) (env : list int) (l : hyps) (a : hyps -> hyps),
valid_hyps a -> interp_goal ep env (a l) -> interp_goal ep env l.
Proof.
- intros; simpl in |- *; apply goal_to_hyps; intro H1;
+ intros; simpl; apply goal_to_hyps; intro H1;
apply (hyps_to_goal ep env (a l) H0); apply H; assumption.
Qed.
@@ -1259,7 +1259,7 @@ Theorem list_goal_to_hyps :
forall (envp : list Prop) (env : list int) (l : lhyps),
(interp_list_hyps envp env l -> False) -> interp_list_goal envp env l.
Proof.
- simple induction l; simpl in |- *;
+ simple induction l; simpl;
[ auto
| intros h1 l1 H H1; split;
[ apply goal_to_hyps; intro H2; apply H1; auto
@@ -1270,7 +1270,7 @@ Theorem list_hyps_to_goal :
forall (envp : list Prop) (env : list int) (l : lhyps),
interp_list_goal envp env l -> interp_list_hyps envp env l -> False.
Proof.
- simple induction l; simpl in |- *;
+ simple induction l; simpl;
[ auto
| intros h1 l1 H (H1, H2) H3; elim H3; intro H4;
[ apply hyps_to_goal with (1 := H1); assumption | auto ] ].
@@ -1287,7 +1287,7 @@ Definition valid_list_goal (f : hyps -> lhyps) :=
Theorem goal_valid :
forall f : hyps -> lhyps, valid_list_hyps f -> valid_list_goal f.
Proof.
- unfold valid_list_goal in |- *; intros f H ep e lp H1; apply goal_to_hyps;
+ unfold valid_list_goal; intros f H ep e lp H1; apply goal_to_hyps;
intro H2; apply list_hyps_to_goal with (1 := H1);
apply (H ep e lp); assumption.
Qed.
@@ -1298,8 +1298,8 @@ Theorem append_valid :
interp_list_hyps ep e (l1 ++ l2).
Proof.
intros ep e; simple induction l1;
- [ simpl in |- *; intros l2 [H| H]; [ contradiction | trivial ]
- | simpl in |- *; intros h1 t1 HR l2 [[H| H]| H];
+ [ simpl; intros l2 [H| H]; [ contradiction | trivial ]
+ | simpl; intros h1 t1 HR l2 [[H| H]| H];
[ auto
| right; apply (HR l2); left; trivial
| right; apply (HR l2); right; trivial ] ].
@@ -1315,11 +1315,11 @@ Theorem nth_valid :
forall (ep : list Prop) (e : list int) (i : nat) (l : hyps),
interp_hyps ep e l -> interp_proposition ep e (nth_hyps i l).
Proof.
- unfold nth_hyps in |- *; simple induction i;
- [ simple induction l; simpl in |- *; [ auto | intros; elim H0; auto ]
+ unfold nth_hyps; simple induction i;
+ [ simple induction l; simpl; [ auto | intros; elim H0; auto ]
| intros n H; simple induction l;
- [ simpl in |- *; trivial
- | intros; simpl in |- *; apply H; elim H1; auto ] ].
+ [ simpl; trivial
+ | intros; simpl; apply H; elim H1; auto ] ].
Qed.
(* Appliquer une opération (valide) sur deux hypothèses extraites de
@@ -1332,7 +1332,7 @@ Theorem apply_oper_2_valid :
forall (i j : nat) (f : proposition -> proposition -> proposition),
valid2 f -> valid_hyps (apply_oper_2 i j f).
Proof.
- intros i j f Hf; unfold apply_oper_2, valid_hyps in |- *; simpl in |- *;
+ intros i j f Hf; unfold apply_oper_2, valid_hyps; simpl;
intros lp Hlp; split; [ apply Hf; apply nth_valid; assumption | assumption ].
Qed.
@@ -1353,14 +1353,14 @@ Theorem apply_oper_1_valid :
forall (i : nat) (f : proposition -> proposition),
valid1 f -> valid_hyps (apply_oper_1 i f).
Proof.
- unfold valid_hyps in |- *; intros i f Hf ep e; elim i;
+ unfold valid_hyps; intros i f Hf ep e; elim i;
[ intro lp; case lp;
- [ simpl in |- *; trivial
- | simpl in |- *; intros p l' (H1, H2); split;
+ [ simpl; trivial
+ | simpl; intros p l' (H1, H2); split;
[ apply Hf with (1 := H1) | assumption ] ]
| intros n Hrec lp; case lp;
- [ simpl in |- *; auto
- | simpl in |- *; intros p l' (H1, H2); split;
+ [ simpl; auto
+ | simpl; intros p l' (H1, H2); split;
[ assumption | apply Hrec; assumption ] ] ].
Qed.
@@ -1398,14 +1398,14 @@ Definition apply_both (f g : term -> term) (t : term) :=
Theorem apply_left_stable :
forall f : term -> term, term_stable f -> term_stable (apply_left f).
Proof.
- unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
+ unfold term_stable; intros f H e t; case t; auto; simpl;
intros; elim H; trivial.
Qed.
Theorem apply_right_stable :
forall f : term -> term, term_stable f -> term_stable (apply_right f).
Proof.
- unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
+ unfold term_stable; intros f H e t; case t; auto; simpl;
intros t0 t1; elim H; trivial.
Qed.
@@ -1413,7 +1413,7 @@ Theorem apply_both_stable :
forall f g : term -> term,
term_stable f -> term_stable g -> term_stable (apply_both f g).
Proof.
- unfold term_stable in |- *; intros f g H1 H2 e t; case t; auto; simpl in |- *;
+ unfold term_stable; intros f g H1 H2 e t; case t; auto; simpl;
intros t0 t1; elim H1; elim H2; trivial.
Qed.
@@ -1421,7 +1421,7 @@ Theorem compose_term_stable :
forall f g : term -> term,
term_stable f -> term_stable g -> term_stable (fun t : term => f (g t)).
Proof.
- unfold term_stable in |- *; intros f g Hf Hg e t; elim Hf; apply Hg.
+ unfold term_stable; intros f g Hf Hg e t; elim Hf; apply Hg.
Qed.
(* \subsection{Les règles de réécriture} *)
@@ -1499,14 +1499,14 @@ Ltac loop t :=
| (if beq ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
elim_beq X1 X2; intro H; try (rewrite H in *; clear H);
- simpl in |- *; auto; Simplify
+ simpl; auto; Simplify
| (if bgt ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
- elim_bgt X1 X2; intro H; simpl in |- *; auto; Simplify
+ elim_bgt X1 X2; intro H; simpl; auto; Simplify
| (if eq_term ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
elim_eq_term X1 X2; intro H; try (rewrite H in *; clear H);
- simpl in |- *; auto; Simplify
+ simpl; auto; Simplify
| (if _ && _ then _ else _) => rewrite andb_if; Simplify
| (if negb _ then _ else _) => rewrite negb_if; Simplify
| _ => fail
@@ -1520,7 +1520,7 @@ with Simplify := match goal with
Ltac prove_stable x th :=
match constr:x with
| ?X1 =>
- unfold term_stable, X1 in |- *; intros; Simplify; simpl in |- *;
+ unfold term_stable, X1; intros; Simplify; simpl;
apply th
end.
@@ -1640,7 +1640,7 @@ Definition T_OMEGA13 (t : term) :=
Theorem T_OMEGA13_stable : term_stable T_OMEGA13.
Proof.
- unfold term_stable, T_OMEGA13 in |- *; intros; Simplify; simpl in |- *;
+ unfold term_stable, T_OMEGA13; intros; Simplify; simpl;
apply OMEGA13.
Qed.
@@ -1887,16 +1887,16 @@ Fixpoint reduce (t : term) : term :=
Theorem reduce_stable : term_stable reduce.
Proof.
- unfold term_stable in |- *; intros e t; elim t; auto;
+ unfold term_stable; intros e t; elim t; auto;
try
- (intros t0 H0 t1 H1; simpl in |- *; rewrite H0; rewrite H1;
+ (intros t0 H0 t1 H1; simpl; rewrite H0; rewrite H1;
(case (reduce t0);
[ intro z0; case (reduce t1); intros; auto
| intros; auto
| intros; auto
| intros; auto
| intros; auto
- | intros; auto ])); intros t0 H0; simpl in |- *;
+ | intros; auto ])); intros t0 H0; simpl;
rewrite H0; case (reduce t0); intros; auto.
Qed.
@@ -1921,12 +1921,12 @@ Fixpoint fusion (trace : list t_fusion) (t : term) {struct trace} : term :=
Theorem fusion_stable : forall t : list t_fusion, term_stable (fusion t).
Proof.
- simple induction t; simpl in |- *;
+ simple induction t; simpl;
[ exact reduce_stable
| intros stp l H; case stp;
[ apply compose_term_stable;
[ apply apply_right_stable; assumption | exact T_OMEGA10_stable ]
- | unfold term_stable in |- *; intros e t1; rewrite T_OMEGA10_stable;
+ | unfold term_stable; intros e t1; rewrite T_OMEGA10_stable;
rewrite Tred_factor5_stable; apply H
| apply compose_term_stable;
[ apply apply_right_stable; assumption | exact T_OMEGA11_stable ]
@@ -1959,7 +1959,7 @@ Fixpoint fusion_cancel (trace : nat) (t : term) {struct trace} : term :=
Theorem fusion_cancel_stable : forall t : nat, term_stable (fusion_cancel t).
