aboutsummaryrefslogtreecommitdiff
path: root/plugins
diff options
context:
space:
mode:
authorMaxime Dénès2017-03-22 22:37:27 +0100
committerMaxime Dénès2017-03-22 22:37:27 +0100
commit7050ab7a246d5614e6d16f546bc8197e689e4bd7 (patch)
tree09194e01667b08833bac60d2be5d9979cedb08ce /plugins
parent947d93a8b7ff0fc7ba23633fcd44820427e29326 (diff)
parent4f4b9d04bc59dc1f3b6962b0b077ba274638efc7 (diff)
Merge PR#415: Use a compact representation for real literals
Diffstat (limited to 'plugins')
-rw-r--r--plugins/fourier/Fourier.v2
-rw-r--r--plugins/micromega/RMicromega.v315
-rw-r--r--plugins/micromega/coq_micromega.ml3
-rw-r--r--plugins/setoid_ring/RealField.v21
-rw-r--r--plugins/setoid_ring/newring.ml21
-rw-r--r--plugins/syntax/r_syntax.ml159
6 files changed, 139 insertions, 382 deletions
diff --git a/plugins/fourier/Fourier.v b/plugins/fourier/Fourier.v
index 1d7ee93ea3..a962547131 100644
--- a/plugins/fourier/Fourier.v
+++ b/plugins/fourier/Fourier.v
@@ -13,6 +13,6 @@ Require Export DiscrR.
Require Export Fourier_util.
Declare ML Module "fourier_plugin".
-Ltac fourier := abstract (fourierz; field; discrR).
+Ltac fourier := abstract (compute [IZR IPR IPR_2] in *; fourierz; field; discrR).
Ltac fourier_eq := apply Rge_antisym; fourier.
diff --git a/plugins/micromega/RMicromega.v b/plugins/micromega/RMicromega.v
index 2352d78d63..30e475b710 100644
--- a/plugins/micromega/RMicromega.v
+++ b/plugins/micromega/RMicromega.v
@@ -18,7 +18,7 @@ Require Import Refl.
Require Import Raxioms RIneq Rpow_def DiscrR.
Require Import QArith.
Require Import Qfield.
-
+Require Import Qreals.
Require Setoid.
(*Declare ML Module "micromega_plugin".*)
@@ -38,15 +38,8 @@ Proof.
exact Rplus_opp_r.
Qed.
-Add Ring Rring : Rsrt.
Open Scope R_scope.
-Lemma Rmult_neutral : forall x:R , 0 * x = 0.
-Proof.
- intro ; ring.
-Qed.
-
-
Lemma Rsor : SOR R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle Rlt.
Proof.
constructor; intros ; subst ; try (intuition (subst; try ring ; auto with real)).
@@ -59,142 +52,41 @@ Proof.
apply (Rlt_irrefl m) ; auto.
apply Rnot_le_lt. auto with real.
destruct (total_order_T n m) as [ [H1 | H1] | H1] ; auto.
- intros.
- rewrite <- (Rmult_neutral m).
- apply (Rmult_lt_compat_r) ; auto.
-Qed.
-
-Definition IQR := fun x : Q => (IZR (Qnum x) * / IZR (' Qden x))%R.
-
-
-Lemma Rinv_elim : forall x y z,
- y <> 0 -> (z * y = x <-> x * / y = z).
-Proof.
- intros.
- split ; intros.
- subst.
- rewrite Rmult_assoc.
- rewrite Rinv_r; auto.
- ring.
- subst.
- rewrite Rmult_assoc.
- rewrite (Rmult_comm (/ y)).
- rewrite Rinv_r ; auto.
- ring.
-Qed.
-
-Ltac INR_nat_of_P :=
- match goal with
- | H : context[INR (Pos.to_nat ?X)] |- _ =>
- revert H ;
- let HH := fresh in
- assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X))
- | |- context[INR (Pos.to_nat ?X)] =>
- let HH := fresh in
- assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X))
- end.
-
-Ltac add_eq expr val := set (temp := expr) ;
- generalize (eq_refl temp) ;
- unfold temp at 1 ; generalize temp ; intro val ; clear temp.
-
-Ltac Rinv_elim :=
- match goal with
- | |- context[?x * / ?y] =>
- let z := fresh "v" in
- add_eq (x * / y) z ;
- let H := fresh in intro H ; rewrite <- Rinv_elim in H
- end.
