aboutsummaryrefslogtreecommitdiff
path: root/plugins/ring/Ring_normalize.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/ring/Ring_normalize.v')
-rw-r--r--plugins/ring/Ring_normalize.v134
1 files changed, 67 insertions, 67 deletions
diff --git a/plugins/ring/Ring_normalize.v b/plugins/ring/Ring_normalize.v
index 9755d71e12..0d8393f76b 100644
--- a/plugins/ring/Ring_normalize.v
+++ b/plugins/ring/Ring_normalize.v
@@ -16,7 +16,7 @@ Proof.
intros.
apply index_eq_prop.
generalize H.
- case (index_eq n m); simpl in |- *; trivial; intros.
+ case (index_eq n m); simpl; trivial; intros.
contradiction.
Qed.
@@ -371,7 +371,7 @@ Hint Immediate T.
Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
Proof.
simple induction x; simple induction y; contradiction || (try reflexivity).
- simpl in |- *; intros.
+ simpl; intros.
generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
Qed.
@@ -380,7 +380,7 @@ Remark ivl_aux_ok :
forall (v:varlist) (i:index),
ivl_aux i v = Amult (interp_var i) (interp_vl v).
Proof.
- simple induction v; simpl in |- *; intros.
+ simple induction v; simpl; intros.
trivial.
rewrite H; trivial.
Qed.
@@ -390,14 +390,14 @@ Lemma varlist_merge_ok :
interp_vl (varlist_merge x y) = Amult (interp_vl x) (interp_vl y).
Proof.
simple induction x.
- simpl in |- *; trivial.
+ simpl; trivial.
simple induction y.
- simpl in |- *; trivial.
- simpl in |- *; intros.
- elim (index_lt i i0); simpl in |- *; intros.
+ simpl; trivial.
+ simpl; intros.
+ elim (index_lt i i0); simpl; intros.
repeat rewrite ivl_aux_ok.
- rewrite H. simpl in |- *.
+ rewrite H. simpl.
rewrite ivl_aux_ok.
eauto.
@@ -410,7 +410,7 @@ Qed.
Remark ics_aux_ok :
forall (x:A) (s:canonical_sum), ics_aux x s = Aplus x (interp_cs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
trivial.
reflexivity.
reflexivity.
@@ -420,7 +420,7 @@ Remark interp_m_ok :
forall (x:A) (l:varlist), interp_m x l = Amult x (interp_vl l).
Proof.
destruct l as [| i v].
- simpl in |- *; trivial.
+ simpl; trivial.
reflexivity.
Qed.
@@ -428,10 +428,10 @@ Lemma canonical_sum_merge_ok :
forall x y:canonical_sum,
interp_cs (canonical_sum_merge x y) = Aplus (interp_cs x) (interp_cs y).
-simple induction x; simpl in |- *.
+simple induction x; simpl.
trivial.
-simple induction y; simpl in |- *; intros.
+simple induction y; simpl; intros.
(* monom and nil *)
eauto.
@@ -439,25 +439,25 @@ eauto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
(* monom and varlist *)
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
@@ -465,13 +465,13 @@ apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
rewrite (SR_mult_one_left T).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
-simple induction y; simpl in |- *; intros.
+simple induction y; simpl; intros.
(* varlist and nil *)
trivial.
@@ -479,7 +479,7 @@ trivial.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
@@ -487,17 +487,17 @@ rewrite (SR_mult_one_left T).
apply f_equal with (f := Aplus (interp_vl v0)).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
(* varlist and varlist *)
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
@@ -505,10 +505,10 @@ rewrite (SR_mult_one_left T).
apply f_equal with (f := Aplus (interp_vl v0)).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
Qed.
@@ -518,24 +518,24 @@ Lemma monom_insert_ok :
Aplus (Amult a (interp_vl l)) (interp_cs s).
intros; generalize s; simple induction s0.
-simpl in |- *; rewrite interp_m_ok; trivial.
+simpl; rewrite interp_m_ok; trivial.
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
@@ -546,24 +546,24 @@ Lemma varlist_insert_ok :
interp_cs (varlist_insert l s) = Aplus (interp_vl l) (interp_cs s).
intros; generalize s; simple induction s0.
-simpl in |- *; trivial.
+simpl; trivial.
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
@@ -573,9 +573,9 @@ Lemma canonical_sum_scalar_ok :
forall (a:A) (s:canonical_sum),
interp_cs (canonical_sum_scalar a s) = Amult a (interp_cs s).
simple induction s.
-simpl in |- *; eauto.
+simpl; eauto.
-simpl in |- *; intros.
+simpl; intros.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
@@ -583,7 +583,7 @@ rewrite (SR_distr_right T).
repeat rewrite <- (SR_mult_assoc T).
reflexivity.
-simpl in |- *; intros.