Proof.
- unfold term_stable, fusion_cancel in |- *; intros trace e; elim trace;
+ unfold term_stable, fusion_cancel; intros trace e; elim trace;
[ exact (reduce_stable e)
| intros n H t; elim H; exact (T_OMEGA13_stable e t) ].
Qed.
@@ -1976,7 +1976,7 @@ Fixpoint scalar_norm_add (trace : nat) (t : term) {struct trace} : term :=
Theorem scalar_norm_add_stable :
forall t : nat, term_stable (scalar_norm_add t).
Proof.
- unfold term_stable, scalar_norm_add in |- *; intros trace; elim trace;
+ unfold term_stable, scalar_norm_add; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (T_OMEGA11_stable e t) | exact H ] ].
@@ -1991,7 +1991,7 @@ Fixpoint scalar_norm (trace : nat) (t : term) {struct trace} : term :=
Theorem scalar_norm_stable : forall t : nat, term_stable (scalar_norm t).
Proof.
- unfold term_stable, scalar_norm in |- *; intros trace; elim trace;
+ unfold term_stable, scalar_norm; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (T_OMEGA16_stable e t) | exact H ] ].
@@ -2006,7 +2006,7 @@ Fixpoint add_norm (trace : nat) (t : term) {struct trace} : term :=
Theorem add_norm_stable : forall t : nat, term_stable (add_norm t).
Proof.
- unfold term_stable, add_norm in |- *; intros trace; elim trace;
+ unfold term_stable, add_norm; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (Tplus_assoc_r_stable e t) | exact H ] ].
@@ -2048,12 +2048,12 @@ Fixpoint t_rewrite (s : step) : term -> term :=
Theorem t_rewrite_stable : forall s : step, term_stable (t_rewrite s).
Proof.
- simple induction s; simpl in |- *;
+ simple induction s; simpl;
[ intros; apply apply_both_stable; auto
| intros; apply apply_left_stable; auto
| intros; apply apply_right_stable; auto
- | unfold term_stable in |- *; intros; elim H0; apply H
- | unfold term_stable in |- *; auto
+ | unfold term_stable; intros; elim H0; apply H
+ | unfold term_stable; auto
| exact Topp_plus_stable
| exact Topp_opp_stable
| exact Topp_mult_r_stable
@@ -2093,11 +2093,11 @@ Definition constant_not_nul (i : nat) (h : hyps) :=
Theorem constant_not_nul_valid :
forall i : nat, valid_hyps (constant_not_nul i).
Proof.
- unfold valid_hyps, constant_not_nul in |- *; intros;
- generalize (nth_valid ep e i lp); Simplify; simpl in |- *.
+ unfold valid_hyps, constant_not_nul; intros;
+ generalize (nth_valid ep e i lp); Simplify; simpl.
- elim_beq i1 i0; auto; simpl in |- *; intros H1 H2;
- elim H1; symmetry in |- *; auto.
+ elim_beq i1 i0; auto; simpl; intros H1 H2;
+ elim H1; symmetry ; auto.
Qed.
(* \paragraph{[O_CONSTANT_NEG]} *)
@@ -2111,8 +2111,8 @@ Definition constant_neg (i : nat) (h : hyps) :=
Theorem constant_neg_valid : forall i : nat, valid_hyps (constant_neg i).
Proof.
- unfold valid_hyps, constant_neg in |- *; intros;
- generalize (nth_valid ep e i lp); Simplify; simpl in |- *.
+ unfold valid_hyps, constant_neg; intros;
+ generalize (nth_valid ep e i lp); Simplify; simpl.
rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition.
Qed.
@@ -2134,7 +2134,7 @@ Theorem not_exact_divide_valid :
forall (k1 k2 : int) (body : term) (t i : nat),
valid_hyps (not_exact_divide k1 k2 body t i).
Proof.
- unfold valid_hyps, not_exact_divide in |- *; intros;
+ unfold valid_hyps, not_exact_divide; intros;
generalize (nth_valid ep e i lp); Simplify.
rewrite (scalar_norm_add_stable t e), <-H1.
do 2 rewrite <- scalar_norm_add_stable; simpl in *; intros.
@@ -2163,16 +2163,16 @@ Definition contradiction (t i j : nat) (l : hyps) :=
Theorem contradiction_valid :
forall t i j : nat, valid_hyps (contradiction t i j).
Proof.
- unfold valid_hyps, contradiction in |- *; intros t i j ep e l H;
+ unfold valid_hyps, contradiction; intros t i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto;
- simpl in |- *; intros z z' H1 H2;
+ simpl; intros z z' H1 H2;
generalize (eq_refl (interp_term e (fusion_cancel t (t2 + t4)%term)));
- pattern (fusion_cancel t (t2 + t4)%term) at 2 3 in |- *;
- case (fusion_cancel t (t2 + t4)%term); simpl in |- *;
- auto; intro k; elim (fusion_cancel_stable t); simpl in |- *.
+ pattern (fusion_cancel t (t2 + t4)%term) at 2 3;
+ case (fusion_cancel t (t2 + t4)%term); simpl;
+ auto; intro k; elim (fusion_cancel_stable t); simpl.
Simplify; intro H3.
generalize (OMEGA2 _ _ H2 H1); rewrite H3.
rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition.
@@ -2227,23 +2227,23 @@ Definition negate_contradict_inv (t i1 i2 : nat) (h : hyps) :=
Theorem negate_contradict_valid :
forall i j : nat, valid_hyps (negate_contradict i j).
Proof.
- unfold valid_hyps, negate_contradict in |- *; intros i j ep e l H;
+ unfold valid_hyps, negate_contradict; intros i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; intros z; auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto; intros z';
- auto; simpl in |- *; intros H1 H2; Simplify.
+ auto; simpl; intros H1 H2; Simplify.
Qed.
Theorem negate_contradict_inv_valid :
forall t i j : nat, valid_hyps (negate_contradict_inv t i j).
Proof.
- unfold valid_hyps, negate_contradict_inv in |- *; intros t i j ep e l H;
+ unfold valid_hyps, negate_contradict_inv; intros t i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; intros z; auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto; intros z';
- auto; simpl in |- *; intros H1 H2; Simplify;
+ auto; simpl; intros H1 H2; Simplify;
[
rewrite <- scalar_norm_stable in H2; simpl in *;
elim (mult_integral (interp_term e t4) (-(1))); intuition;
@@ -2310,9 +2310,9 @@ Definition sum (k1 k2 : int) (trace : list t_fusion)
Theorem sum_valid :
forall (k1 k2 : int) (t : list t_fusion), valid2 (sum k1 k2 t).
Proof.
- unfold valid2 in |- *; intros k1 k2 t ep e p1 p2; unfold sum in |- *;
- Simplify; simpl in |- *; auto; try elim (fusion_stable t);
- simpl in |- *; intros;
+ unfold valid2; intros k1 k2 t ep e p1 p2; unfold sum;
+ Simplify; simpl; auto; try elim (fusion_stable t);
+ simpl; intros;
[ apply sum1; assumption
| apply sum2; try assumption; apply sum4; assumption
| rewrite plus_comm; apply sum2; try assumption; apply sum4; assumption
@@ -2344,7 +2344,7 @@ Definition exact_divide (k : int) (body : term) (t : nat)
Theorem exact_divide_valid :
forall (k : int) (t : term) (n : nat), valid1 (exact_divide k t n).
Proof.
- unfold valid1, exact_divide in |- *; intros k1 k2 t ep e p1;
+ unfold valid1, exact_divide; intros k1 k2 t ep e p1;
Simplify; simpl; auto; subst;
rewrite <- scalar_norm_stable; simpl; intros;
[ destruct (mult_integral _ _ (eq_sym H0)); intuition
@@ -2374,9 +2374,9 @@ Theorem divide_and_approx_valid :
forall (k1 k2 : int) (body : term) (t : nat),
valid1 (divide_and_approx k1 k2 body t).
Proof.
- unfold valid1, divide_and_approx in |- *; intros k1 k2 body t ep e p1;
+ unfold valid1, divide_and_approx; intros k1 k2 body t ep e p1;
Simplify; simpl; auto; subst;
- elim (scalar_norm_add_stable t e); simpl in |- *.
+ elim (scalar_norm_add_stable t e); simpl.
intro H2; apply mult_le_approx with (3 := H2); assumption.
Qed.
@@ -2398,9 +2398,9 @@ Definition merge_eq (t : nat) (prop1 prop2 : proposition) :=
Theorem merge_eq_valid : forall n : nat, valid2 (merge_eq n).
Proof.
- unfold valid2, merge_eq in |- *; intros n ep e p1 p2; Simplify; simpl in |- *;
- auto; elim (scalar_norm_stable n e); simpl in |- *;
- intros; symmetry in |- *; apply OMEGA8 with (2 := H0);
+ unfold valid2, merge_eq; intros n ep e p1 p2; Simplify; simpl;
+ auto; elim (scalar_norm_stable n e); simpl;
+ intros; symmetry ; apply OMEGA8 with (2 := H0);
[ assumption | elim opp_eq_mult_neg_1; trivial ].
Qed.
@@ -2417,8 +2417,8 @@ Definition constant_nul (i : nat) (h : hyps) :=
Theorem constant_nul_valid : forall i : nat, valid_hyps (constant_nul i).