-
-Lemma Rlt_neq : forall r , 0 < r -> r <> 0.
-Proof.
- red. intros.
- subst.
- apply (Rlt_irrefl 0 H).
+ now apply Rmult_lt_0_compat.
Qed.
+Notation IQR := Q2R (only parsing).
Lemma Rinv_1 : forall x, x * / 1 = x.
Proof.
intro.
- Rinv_elim.
- subst ; ring.
- apply R1_neq_R0.
+ rewrite Rinv_1.
+ apply Rmult_1_r.
Qed.
-Lemma Qeq_true : forall x y,
- Qeq_bool x y = true ->
- IQR x = IQR y.
+Lemma Qeq_true : forall x y, Qeq_bool x y = true -> IQR x = IQR y.
Proof.
- unfold IQR.
- simpl.
- intros.
- apply Qeq_bool_eq in H.
- unfold Qeq in H.
- assert (IZR (Qnum x * ' Qden y) = IZR (Qnum y * ' Qden x))%Z.
- rewrite H. reflexivity.
- repeat rewrite mult_IZR in H0.
- simpl in H0.
- revert H0.
- repeat INR_nat_of_P.
intros.
- apply Rinv_elim in H2 ; [| apply Rlt_neq ; auto].
- rewrite <- H2.
- field.
- split ; apply Rlt_neq ; auto.
+ now apply Qeq_eqR, Qeq_bool_eq.
Qed.
Lemma Qeq_false : forall x y, Qeq_bool x y = false -> IQR x <> IQR y.
Proof.
intros.
- apply Qeq_bool_neq in H.
- intro. apply H. clear H.
- unfold Qeq,IQR in *.
- simpl in *.
- revert H0.
- repeat Rinv_elim.
- intros.
- subst.
- assert (IZR (Qnum x * ' Qden y)%Z = IZR (Qnum y * ' Qden x)%Z).
- repeat rewrite mult_IZR.
- simpl.
- rewrite <- H0. rewrite <- H.
- ring.
- apply eq_IZR ; auto.
- INR_nat_of_P; intros; apply Rlt_neq ; auto.
- INR_nat_of_P; intros ; apply Rlt_neq ; auto.
+ apply Qeq_bool_neq in H.
+ contradict H.
+ now apply eqR_Qeq.
Qed.
-
-
Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> IQR x <= IQR y.
Proof.
intros.
- apply Qle_bool_imp_le in H.
- unfold Qle in H.
- unfold IQR.
- simpl in *.
- apply IZR_le in H.
- repeat rewrite mult_IZR in H.
- simpl in H.
- repeat INR_nat_of_P; intros.
- assert (Hr := Rlt_neq r H).
- assert (Hr0 := Rlt_neq r0 H0).
- replace (IZR (Qnum x) * / r) with ((IZR (Qnum x) * r0) * (/r * /r0)).
- replace (IZR (Qnum y) * / r0) with ((IZR (Qnum y) * r) * (/r * /r0)).
- apply Rmult_le_compat_r ; auto.
- apply Rmult_le_pos.
- unfold Rle. left. apply Rinv_0_lt_compat ; auto.
- unfold Rle. left. apply Rinv_0_lt_compat ; auto.
- field ; intuition.
- field ; intuition.
+ now apply Qle_Rle, Qle_bool_imp_le.
Qed.
-
-
Lemma IQR_0 : IQR 0 = 0.
Proof.
- compute. apply Rinv_1.
+ apply Rmult_0_l.
Qed.
Lemma IQR_1 : IQR 1 = 1.
@@ -202,160 +94,6 @@ Proof.
compute. apply Rinv_1.
Qed.
-Lemma IQR_plus : forall x y, IQR (x + y) = IQR x + IQR y.
-Proof.
- intros.
- unfold IQR.
- simpl in *.
- rewrite plus_IZR in *.
- rewrite mult_IZR in *.
- simpl.
- rewrite Pos2Nat.inj_mul.
- rewrite mult_INR.
- rewrite mult_IZR.
- simpl.
- repeat INR_nat_of_P.
- intros. field.
- split ; apply Rlt_neq ; auto.
-Qed.
-
-Lemma IQR_opp : forall x, IQR (- x) = - IQR x.
-Proof.
- intros.
- unfold IQR.
- simpl.
- rewrite opp_IZR.
- ring.
-Qed.
-
-Lemma IQR_minus : forall x y, IQR (x - y) = IQR x - IQR y.
-Proof.