+simpl; intros.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
@@ -596,9 +596,9 @@ Lemma canonical_sum_scalar2_ok :
forall (l:varlist) (s:canonical_sum),
interp_cs (canonical_sum_scalar2 l s) = Amult (interp_vl l) (interp_cs s).
simple induction s.
-simpl in |- *; trivial.
+simpl; trivial.
-simpl in |- *; intros.
+simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -610,7 +610,7 @@ repeat rewrite <- (SR_plus_assoc T).
rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
reflexivity.
-simpl in |- *; intros.
+simpl; intros.
rewrite varlist_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -627,9 +627,9 @@ Lemma canonical_sum_scalar3_ok :
interp_cs (canonical_sum_scalar3 c l s) =
Amult c (Amult (interp_vl l) (interp_cs s)).
simple induction s.
-simpl in |- *; repeat rewrite (SR_mult_zero_right T); reflexivity.
+simpl; repeat rewrite (SR_mult_zero_right T); reflexivity.
-simpl in |- *; intros.
+simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -641,7 +641,7 @@ repeat rewrite <- (SR_plus_assoc T).
rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
reflexivity.
-simpl in |- *; intros.
+simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -657,7 +657,7 @@ Qed.
Lemma canonical_sum_prod_ok :
forall x y:canonical_sum,
interp_cs (canonical_sum_prod x y) = Amult (interp_cs x) (interp_cs y).
-simple induction x; simpl in |- *; intros.
+simple induction x; simpl; intros.
trivial.
rewrite canonical_sum_merge_ok.
@@ -666,7 +666,7 @@ rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)).
-symmetry in |- *.
+symmetry .
eauto.
rewrite canonical_sum_merge_ok.
@@ -678,7 +678,7 @@ Qed.
Theorem spolynomial_normalize_ok :
forall p:spolynomial, interp_cs (spolynomial_normalize p) = interp_sp p.
-simple induction p; simpl in |- *; intros.
+simple induction p; simpl; intros.
reflexivity.
reflexivity.
@@ -699,7 +699,7 @@ simple induction s.
reflexivity.
(* cons_monom *)
-simpl in |- *; intros.
+simpl; intros.
generalize (SR_eq_prop T a Azero).
elim (Aeq a Azero).
intro Heq; rewrite (Heq I).
@@ -709,25 +709,25 @@ rewrite interp_m_ok.
rewrite (SR_mult_zero_left T).
trivial.
-intros; simpl in |- *.
+intros; simpl.
generalize (SR_eq_prop T a Aone).
elim (Aeq a Aone).
intro Heq; rewrite (Heq I).
-simpl in |- *.
+simpl.
repeat rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
rewrite (SR_mult_one_left T).
reflexivity.
-simpl in |- *.
+simpl.
repeat rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
reflexivity.
(* cons_varlist *)
-simpl in |- *; intros.
+simpl; intros.
repeat rewrite ics_aux_ok.
rewrite H.
reflexivity.
@@ -737,7 +737,7 @@ Qed.
Theorem spolynomial_simplify_ok :
forall p:spolynomial, interp_cs (spolynomial_simplify p) = interp_sp p.
intro.
-unfold spolynomial_simplify in |- *.
+unfold spolynomial_simplify.
rewrite canonical_sum_simplify_ok.
apply spolynomial_normalize_ok.
Qed.
@@ -850,7 +850,7 @@ Unset Implicit Arguments.
Lemma spolynomial_of_ok :
forall p:polynomial,
interp_p p = interp_sp Aplus Amult Azero vm (spolynomial_of p).
-simple induction p; reflexivity || (simpl in |- *; intros).
+simple induction p; reflexivity || (simpl; intros).
rewrite H; rewrite H0; reflexivity.
rewrite H; rewrite H0; reflexivity.
rewrite H.
@@ -863,23 +863,23 @@ Theorem polynomial_normalize_ok :
forall p:polynomial,
polynomial_normalize p =
spolynomial_normalize Aplus Amult Aone (spolynomial_of p).
-simple induction p; reflexivity || (simpl in |- *; intros).
+simple induction p; reflexivity || (simpl; intros).
rewrite H; rewrite H0; reflexivity.
rewrite H; rewrite H0; reflexivity.
-rewrite H; simpl in |- *.
+rewrite H; simpl.
elim
(canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
(spolynomial_normalize Aplus Amult Aone (spolynomial_of p0)));
[ reflexivity
- | simpl in |- *; intros; rewrite H0; reflexivity
- | simpl in |- *; intros; rewrite H0; reflexivity ].
+ | simpl; intros; rewrite H0; reflexivity
+ | simpl; intros; rewrite H0; reflexivity ].
Qed.
Theorem polynomial_simplify_ok :
forall p:polynomial,
interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p) = interp_p p.
intro.
-unfold polynomial_simplify in |- *.
+unfold polynomial_simplify.
rewrite spolynomial_of_ok.
rewrite polynomial_normalize_ok.
rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T).