Proof.
- unfold valid_hyps, constant_nul in |- *; intros;
- generalize (nth_valid ep e i lp); Simplify; simpl in |- *;
+ unfold valid_hyps, constant_nul; intros;
+ generalize (nth_valid ep e i lp); Simplify; simpl;
intro H1; absurd (0 = 0); intuition.
Qed.
@@ -2439,8 +2439,8 @@ Definition state (m : int) (s : step) (prop1 prop2 : proposition) :=
Theorem state_valid : forall (m : int) (s : step), valid2 (state m s).
Proof.
- unfold valid2 in |- *; intros m s ep e p1 p2; unfold state in |- *; Simplify;
- simpl in |- *; auto; elim (t_rewrite_stable s e); simpl in |- *;
+ unfold valid2; intros m s ep e p1 p2; unfold state; Simplify;
+ simpl; auto; elim (t_rewrite_stable s e); simpl;
intros H1 H2; elim H1.
now rewrite H2, plus_opp_l, plus_0_l, mult_0_l.
Qed.
@@ -2467,18 +2467,18 @@ Theorem split_ineq_valid :
valid_list_hyps f1 ->
valid_list_hyps f2 -> valid_list_hyps (split_ineq i t f1 f2).
Proof.
- unfold valid_list_hyps, split_ineq in |- *; intros i t f1 f2 H1 H2 ep e lp H;
+ unfold valid_list_hyps, split_ineq; intros i t f1 f2 H1 H2 ep e lp H;
generalize (nth_valid _ _ i _ H); case (nth_hyps i lp);
- simpl in |- *; auto; intros t1 t2; case t1; simpl in |- *;
- auto; intros z; simpl in |- *; auto; intro H3.
+ simpl; auto; intros t1 t2; case t1; simpl;
+ auto; intros z; simpl; auto; intro H3.
Simplify.
apply append_valid; elim (OMEGA19 (interp_term e t2));
- [ intro H4; left; apply H1; simpl in |- *; elim (add_norm_stable t);
- simpl in |- *; auto
- | intro H4; right; apply H2; simpl in |- *; elim (scalar_norm_add_stable t);
- simpl in |- *; auto
- | generalize H3; unfold not in |- *; intros E1 E2; apply E1;
- symmetry in |- *; trivial ].
+ [ intro H4; left; apply H1; simpl; elim (add_norm_stable t);
+ simpl; auto
+ | intro H4; right; apply H2; simpl; elim (scalar_norm_add_stable t);
+ simpl; auto
+ | generalize H3; unfold not; intros E1 E2; apply E1;
+ symmetry ; trivial ].
Qed.
@@ -2511,47 +2511,47 @@ Fixpoint execute_omega (t : t_omega) (l : hyps) {struct t} : lhyps :=
Theorem omega_valid : forall t : t_omega, valid_list_hyps (execute_omega t).
Proof.
- simple induction t; simpl in |- *;
- [ unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ simple induction t; simpl;
+ [ unfold valid_list_hyps; simpl; intros; left;
apply (constant_not_nul_valid n ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ | unfold valid_list_hyps; simpl; intros; left;
apply (constant_neg_valid n ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
+ | unfold valid_list_hyps, valid_hyps;
intros k1 k2 body n t' Ht' m ep e lp H; apply Ht';
apply
(apply_oper_1_valid m (divide_and_approx k1 k2 body n)
(divide_and_approx_valid k1 k2 body n) ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ | unfold valid_list_hyps; simpl; intros; left;
apply (not_exact_divide_valid i i0 t0 n n0 ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
+ | unfold valid_list_hyps, valid_hyps;
intros k body n t' Ht' m ep e lp H; apply Ht';
apply
(apply_oper_1_valid m (exact_divide k body n)
(exact_divide_valid k body n) ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
+ | unfold valid_list_hyps, valid_hyps;
intros k1 i1 k2 i2 trace t' Ht' ep e lp H; apply Ht';
apply
(apply_oper_2_valid i1 i2 (sum k1 k2 trace) (sum_valid k1 k2 trace) ep e
lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ | unfold valid_list_hyps; simpl; intros; left;
apply (contradiction_valid n n0 n1 ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
+ | unfold valid_list_hyps, valid_hyps;
intros trace i1 i2 t' Ht' ep e lp H; apply Ht';
apply
(apply_oper_2_valid i1 i2 (merge_eq trace) (merge_eq_valid trace) ep e
lp H)
- | intros t' i k1 H1 k2 H2; unfold valid_list_hyps in |- *; simpl in |- *;
+ | intros t' i k1 H1 k2 H2; unfold valid_list_hyps; simpl;
intros ep e lp H;
apply
(split_ineq_valid i t' (execute_omega k1) (execute_omega k2) H1 H2 ep e
lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros i ep e lp H; left;
+ | unfold valid_list_hyps; simpl; intros i ep e lp H; left;
apply (constant_nul_valid i ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros i j ep e lp H; left;
+ | unfold valid_list_hyps; simpl; intros i j ep e lp H; left;
apply (negate_contradict_valid i j ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros n i j ep e lp H;
+ | unfold valid_list_hyps; simpl; intros n i j ep e lp H;
left; apply (negate_contradict_inv_valid n i j ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
+ | unfold valid_list_hyps, valid_hyps;
intros m s i1 i2 t' Ht' ep e lp H; apply Ht';
apply (apply_oper_2_valid i1 i2 (state m s) (state_valid m s) ep e lp H) ].
Qed.
@@ -2573,9 +2573,9 @@ Definition move_right (s : step) (p : proposition) :=
Theorem move_right_valid : forall s : step, valid1 (move_right s).
Proof.
- unfold valid1, move_right in |- *; intros s ep e p; Simplify; simpl in |- *;
- elim (t_rewrite_stable s e); simpl in |- *;
- [ symmetry in |- *; apply egal_left; assumption
+ unfold valid1, move_right; intros s ep e p; Simplify; simpl;
+ elim (t_rewrite_stable s e); simpl;
+ [ symmetry ; apply egal_left; assumption
| intro; apply le_left; assumption
| intro; apply le_left; rewrite <- ge_le_iff; assumption
| intro; apply lt_left; rewrite <- gt_lt_iff; assumption
@@ -2588,7 +2588,7 @@ Definition do_normalize (i : nat) (s : step) := apply_oper_1 i (move_right s).
Theorem do_normalize_valid :
forall (i : nat) (s : step), valid_hyps (do_normalize i s).
Proof.
- intros; unfold do_normalize in |- *; apply apply_oper_1_valid;
+ intros; unfold do_normalize; apply apply_oper_1_valid;
apply move_right_valid.
Qed.
@@ -2602,7 +2602,7 @@ Fixpoint do_normalize_list (l : list step) (i : nat)
Theorem do_normalize_list_valid :
forall (l : list step) (i : nat), valid_hyps (do_normalize_list l i).
Proof.
- simple induction l; simpl in |- *; unfold valid_hyps in |- *;
+ simple induction l; simpl; unfold valid_hyps;
[ auto
| intros a l' Hl' i ep e lp H; unfold valid_hyps in Hl'; apply Hl';
apply (do_normalize_valid i a ep e lp); assumption ].
@@ -2631,8 +2631,8 @@ Theorem append_goal :
interp_list_goal ep e (l1 ++ l2).
Proof.
intros ep e; simple induction l1;
- [ simpl in |- *; intros l2 (H1, H2); assumption
- | simpl in |- *; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ].
+ [ simpl; intros l2 (H1, H2); assumption
+ | simpl; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ].
Qed.
(* A simple decidability checker : if the proposition belongs to the
@@ -2661,11 +2661,11 @@ Theorem decidable_correct :
forall (ep : list Prop) (e : list int) (p : proposition),
decidability p = true -> decidable (interp_proposition ep e p).
Proof.
- simple induction p; simpl in |- *; intros;
+ simple induction p; simpl; intros;
[ apply dec_eq
| apply dec_le
| left; auto
- | right; unfold not in |- *; auto
+ | right; unfold not; auto
| apply dec_not; auto
| apply dec_ge
| apply dec_gt
@@ -2701,7 +2701,7 @@ Theorem interp_full_false :
forall (ep : list Prop) (e : list int) (l : hyps) (c : proposition),
(interp_hyps ep e l -> interp_proposition ep e c) -> interp_full ep e (l, c).
Proof.
- simple induction l; unfold interp_full in |- *; simpl in |- *;
+ simple induction l; unfold interp_full; simpl;
[ auto | intros a l1 H1 c H2 H3; apply H1; auto ].
Qed.
@@ -2721,12 +2721,12 @@ Theorem to_contradict_valid :
forall (ep : list Prop) (e : list int) (lc : hyps * proposition),
interp_goal ep e (to_contradict lc) -> interp_full ep e lc.
Proof.
- intros ep e lc; case lc; intros l c; simpl in |- *;
- pattern (decidability c) in |- *; apply bool_eq_ind;
- [ simpl in |- *; intros H H1; apply interp_full_false; intros H2;
+ intros ep e lc; case lc; intros l c; simpl;
+ pattern (decidability c); apply bool_eq_ind;
+ [ simpl; intros H H1; apply interp_full_false; intros H2;
apply not_not;
[ apply decidable_correct; assumption
- | unfold not at 1 in |- *; intro H3; apply hyps_to_goal with (2 := H2);
+ | unfold not at 1; intro H3; apply hyps_to_goal with (2 := H2);
auto ]
| intros H1 H2; apply interp_full_false; intro H3;
elim hyps_to_goal with (1 := H2); assumption ].