- intros.
- unfold Qminus.
- rewrite IQR_plus.
- rewrite IQR_opp.
- ring.
-Qed.
-
-
-Lemma IQR_mult : forall x y, IQR (x * y) = IQR x * IQR y.
-Proof.
- unfold IQR ; intros.
- simpl.
- repeat rewrite mult_IZR.
- rewrite Pos2Nat.inj_mul.
- rewrite mult_INR.
- repeat INR_nat_of_P.
- intros. field ; split ; apply Rlt_neq ; auto.
-Qed.
-
-Lemma IQR_inv_lt : forall x, (0 < x)%Q ->
- IQR (/ x) = / IQR x.
-Proof.
- unfold IQR ; simpl.
- intros.
- unfold Qlt in H.
- revert H.
- simpl.
- intros.
- unfold Qinv.
- destruct x.
- destruct Qnum ; simpl in *.
- exfalso. auto with zarith.
- clear H.
- repeat INR_nat_of_P.
- intros.
- assert (HH := Rlt_neq _ H).
- assert (HH0 := Rlt_neq _ H0).
- rewrite Rinv_mult_distr ; auto.
- rewrite Rinv_involutive ; auto.
- ring.
- apply Rinv_0_lt_compat in H0.
- apply Rlt_neq ; auto.
- simpl in H.
- exfalso.
- rewrite Pos.mul_comm in H.
- compute in H.
- discriminate.
-Qed.
-
-Lemma Qinv_opp : forall x, (- (/ x) = / ( -x))%Q.
-Proof.
- destruct x ; destruct Qnum ; reflexivity.
-Qed.
-
-Lemma Qopp_involutive_strong : forall x, (- - x = x)%Q.
-Proof.
- intros.
- destruct x.
- unfold Qopp.
- simpl.
- rewrite Z.opp_involutive.
- reflexivity.
-Qed.
-
-Lemma Ropp_0 : forall r , - r = 0 -> r = 0.
-Proof.
- intros.
- rewrite <- (Ropp_involutive r).
- apply Ropp_eq_0_compat ; auto.
-Qed.
-
-Lemma IQR_x_0 : forall x, IQR x = 0 -> x == 0%Q.
-Proof.
- destruct x ; simpl.
- unfold IQR.
- simpl.
- INR_nat_of_P.
- intros.
- apply Rmult_integral in H0.
- destruct H0.
- apply eq_IZR_R0 in H0.
- subst.
- reflexivity.
- exfalso.
- apply Rinv_0_lt_compat in H.
- rewrite <- H0 in H.
- apply Rlt_irrefl in H. auto.
-Qed.
-
-
-Lemma IQR_inv_gt : forall x, (0 > x)%Q ->
- IQR (/ x) = / IQR x.
-Proof.
- intros.
- rewrite <- (Qopp_involutive_strong x).
- rewrite <- Qinv_opp.
- rewrite IQR_opp.
- rewrite IQR_inv_lt.
- repeat rewrite IQR_opp.
- rewrite Ropp_inv_permute.
- auto.
- intro.
- apply Ropp_0 in H0.
- apply IQR_x_0 in H0.
- rewrite H0 in H.
- compute in H. discriminate.
- unfold Qlt in *.
- destruct x ; simpl in *.
- auto with zarith.
-Qed.
-
-Lemma IQR_inv : forall x, ~ x == 0 ->
- IQR (/ x) = / IQR x.
-Proof.
- intros.
- assert ( 0 > x \/ 0 < x)%Q.
- destruct x ; unfold Qlt, Qeq in * ; simpl in *.
- rewrite Z.mul_1_r in *.
- destruct Qnum ; simpl in * ; intuition auto.
- right. reflexivity.
- left ; reflexivity.
- destruct H0.
- apply IQR_inv_gt ; auto.
- apply IQR_inv_lt ; auto.
-Qed.
-
Lemma IQR_inv_ext : forall x,
IQR (/ x) = (if Qeq_bool x 0 then 0 else / IQR x).
Proof.
@@ -366,18 +104,13 @@ Proof.
destruct x ; simpl.
unfold Qeq in H.
simpl in H.
- replace Qnum with 0%Z.
- compute. rewrite Rinv_1.
- reflexivity.
- rewrite <- H. ring.
+ rewrite Zmult_1_r in H.
+ rewrite H.
+ apply Rmult_0_l.
intros.
- apply IQR_inv.
- intro.