@@ -2790,7 +2790,7 @@ Theorem map_cons_val :
interp_proposition ep e p ->
interp_list_hyps ep e l -> interp_list_hyps ep e (map_cons _ p l).
Proof.
- simple induction l; simpl in |- *; [ auto | intros; elim H1; intro H2; auto ].
+ simple induction l; simpl; [ auto | intros; elim H1; intro H2; auto ].
Qed.
Hint Resolve map_cons_val append_valid decidable_correct.
@@ -2799,43 +2799,43 @@ Theorem destructure_hyps_valid :
forall n : nat, valid_list_hyps (destructure_hyps n).
Proof.
simple induction n;
- [ unfold valid_list_hyps in |- *; simpl in |- *; auto
- | unfold valid_list_hyps at 2 in |- *; intros n1 H ep e lp; case lp;
- [ simpl in |- *; auto
+ [ unfold valid_list_hyps; simpl; auto
+ | unfold valid_list_hyps at 2; intros n1 H ep e lp; case lp;
+ [ simpl; auto
| intros p l; case p;
try
- (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0;
+ (simpl; intros; apply map_cons_val; simpl; elim H0;
auto);
[ intro p'; case p';
try
- (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0;
+ (simpl; intros; apply map_cons_val; simpl; elim H0;
auto);
- [ simpl in |- *; intros p1 (H1, H2);
- pattern (decidability p1) in |- *; apply bool_eq_ind;
+ [ simpl; intros p1 (H1, H2);
+ pattern (decidability p1); apply bool_eq_ind;
intro H3;
- [ apply H; simpl in |- *; split;
+ [ apply H; simpl; split;
[ apply not_not; auto | assumption ]
| auto ]
- | simpl in |- *; intros p1 p2 (H1, H2); apply H; simpl in |- *;
+ | simpl; intros p1 p2 (H1, H2); apply H; simpl;
elim not_or with (1 := H1); auto
- | simpl in |- *; intros p1 p2 (H1, H2);
- pattern (decidability p1) in |- *; apply bool_eq_ind;
+ | simpl; intros p1 p2 (H1, H2);
+ pattern (decidability p1); apply bool_eq_ind;
intro H3;
[ apply append_valid; elim not_and with (2 := H1);
- [ intro; left; apply H; simpl in |- *; auto
- | intro; right; apply H; simpl in |- *; auto
+ [ intro; left; apply H; simpl; auto
+ | intro; right; apply H; simpl; auto
| auto ]
| auto ] ]
- | simpl in |- *; intros p1 p2 (H1, H2); apply append_valid;
- (elim H1; intro H3; simpl in |- *; [ left | right ]);
- apply H; simpl in |- *; auto
- | simpl in |- *; intros; apply H; simpl in |- *; tauto
- | simpl in |- *; intros p1 p2 (H1, H2);
- pattern (decidability p1) in |- *; apply bool_eq_ind;
+ | simpl; intros p1 p2 (H1, H2); apply append_valid;
+ (elim H1; intro H3; simpl; [ left | right ]);
+ apply H; simpl; auto
+ | simpl; intros; apply H; simpl; tauto
+ | simpl; intros p1 p2 (H1, H2);
+ pattern (decidability p1); apply bool_eq_ind;
intro H3;
[ apply append_valid; elim imp_simp with (2 := H1);
- [ intro H4; left; simpl in |- *; apply H; simpl in |- *; auto
- | intro H4; right; simpl in |- *; apply H; simpl in |- *; auto
+ [ intro H4; left; simpl; apply H; simpl; auto
+ | intro H4; right; simpl; apply H; simpl; auto
| auto ]
| auto ] ] ] ].
Qed.
@@ -2858,8 +2858,8 @@ Theorem p_apply_left_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_apply_left f).
Proof.
- unfold prop_stable in |- *; intros f H ep e p; split;
- (case p; simpl in |- *; auto; intros p1; elim (H ep e p1); tauto).
+ unfold prop_stable; intros f H ep e p; split;
+ (case p; simpl; auto; intros p1; elim (H ep e p1); tauto).
Qed.
Definition p_apply_right (f : proposition -> proposition)
@@ -2876,8 +2876,8 @@ Theorem p_apply_right_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_apply_right f).
Proof.
- unfold prop_stable in |- *; intros f H ep e p; split;
- (case p; simpl in |- *; auto;
+ unfold prop_stable; intros f H ep e p; split;
+ (case p; simpl; auto;
[ intros p1; elim (H ep e p1); tauto
| intros p1 p2; elim (H ep e p2); tauto
| intros p1 p2; elim (H ep e p2); tauto
@@ -2900,42 +2900,42 @@ Theorem p_invert_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_invert f).
Proof.
- unfold prop_stable in |- *; intros f H ep e p; split;
- (case p; simpl in |- *; auto;
- [ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl in |- *;
+ unfold prop_stable; intros f H ep e p; split;
+ (case p; simpl; auto;
+ [ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl;
generalize (dec_eq (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; tauto
- | intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl in |- *;
+ unfold decidable; tauto
+ | intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl;
generalize (dec_gt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; rewrite le_lt_iff, <- gt_lt_iff; tauto
- | intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl in |- *;
+ unfold decidable; rewrite le_lt_iff, <- gt_lt_iff; tauto
+ | intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl;
generalize (dec_lt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; rewrite ge_le_iff, le_lt_iff; tauto
- | intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl in |- *;
+ unfold decidable; rewrite ge_le_iff, le_lt_iff; tauto
+ | intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl;
generalize (dec_gt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; repeat rewrite le_lt_iff;
+ unfold decidable; repeat rewrite le_lt_iff;
repeat rewrite gt_lt_iff; tauto
- | intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl in |- *;
+ | intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl;
generalize (dec_lt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; repeat rewrite ge_le_iff;
+ unfold decidable; repeat rewrite ge_le_iff;
repeat rewrite le_lt_iff; tauto
- | intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl in |- *;
+ | intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl;
generalize (dec_eq (interp_term e t1) (interp_term e t2));
unfold decidable; tauto ]).
Qed.
Theorem move_right_stable : forall s : step, prop_stable (move_right s).
Proof.
- unfold move_right, prop_stable in |- *; intros s ep e p; split;
- [ Simplify; simpl in |- *; elim (t_rewrite_stable s e); simpl in |- *;
- [ symmetry in |- *; apply egal_left; assumption
+ unfold move_right, prop_stable; intros s ep e p; split;
+ [ Simplify; simpl; elim (t_rewrite_stable s e); simpl;
+ [ symmetry ; apply egal_left; assumption
| intro; apply le_left; assumption
| intro; apply le_left; rewrite <- ge_le_iff; assumption
| intro; apply lt_left; rewrite <- gt_lt_iff; assumption
| intro; apply lt_left; assumption
| intro; apply ne_left_2; assumption ]
- | case p; simpl in |- *; intros; auto; generalize H; elim (t_rewrite_stable s);
- simpl in |- *; intro H1;
+ | case p; simpl; intros; auto; generalize H; elim (t_rewrite_stable s);
+ simpl; intro H1;
[ rewrite (plus_0_r_reverse (interp_term e t0)); rewrite H1;
rewrite plus_permute; rewrite plus_opp_r;
rewrite plus_0_r; trivial
@@ -2946,7 +2946,7 @@ Proof.
rewrite plus_opp_r; assumption
| rewrite gt_lt_iff; apply lt_left_inv; assumption
| apply lt_left_inv; assumption
- | unfold not in |- *; intro H2; apply H1;
+ | unfold not; intro H2; apply H1;
rewrite H2; rewrite plus_opp_r; trivial ] ].
Qed.
@@ -2962,12 +2962,12 @@ Fixpoint p_rewrite (s : p_step) : proposition -> proposition :=
Theorem p_rewrite_stable : forall s : p_step, prop_stable (p_rewrite s).
Proof.
- simple induction s; simpl in |- *;
+ simple induction s; simpl;
[ intros; apply p_apply_left_stable; trivial
| intros; apply p_apply_right_stable; trivial
| intros; apply p_invert_stable; apply move_right_stable
| apply move_right_stable
- | unfold prop_stable in |- *; simpl in |- *; intros; split; auto ].
+ | unfold prop_stable; simpl; intros; split; auto ].
Qed.
Fixpoint normalize_hyps (l : list h_step) (lh : hyps) {struct l} : hyps :=
@@ -2979,11 +2979,11 @@ Fixpoint normalize_hyps (l : list h_step) (lh : hyps) {struct l} : hyps :=
Theorem normalize_hyps_valid :
forall l : list h_step, valid_hyps (normalize_hyps l).
Proof.
- simple induction l; unfold valid_hyps in |- *; simpl in |- *;
+ simple induction l; unfold valid_hyps; simpl;
[ auto
| intros n_s r; case n_s; intros n s H ep e lp H1; apply H;
apply apply_oper_1_valid;
- [ unfold valid1 in |- *; intros ep1 e1 p1 H2;
+ [ unfold valid1; intros ep1 e1 p1 H2;
elim (p_rewrite_stable s ep1 e1 p1); auto
| assumption ] ].
Qed.
@@ -3050,21 +3050,21 @@ Theorem extract_valid :
forall s : list direction,
valid1 (extract_hyp_pos s) /\ co_valid1 (extract_hyp_neg s).
Proof.
- unfold valid1, co_valid1 in |- *; simple induction s;
+ unfold valid1, co_valid1; simple induction s;
[ split;
- [ simpl in |- *; auto
- | intros ep e p1; case p1; simpl in |- *; auto; intro p;
- pattern (decidability p) in |- *; apply bool_eq_ind;
+ [ simpl; auto
+ | intros ep e p1; case p1; simpl; auto; intro p;
+ pattern (decidability p); apply bool_eq_ind;
[ intro H; generalize (decidable_correct ep e p H);
- unfold decidable in |- *; tauto
- | simpl in |- *; auto ] ]
+ unfold decidable; tauto
+ | simpl; auto ] ]
| intros a s' (H1, H2); simpl in H2; split; intros ep e p; case a; auto;
- case p; auto; simpl in |- *; intros;
+ case p; auto; simpl; intros;
(apply H1; tauto) ||
(apply H2; tauto) ||
- (pattern (decidability p0) in |- *; apply bool_eq_ind;
+ (pattern (decidability p0); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e p0 H3);
- unfold decidable in |- *; intro H4; apply H1;
+ unfold decidable; intro H4; apply H1;
tauto
| intro; tauto ]) ].
Qed.
@@ -3094,29 +3094,29 @@ Fixpoint decompose_solve (s : e_step) (h : hyps) {struct s} : lhyps :=
Theorem decompose_solve_valid :
forall s : e_step, valid_list_goal (decompose_solve s).
Proof.
- intro s; apply goal_valid; unfold valid_list_hyps in |- *; elim s;
- simpl in |- *; intros;
+ intro s; apply goal_valid; unfold valid_list_hyps; elim s;
+ simpl; intros;
[ cut (interp_proposition ep e1 (extract_hyp_pos l (nth_hyps n lp)));
- [ case (extract_hyp_pos l (nth_hyps n lp)); simpl in |- *; auto;
- [ intro p; case p; simpl in |- *; auto; intros p1 p2 H2;
- pattern (decidability p1) in |- *; apply bool_eq_ind;
+ [ case (extract_hyp_pos l (nth_hyps n lp)); simpl; auto;
+ [ intro p; case p; simpl; auto; intros p1 p2 H2;
+ pattern (decidability p1); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
apply append_valid; elim H4; intro H5;
- [ right; apply H0; simpl in |- *; tauto
- | left; apply H; simpl in |- *; tauto ]
- | simpl in |- *; auto ]
- | intros p1 p2 H2; apply append_valid; simpl in |- *; elim H2;
- [ intros H3; left; apply H; simpl in |- *; auto
- | intros H3; right; apply H0; simpl in |- *; auto ]
+ [ right; apply H0; simpl; tauto
+ | left; apply H; simpl; tauto ]
+ | simpl; auto ]
+ | intros p1 p2 H2; apply append_valid; simpl; elim H2;
+ [ intros H3; left; apply H; simpl; auto
+ | intros H3; right; apply H0; simpl; auto ]
| intros p1 p2 H2;
- pattern (decidability p1) in |- *; apply bool_eq_ind;
+ pattern (decidability p1); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
apply append_valid; elim H4; intro H5;
- [ right; apply H0; simpl in |- *; tauto
- | left; apply H; simpl in |- *; tauto ]
- | simpl in |- *; auto ] ]
+ [ right; apply H0; simpl; tauto
+ | left; apply H; simpl; tauto ]
+ | simpl; auto ] ]
| elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto ]
- | intros; apply H; simpl in |- *; split;
+ | intros; apply H; simpl; split;
[ elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto
| auto ]
| apply omega_valid with (1 := H) ].
@@ -3137,11 +3137,11 @@ Fixpoint reduce_lhyps (lp : lhyps) : lhyps :=
Theorem reduce_lhyps_valid : valid_lhyps reduce_lhyps.
Proof.
- unfold valid_lhyps in |- *; intros ep e lp; elim lp;
- [ simpl in |- *; auto
+ unfold valid_lhyps; intros ep e lp; elim lp;
+ [ simpl; auto
| intros a l HR; elim a;
- [ simpl in |- *; tauto
- | intros a1 l1; case l1; case a1; simpl in |- *; try tauto ] ].
+ [ simpl; tauto
+ | intros a1 l1; case l1; case a1; simpl; try tauto ] ].
Qed.
Theorem do_reduce_lhyps :
@@ -3161,13 +3161,13 @@ Definition do_concl_to_hyp :
interp_goal envp env (concl_to_hyp c :: l) ->
interp_goal_concl c envp env l.
Proof.
- simpl in |- *; intros envp env c l; induction l as [| a l Hrecl];
- [ simpl in |- *; unfold concl_to_hyp in |- *;
- pattern (decidability c) in |- *; apply bool_eq_ind;
+ simpl; intros envp env c l; induction l as [| a l Hrecl];
+ [ simpl; unfold concl_to_hyp;
+ pattern (decidability c); apply bool_eq_ind;
[ intro H; generalize (decidable_correct envp env c H);
- unfold decidable in |- *; simpl in |- *; tauto
- | simpl in |- *; intros H1 H2; elim H2; trivial ]
- | simpl in |- *; tauto ].
+ unfold decidable; simpl; tauto
+ | simpl; intros H1 H2; elim H2; trivial ]
+ | simpl; tauto ].
Qed.
Definition omega_tactic (t1 : e_step) (t2 : list h_step)
@@ -3180,7 +3180,7 @@ Theorem do_omega :
interp_list_goal envp env (omega_tactic t1 t2 c l) ->
interp_goal_concl c envp env l.
Proof.
- unfold omega_tactic in |- *; intros; apply do_concl_to_hyp;
+ unfold omega_tactic; intros; apply do_concl_to_hyp;
apply (normalize_hyps_goal t2); apply (decompose_solve_valid t1);
apply do_reduce_lhyps; assumption.
Qed.
diff --git a/plugins/setoid_ring/Field_theory.v b/plugins/setoid_ring/Field_theory.v
index 17595639bb..bd9622e523 100644
--- a/plugins/setoid_ring/Field_theory.v
+++ b/plugins/setoid_ring/Field_theory.v
@@ -120,12 +120,12 @@ Local Hint Extern 2 (_ == _) => f_equiv.
(* additional ring properties *)
Lemma rsub_0_l : forall r, 0 - r == - r.
-intros; rewrite (ARsub_def ARth) in |- *;ring.
+intros; rewrite (ARsub_def ARth);ring.
Qed.
Lemma rsub_0_r : forall r, r - 0 == r.
-intros; rewrite (ARsub_def ARth) in |- *.
-rewrite (ARopp_zero Rsth Reqe ARth) in |- *; ring.
+intros; rewrite (ARsub_def ARth).
+rewrite (ARopp_zero Rsth Reqe ARth); ring.
Qed.
(***************************************************************************
@@ -137,9 +137,9 @@ Qed.
Theorem rdiv_simpl: forall p q, ~ q == 0 -> q * (p / q) == p.
Proof.
intros p q H.
-rewrite rdiv_def in |- *.
+rewrite rdiv_def.
transitivity (/ q * q * p); [ ring | idtac ].
-rewrite rinv_l in |- *; auto.
+rewrite rinv_l; auto.
Qed.
Hint Resolve rdiv_simpl .
@@ -177,15 +177,15 @@ Theorem ropp_neq_0 : forall r,
intros.
setoid_replace (- r) with (- (1) * r).
apply field_is_integral_domain; trivial.
- rewrite <- (ARopp_mul_l ARth) in |- *.
- rewrite (ARmul_1_l ARth) in |- *.
+ rewrite <- (ARopp_mul_l ARth).
+ rewrite (ARmul_1_l ARth).
reflexivity.
Qed.
Theorem rdiv_r_r : forall r, ~ r == 0 -> r / r == 1.
intros.
-rewrite (AFdiv_def AFth) in |- *.
-rewrite (ARmul_comm ARth) in |- *.
+rewrite (AFdiv_def AFth).
+rewrite (ARmul_comm ARth).
apply (AFinv_l AFth).
trivial.
Qed.
@@ -225,8 +225,8 @@ assert (HH3: ~ r4 == 0) by (intros HH; case H0; rewrite HH; ring).
assert (HH4: ~ r2 * (r4 * r5) == 0)
by complete (repeat apply field_is_integral_domain; trivial).
apply rmul_reg_l with (r2 * (r4 * r5)); trivial.
-rewrite rdiv_simpl in |- *; trivial.
-rewrite (ARdistr_r Rsth Reqe ARth) in |- *.
+rewrite rdiv_simpl; trivial.
+rewrite (ARdistr_r Rsth Reqe ARth).
apply (Radd_ext Reqe).
transitivity ((r2 * r5) * (r1 / (r2 * r5)) * r4); [ ring | auto ].
transitivity ((r4 * r5) * (r3 / (r4 * r5)) * r2); [ ring | auto ].
@@ -278,13 +278,13 @@ intros r1 r2 H H0.
assert (~ r1 / r2 == 0) as Hk.
intros H1; case H.
transitivity (r2 * (r1 / r2)); auto.
- rewrite H1 in |- *; ring.
+ rewrite H1; ring.
apply rmul_reg_l with (r1 / r2); auto.
transitivity (/ (r1 / r2) * (r1 / r2)); auto.
transitivity 1; auto.
- repeat rewrite rdiv_def in |- *.
+ repeat rewrite rdiv_def.
transitivity (/ r1 * r1 * (/ r2 * r2)); [ idtac | ring ].
- repeat rewrite rinv_l in |- *; auto.
+ repeat rewrite rinv_l; auto.
Qed.
Hint Resolve rdiv6 .
@@ -297,9 +297,9 @@ Proof.
intros r1 r2 r3 r4 H H0.
assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial).
apply rmul_reg_l with (r2 * r4); trivial.
-rewrite rdiv_simpl in |- *; trivial.
+rewrite rdiv_simpl; trivial.
transitivity (r2 * (r1 / r2) * (r4 * (r3 / r4))); [ ring | idtac ].
-repeat rewrite rdiv_simpl in |- *; trivial.
+repeat rewrite rdiv_simpl; trivial.
Qed.
Theorem rdiv4b:
@@ -333,8 +333,8 @@ Theorem rdiv7:
(r1 / r2) / (r3 / r4) == (r1 * r4) / (r2 * r3).
Proof.
intros.
-rewrite (rdiv_def (r1 / r2)) in |- *.
-rewrite rdiv6 in |- *; trivial.
+rewrite (rdiv_def (r1 / r2)).
+rewrite rdiv6; trivial.
apply rdiv4; trivial.
Qed.
@@ -372,14 +372,14 @@ Theorem cross_product_eq : forall r1 r2 r3 r4,
~ r2 == 0 -> ~ r4 == 0 -> r1 * r4 == r3 * r2 -> r1 / r2 == r3 / r4.
intros.
transitivity (r1 / r2 * (r4 / r4)).
- rewrite rdiv_r_r in |- *; trivial.
- symmetry in |- *.
+ rewrite rdiv_r_r; trivial.
+ symmetry .
apply (ARmul_1_r Rsth ARth).
- rewrite rdiv4 in |- *; trivial.
- rewrite H1 in |- *.
- rewrite (ARmul_comm ARth r2 r4) in |- *.
- rewrite <- rdiv4 in |- *; trivial.
- rewrite rdiv_r_r in |- * by trivial.
+ rewrite rdiv4; trivial.
+ rewrite H1.
+ rewrite (ARmul_comm ARth r2 r4).
+ rewrite <- rdiv4; trivial.
+ rewrite rdiv_r_r by trivial.
apply (ARmul_1_r Rsth ARth).
Qed.
@@ -451,8 +451,8 @@ Theorem NPEadd_correct:
forall l e1 e2, NPEeval l (NPEadd e1 e2) == NPEeval l (PEadd e1 e2).
Proof.
intros l e1 e2.
-destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect;
- try (intro eq_c; rewrite eq_c in |- *); simpl in |- *;try apply eq_refl;
+destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect;
+ try (intro eq_c; rewrite eq_c); simpl;try apply eq_refl;
try (ring [(morph0 CRmorph)]).
apply (morph_add CRmorph).
Qed.
@@ -503,9 +503,9 @@ Qed.
Theorem NPEmul_correct : forall l e1 e2,
NPEeval l (NPEmul e1 e2) == NPEeval l (PEmul e1 e2).
-induction e1;destruct e2; simpl in |- *;try reflexivity;
+induction e1;destruct e2; simpl;try reflexivity;
repeat apply ceqb_rect;
- try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; try reflexivity;
+ try (intro eq_c; rewrite eq_c); simpl; try reflexivity;
try ring [(morph0 CRmorph) (morph1 CRmorph)].
apply (morph_mul CRmorph).
case N.eqb_spec; intros H; try rewrite <- H; clear H.
@@ -529,9 +529,9 @@ Definition NPEsub e1 e2 :=
Theorem NPEsub_correct:
forall l e1 e2, NPEeval l (NPEsub e1 e2) == NPEeval l (PEsub e1 e2).
intros l e1 e2.
-destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect;
- try (intro eq_c; rewrite eq_c in |- *); simpl in |- *;
- try rewrite (morph0 CRmorph) in |- *; try reflexivity;
+destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect;
+ try (intro eq_c; rewrite eq_c); simpl;
+ try rewrite (morph0 CRmorph); try reflexivity;
try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r).
apply (morph_sub CRmorph).
Qed.
@@ -651,8 +651,8 @@ destruct H; trivial.
Qed.
Theorem PCond_app_inv_l: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l1.
-intros l l1 l2; elim l1; simpl app in |- *.
- simpl in |- *; auto.
+intros l l1 l2; elim l1; simpl app.
+ simpl; auto.
destruct l0; simpl in *.
destruct l2; firstorder.
firstorder.
@@ -667,8 +667,8 @@ Qed.
Definition absurd_PCond := cons (PEc cO) nil.
Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond.
-unfold absurd_PCond in |- *; simpl in |- *.
-red in |- *; intros.
+unfold absurd_PCond; simpl.
+red; intros.
apply H.
apply (morph0 CRmorph).
Qed.
@@ -1012,13 +1012,13 @@ Theorem Pcond_Fnorm:
forall l e,
PCond l (condition (Fnorm e)) -> ~ NPEeval l (denum (Fnorm e)) == 0.
intros l e; elim e.
- simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO.
- simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO.
+ simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO.
+ simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO.
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
- rewrite NPEmul_correct in |- *.
- simpl in |- *.
+ simpl denum.
+ rewrite NPEmul_correct.
+ simpl.
apply field_is_integral_domain.
intros HH; case Hrec1; auto.
apply PCond_app_inv_l with (1 := Hcond).
@@ -1029,9 +1029,9 @@ intros l e; elim e.
rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
- rewrite NPEmul_correct in |- *.
- simpl in |- *.
+ simpl denum.
+ rewrite NPEmul_correct.
+ simpl.
apply field_is_integral_domain.
intros HH; case Hrec1; auto.
apply PCond_app_inv_l with (1 := Hcond).
@@ -1042,9 +1042,9 @@ intros l e; elim e.
rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
- rewrite NPEmul_correct in |- *.
- simpl in |- *.
+ simpl denum.
+ rewrite NPEmul_correct.
+ simpl.
apply field_is_integral_domain.
intros HH; apply Hrec1.
apply PCond_app_inv_l with (1 := Hcond).
@@ -1056,17 +1056,17 @@ intros l e; elim e.
rewrite NPEmul_correct; simpl; rewrite HH; ring.
intros e1 Hrec1 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
+ simpl denum.
auto.
intros e1 Hrec1 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
+ simpl denum.
apply PCond_cons_inv_l with (1:=Hcond).
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
- rewrite NPEmul_correct in |- *.
- simpl in |- *.
+ simpl denum.
+ rewrite NPEmul_correct.
+ simpl.
apply field_is_integral_domain.
intros HH; apply Hrec1.
specialize PCond_cons_inv_r with (1:=Hcond); intro Hcond1.
@@ -1209,9 +1209,9 @@ Theorem Fnorm_crossproduct:
PCond l (condition nfe1 ++ condition nfe2) ->
FEeval l fe1 == FEeval l fe2.
intros l fe1 fe2 nfe1 nfe2 Hcrossprod Hcond; subst nfe1 nfe2.
-rewrite Fnorm_FEeval_PEeval in |- * by
+rewrite Fnorm_FEeval_PEeval by
apply PCond_app_inv_l with (1 := Hcond).
- rewrite Fnorm_FEeval_PEeval in |- * by
+ rewrite Fnorm_FEeval_PEeval by
apply PCond_app_inv_r with (1 := Hcond).
apply cross_product_eq; trivial.
apply Pcond_Fnorm.
@@ -1328,13 +1328,13 @@ Proof.
intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond;
subst nfe1 nfe2 den lmp.
apply Fnorm_crossproduct; trivial.
-simpl in |- *.
-rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *.
-rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *.
-rewrite NPEmul_correct in |- *.
-rewrite NPEmul_correct in |- *.
-simpl in |- *.
-repeat rewrite (ARmul_assoc ARth) in |- *.
+simpl.
+rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
+rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
+rewrite NPEmul_correct.
+rewrite NPEmul_correct.
+simpl.
+repeat rewrite (ARmul_assoc ARth).
rewrite <-(
let x := PEmul (num (Fnorm fe1))
(rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in
@@ -1349,7 +1349,7 @@ rewrite <-(
Hlpe Logic.eq_refl
x Logic.eq_refl) in Hcrossprod.
simpl in Hcrossprod.
-rewrite Hcrossprod in |- *.
+rewrite Hcrossprod.
reflexivity.
Qed.
@@ -1368,13 +1368,13 @@ Proof.
intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond;
subst nfe1 nfe2 den lmp.
apply Fnorm_crossproduct; trivial.
-simpl in |- *.
-rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *.
-rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *.
-rewrite NPEmul_correct in |- *.
-rewrite NPEmul_correct in |- *.
-simpl in |- *.
-repeat rewrite (ARmul_assoc ARth) in |- *.
+simpl.
+rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
+rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
+rewrite NPEmul_correct.
+rewrite NPEmul_correct.
+simpl.
+repeat rewrite (ARmul_assoc ARth).
rewrite <-(
let x := PEmul (num (Fnorm fe1))
(rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in
@@ -1389,7 +1389,7 @@ rewrite <-(
Hlpe Logic.eq_refl
x Logic.eq_refl) in Hcrossprod.
simpl in Hcrossprod.
-rewrite Hcrossprod in |- *.
+rewrite Hcrossprod.
reflexivity.
Qed.
@@ -1509,7 +1509,7 @@ Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) :=
Lemma fcons_correct : forall l l1,
PCond l (Fapp l1 nil) -> PCond l l1.
-induction l1; simpl in |- *; intros.
+induction l1; simpl; intros.
trivial.
elim PCond_fcons_inv with (1 := H); intros.
destruct l1; auto.
@@ -1590,7 +1590,7 @@ intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail).
simpl in H1.
case (H _ H1); intros H2 H3.
case (H0 _ H3); intros H4 H5; split; auto.
- simpl in |- *.
+ simpl.
apply field_is_integral_domain; trivial.
simpl;intros. rewrite pow_th.(rpow_pow_N).
destruct (H _ H0);split;auto.
@@ -1618,7 +1618,7 @@ generalize (fun h => X (morph_eq CRmorph c1 c2 h)).
generalize (@ceqb_complete c1 c2).
case (c1 ?=! c2); auto; intros.
apply X0.
-red in |- *; intro.
+red; intro.
absurd (false = true); auto; discriminate.
Qed.
@@ -1634,18 +1634,18 @@ Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) :=
Theorem PFcons1_fcons_inv:
forall l a l1, PCond l (Fcons1 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail).
- simpl in |- *; intros c l1.
+ simpl; intros c l1.
apply ceqb_rect_complete; intros.
elim (@absurd_PCond_bottom l H0).
split; trivial.
- rewrite <- (morph0 CRmorph) in |- *; trivial.
+ rewrite <- (morph0 CRmorph); trivial.
intros p H p0 H0 l1 H1.
simpl in H1.
case (H _ H1); intros H2 H3.
case (H0 _ H3); intros H4 H5; split; auto.
- simpl in |- *.
+ simpl.
apply field_is_integral_domain; trivial.
- simpl in |- *; intros p H l1.
+ simpl; intros p H l1.
apply ceqb_rect_complete; intros.
elim (@absurd_PCond_bottom l H1).
destruct (H _ H1).
@@ -1664,7 +1664,7 @@ Definition Fcons2 e l := Fcons1 (PExpr_simp e) l.
Theorem PFcons2_fcons_inv:
forall l a l1, PCond l (Fcons2 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
-unfold Fcons2 in |- *; intros l a l1 H; split;
+unfold Fcons2; intros l a l1 H; split;
case (PFcons1_fcons_inv l (PExpr_simp a) l1); auto.
intros H1 H2 H3; case H1.
transitivity (NPEeval l a); trivial.
@@ -1747,15 +1747,15 @@ elim p using Pos.peano_ind; simpl; intros.
apply S_inj; trivial.
apply H.
apply S_inj.
- repeat rewrite (ARadd_assoc ARth) in |- *.
- rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth) in |- *; trivial.
+ repeat rewrite (ARadd_assoc ARth).
+ rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth); trivial.
Qed.
Lemma gen_phiPOS_inj : forall x y,
gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y ->
x = y.
intros x y.
-repeat rewrite <- (same_gen Rsth Reqe ARth) in |- *.
+repeat rewrite <- (same_gen Rsth Reqe ARth).
case (Pos.compare_spec x y).
intros.
trivial.
@@ -1778,13 +1778,13 @@ Qed.
Lemma gen_phiN_inj : forall x y,
gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
x = y.
-destruct x; destruct y; simpl in |- *; intros; trivial.
+destruct x; destruct y; simpl; intros; trivial.
elim gen_phiPOS_not_0 with p.
- symmetry in |- *.
- rewrite (same_gen Rsth Reqe ARth) in |- *; trivial.
+ symmetry .
+ rewrite (same_gen Rsth Reqe ARth); trivial.
elim gen_phiPOS_not_0 with p.
- rewrite (same_gen Rsth Reqe ARth) in |- *; trivial.
- rewrite gen_phiPOS_inj with (1 := H) in |- *; trivial.
+ rewrite (same_gen Rsth Reqe ARth); trivial.
+ rewrite gen_phiPOS_inj with (1 := H); trivial.
Qed.
Lemma gen_phiN_complete : forall x y,
@@ -1809,17 +1809,17 @@ Section Field.
Lemma ring_S_inj : forall x y, 1+x==1+y -> x==y.
intros.
transitivity (x + (1 + - (1))).
- rewrite (Ropp_def Rth) in |- *.
- symmetry in |- *.
+ rewrite (Ropp_def Rth).
+ symmetry .
apply (ARadd_0_r Rsth ARth).
transitivity (y + (1 + - (1))).
- repeat rewrite <- (ARplus_assoc ARth) in |- *.
- repeat rewrite (ARadd_assoc ARth) in |- *.
+ repeat rewrite <- (ARplus_assoc ARth).
+ repeat rewrite (ARadd_assoc ARth).
apply (Radd_ext Reqe).
- repeat rewrite <- (ARadd_comm ARth 1) in |- *.
+ repeat rewrite <- (ARadd_comm ARth 1).
trivial.
reflexivity.
- rewrite (Ropp_def Rth) in |- *.
+ rewrite (Ropp_def Rth).
apply (ARadd_0_r Rsth ARth).
Qed.
@@ -1831,14 +1831,14 @@ Let gen_phiPOS_inject :=
Lemma gen_phiPOS_discr_sgn : forall x y,
~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y.
-red in |- *; intros.
+red; intros.
apply gen_phiPOS_not_0 with (y + x)%positive.
-rewrite (ARgen_phiPOS_add Rsth Reqe ARth) in |- *.
+rewrite (ARgen_phiPOS_add Rsth Reqe ARth).
transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y).
apply (Radd_ext Reqe); trivial.
reflexivity.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
+ rewrite (same_gen Rsth Reqe ARth).
+ rewrite (same_gen Rsth Reqe ARth).
trivial.
apply (Ropp_def Rth).
Qed.
@@ -1846,33 +1846,33 @@ Qed.
Lemma gen_phiZ_inj : forall x y,
gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y ->
x = y.
-destruct x; destruct y; simpl in |- *; intros.
+destruct x; destruct y; simpl; intros.
trivial.
elim gen_phiPOS_not_0 with p.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
- symmetry in |- *; trivial.
+ rewrite (same_gen Rsth Reqe ARth).
+ symmetry ; trivial.
elim gen_phiPOS_not_0 with p.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
- rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *.
- rewrite <- H in |- *.
+ rewrite (same_gen Rsth Reqe ARth).
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
+ rewrite <- H.
apply (ARopp_zero Rsth Reqe ARth).
elim gen_phiPOS_not_0 with p.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
+ rewrite (same_gen Rsth Reqe ARth).
trivial.
- rewrite gen_phiPOS_inject with (1 := H) in |- *; trivial.
+ rewrite gen_phiPOS_inject with (1 := H); trivial.
elim gen_phiPOS_discr_sgn with (1 := H).
elim gen_phiPOS_not_0 with p.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
- rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *.
- rewrite H in |- *.
+ rewrite (same_gen Rsth Reqe ARth).
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
+ rewrite H.
apply (ARopp_zero Rsth Reqe ARth).
elim gen_phiPOS_discr_sgn with p0 p.
- symmetry in |- *; trivial.
+ symmetry ; trivial.
replace p0 with p; trivial.
apply gen_phiPOS_inject.
- rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *.
- rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)) in |- *.
- rewrite H in |- *; trivial.
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)).
+ rewrite H; trivial.
reflexivity.
Qed.
@@ -1881,8 +1881,8 @@ Lemma gen_phiZ_complete : forall x y,
Zeq_bool x y = true.
intros.
replace y with x.
- unfold Zeq_bool in |- *.
- rewrite Z.compare_refl in |- *; trivial.
+ unfold Zeq_bool.
+ rewrite Z.compare_refl; trivial.
apply gen_phiZ_inj; trivial.
Qed.
diff --git a/plugins/setoid_ring/InitialRing.v b/plugins/setoid_ring/InitialRing.v
index bc0f888ce8..adde4415cf 100644
--- a/plugins/setoid_ring/InitialRing.v
+++ b/plugins/setoid_ring/InitialRing.v
@@ -396,14 +396,14 @@ Section NWORDMORPHISM.
Lemma gen_phiNword0_ok : forall w, Nw_is0 w = true -> gen_phiNword w == 0.
Proof.
-induction w; simpl in |- *; intros; auto.
+induction w; simpl; intros; auto.
reflexivity.
destruct a.
destruct w.
reflexivity.
- rewrite IHw in |- *; trivial.
+ rewrite IHw; trivial.
apply (ARopp_zero Rsth Reqe ARth).
discriminate.
@@ -412,7 +412,7 @@ Qed.
Lemma gen_phiNword_cons : forall w n,
gen_phiNword (n::w) == gen_phiN rO rI radd rmul n - gen_phiNword w.
induction w.
- destruct n; simpl in |- *; norm.
+ destruct n; simpl; norm.
intros.
destruct n; norm.
@@ -423,27 +423,27 @@ Qed.
destruct w; intros.
destruct n; norm.
- unfold Nwcons in |- *.
- rewrite gen_phiNword_cons in |- *.
+ unfold Nwcons.
+ rewrite gen_phiNword_cons.
reflexivity.
Qed.
Lemma gen_phiNword_ok : forall w1 w2,
Nweq_bool w1 w2 = true -> gen_phiNword w1 == gen_phiNword w2.
induction w1; intros.
- simpl in |- *.
- rewrite (gen_phiNword0_ok _ H) in |- *.
+ simpl.
+ rewrite (gen_phiNword0_ok _ H).
reflexivity.
- rewrite gen_phiNword_cons in |- *.
+ rewrite gen_phiNword_cons.
destruct w2.
simpl in H.
destruct a; try discriminate.
- rewrite (gen_phiNword0_ok _ H) in |- *.
+ rewrite (gen_phiNword0_ok _ H).
norm.
simpl in H.
- rewrite gen_phiNword_cons in |- *.
+ rewrite gen_phiNword_cons.
case_eq (N.eqb a n); intros H0.
rewrite H0 in H.
apply N.eqb_eq in H0. rewrite <- H0.
@@ -457,27 +457,27 @@ Qed.
Lemma Nwadd_ok : forall x y,
gen_phiNword (Nwadd x y) == gen_phiNword x + gen_phiNword y.
induction x; intros.
- simpl in |- *.
+ simpl.
norm.
destruct y.
simpl Nwadd; norm.
- simpl Nwadd in |- *.
- repeat rewrite gen_phiNword_cons in |- *.
- rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) in |- * by
+ simpl Nwadd.
+ repeat rewrite gen_phiNword_cons.
+ rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) by
(destruct Reqe; constructor; trivial).
- rewrite IHx in |- *.
+ rewrite IHx.
norm.
add_push (- gen_phiNword x); reflexivity.
Qed.
Lemma Nwopp_ok : forall x, gen_phiNword (Nwopp x) == - gen_phiNword x.
-simpl in |- *.
-unfold Nwopp in |- *; simpl in |- *.
+simpl.
+unfold Nwopp; simpl.
intros.
-rewrite gen_phiNword_Nwcons in |- *; norm.
+rewrite gen_phiNword_Nwcons; norm.
Qed.
Lemma Nwscal_ok : forall n x,
@@ -485,12 +485,12 @@ Lemma Nwscal_ok : forall n x,
induction x; intros.
norm.
- simpl Nwscal in |- *.
- repeat rewrite gen_phiNword_cons in |- *.
- rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth)) in |- *
+ simpl Nwscal.
+ repeat rewrite gen_phiNword_cons.
+ rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth))
by (destruct Reqe; constructor; trivial).
- rewrite IHx in |- *.
+ rewrite IHx.
norm.
Qed.
@@ -500,19 +500,19 @@ induction x; intros.
norm.
destruct a.
- simpl Nwmul in |- *.
- rewrite Nwopp_ok in |- *.
- rewrite IHx in |- *.
- rewrite gen_phiNword_cons in |- *.
+ simpl Nwmul.
+ rewrite Nwopp_ok.
+ rewrite IHx.
+ rewrite gen_phiNword_cons.
norm.
- simpl Nwmul in |- *.
- unfold Nwsub in |- *.
- rewrite Nwadd_ok in |- *.
- rewrite Nwscal_ok in |- *.
- rewrite Nwopp_ok in |- *.
- rewrite IHx in |- *.
- rewrite gen_phiNword_cons in |- *.
+ simpl Nwmul.
+ unfold Nwsub.
+ rewrite Nwadd_ok.
+ rewrite Nwscal_ok.
+ rewrite Nwopp_ok.
+ rewrite IHx.
+ rewrite gen_phiNword_cons.
norm.
Qed.
@@ -528,9 +528,9 @@ constructor.
exact Nwadd_ok.
intros.
- unfold Nwsub in |- *.
- rewrite Nwadd_ok in |- *.
- rewrite Nwopp_ok in |- *.
+ unfold Nwsub.
+ rewrite Nwadd_ok.
+ rewrite Nwopp_ok.
norm.
exact Nwmul_ok.
diff --git a/plugins/setoid_ring/RealField.v b/plugins/setoid_ring/RealField.v
index 1cbddc27de..293722125b 100644
--- a/plugins/setoid_ring/RealField.v
+++ b/plugins/setoid_ring/RealField.v
@@ -12,14 +12,14 @@ Proof.
constructor.
intro; apply Rplus_0_l.
exact Rplus_comm.
- symmetry in |- *; apply Rplus_assoc.
+ symmetry ; apply Rplus_assoc.
intro; apply Rmult_1_l.
exact Rmult_comm.
- symmetry in |- *; apply Rmult_assoc.
+ symmetry ; apply Rmult_assoc.
intros m n p.
- rewrite Rmult_comm in |- *.
- rewrite (Rmult_comm n p) in |- *.
- rewrite (Rmult_comm m p) in |- *.
+ rewrite Rmult_comm.
+ rewrite (Rmult_comm n p).
+ rewrite (Rmult_comm m p).
apply Rmult_plus_distr_l.
reflexivity.
exact Rplus_opp_r.
@@ -42,17 +42,17 @@ destruct H0.
apply Rlt_trans with (IZR (up x)); trivial.
replace (IZR (up x)) with (x + (IZR (up x) - x))%R.
apply Rplus_lt_compat_l; trivial.
- unfold Rminus in |- *.
- rewrite (Rplus_comm (IZR (up x)) (- x)) in |- *.
- rewrite <- Rplus_assoc in |- *.
- rewrite Rplus_opp_r in |- *.
+ unfold Rminus.
+ rewrite (Rplus_comm (IZR (up x)) (- x)).
+ rewrite <- Rplus_assoc.
+ rewrite Rplus_opp_r.
apply Rplus_0_l.
elim H0.
- unfold Rminus in |- *.
- rewrite (Rplus_comm (IZR (up x)) (- x)) in |- *.
- rewrite <- Rplus_assoc in |- *.
- rewrite Rplus_opp_r in |- *.
- rewrite Rplus_0_l in |- *; trivial.
+ unfold Rminus.
+ rewrite (Rplus_comm (IZR (up x)) (- x)).
+ rewrite <- Rplus_assoc.
+ rewrite Rplus_opp_r.
+ rewrite Rplus_0_l; trivial.
Qed.
Notation Rset := (Eqsth R).
@@ -61,7 +61,7 @@ Notation Rext := (Eq_ext Rplus Rmult Ropp).
Lemma Rlt_0_2 : 0 < 2.
apply Rlt_trans with (0 + 1).
apply Rlt_n_Sn.
- rewrite Rplus_comm in |- *.
+ rewrite Rplus_comm.
apply Rplus_lt_compat_l.
replace 1 with (0 + 1).
apply Rlt_n_Sn.
@@ -69,19 +69,19 @@ apply Rlt_trans with (0 + 1).
Qed.
Lemma Rgen_phiPOS : forall x, InitialRing.gen_phiPOS1 1 Rplus Rmult x > 0.
-unfold Rgt in |- *.
-induction x; simpl in |- *; intros.
+unfold Rgt.
+induction x; simpl; intros.
apply Rlt_trans with (1 + 0).
- rewrite Rplus_comm in |- *.
+ rewrite Rplus_comm.
apply Rlt_n_Sn.
apply Rplus_lt_compat_l.
- rewrite <- (Rmul_0_l Rset Rext RTheory 2) in |- *.
- rewrite Rmult_comm in |- *.
+ rewrite <- (Rmul_0_l Rset Rext RTheory 2).
+ rewrite Rmult_comm.
apply Rmult_lt_compat_l.
apply Rlt_0_2.
trivial.
- rewrite <- (Rmul_0_l Rset Rext RTheory 2) in |- *.
- rewrite Rmult_comm in |- *.
+ rewrite <- (Rmul_0_l Rset Rext RTheory 2).
+ rewrite Rmult_comm.
apply Rmult_lt_compat_l.
apply Rlt_0_2.
trivial.
@@ -93,9 +93,9 @@ Qed.
Lemma Rgen_phiPOS_not_0 :
forall x, InitialRing.gen_phiPOS1 1 Rplus Rmult x <> 0.
-red in |- *; intros.
+red; intros.
specialize (Rgen_phiPOS x).
-rewrite H in |- *; intro.
+rewrite H; intro.
apply (Rlt_asym 0 0); trivial.
Qed.
@@ -107,7 +107,7 @@ Proof gen_phiZ_complete Rset Rext Rfield Rgen_phiPOS_not_0.
Lemma Rdef_pow_add : forall (x:R) (n m:nat), pow x (n + m) = pow x n * pow x m.
Proof.
- intros x n; elim n; simpl in |- *; auto with real.
+ intros x n; elim n; simpl; auto with real.
intros n0 H' m; rewrite H'; auto with real.
Qed.
diff --git a/plugins/setoid_ring/Ring.v b/plugins/setoid_ring/Ring.v
index c44c2edfca..7e53c23de0 100644
--- a/plugins/setoid_ring/Ring.v
+++ b/plugins/setoid_ring/Ring.v
@@ -14,7 +14,7 @@ Require Export Ring_tac.
Lemma BoolTheory :
ring_theory false true xorb andb xorb (fun b:bool => b) (eq(A:=bool)).
-split; simpl in |- *.
+split; simpl.
destruct x; reflexivity.
destruct x; destruct y; reflexivity.
destruct x; destruct y; destruct z; reflexivity.