- rewrite <- Qeq_bool_iff in H0.
- congruence.
+ now apply Q2R_inv, Qeq_bool_neq.
Qed.
-
Notation to_nat := N.to_nat.
Lemma QSORaddon :
@@ -391,10 +124,10 @@ Proof.
constructor ; intros ; try reflexivity.
apply IQR_0.
apply IQR_1.
- apply IQR_plus.
- apply IQR_minus.
- apply IQR_mult.
- apply IQR_opp.
+ apply Q2R_plus.
+ apply Q2R_minus.
+ apply Q2R_mult.
+ apply Q2R_opp.
apply Qeq_true ; auto.
apply R_power_theory.
apply Qeq_false.
@@ -453,13 +186,13 @@ Proof.
apply IQR_1.
reflexivity.
unfold IQR. simpl. rewrite Rinv_1. reflexivity.
- apply IQR_plus.
- apply IQR_minus.
- apply IQR_mult.
+ apply Q2R_plus.
+ apply Q2R_minus.
+ apply Q2R_mult.
rewrite <- IHc.
apply IQR_inv_ext.
rewrite <- IHc.
- apply IQR_opp.
+ apply Q2R_opp.
Qed.
Require Import EnvRing.
diff --git a/plugins/micromega/coq_micromega.ml b/plugins/micromega/coq_micromega.ml
index 97f29df823..6051cb3d3c 100644
--- a/plugins/micromega/coq_micromega.ml
+++ b/plugins/micromega/coq_micromega.ml
@@ -364,6 +364,7 @@ struct
[["Coq";"Reals" ; "Rdefinitions"];
["Coq";"Reals" ; "Rpow_def"] ;
["Coq";"Reals" ; "Raxioms"] ;
+ ["Coq";"QArith"; "Qreals"] ;
]
let z_modules = [["Coq";"ZArith";"BinInt"]]
@@ -479,7 +480,7 @@ struct
let coq_Rinv = lazy (r_constant "Rinv")
let coq_Rpower = lazy (r_constant "pow")
let coq_IZR = lazy (r_constant "IZR")
- let coq_IQR = lazy (constant "IQR")
+ let coq_IQR = lazy (r_constant "Q2R")
let coq_PEX = lazy (constant "PEX" )
diff --git a/plugins/setoid_ring/RealField.v b/plugins/setoid_ring/RealField.v
index 293722125b..facd2e0625 100644
--- a/plugins/setoid_ring/RealField.v
+++ b/plugins/setoid_ring/RealField.v
@@ -59,11 +59,12 @@ Notation Rset := (Eqsth R).
Notation Rext := (Eq_ext Rplus Rmult Ropp).
Lemma Rlt_0_2 : 0 < 2.
+Proof.
apply Rlt_trans with (0 + 1).
apply Rlt_n_Sn.
rewrite Rplus_comm.
apply Rplus_lt_compat_l.
- replace 1 with (0 + 1).
+ replace R1 with (0 + 1).
apply Rlt_n_Sn.
apply Rplus_0_l.
Qed.
@@ -126,9 +127,17 @@ Ltac Rpow_tac t :=
| _ => constr:(N.of_nat t)
end.
-Add Field RField : Rfield
- (completeness Zeq_bool_complete, power_tac R_power_theory [Rpow_tac]).
-
-
-
+Ltac IZR_tac t :=
+ match t with
+ | R0 => constr:(0%Z)
+ | R1 => constr:(1%Z)
+ | IZR ?u =>
+ match isZcst u with
+ | true => u
+ | _ => constr:(InitialRing.NotConstant)
+ end
+ | _ => constr:(InitialRing.NotConstant)
+ end.
+Add Field RField : Rfield
+ (completeness Zeq_bool_complete, constants [IZR_tac], power_tac R_power_theory [Rpow_tac]).
diff --git a/plugins/setoid_ring/newring.ml b/plugins/setoid_ring/newring.ml
index eb35d3f806..87ee666605 100644
--- a/plugins/setoid_ring/newring.ml
+++ b/plugins/setoid_ring/newring.ml
@@ -323,14 +323,16 @@ let _ = add_map "ring"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
+ my_reference "IDphi", (function _->Eval);
+ my_reference "gen_phiZ", (function _->Eval);
(* Pphi_dev: evaluate polynomial and coef operations, protect
ring operations and make recursive call on the var map *)
pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot);
pol_cst "Pphi_pow",
- (function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot);
+ (function -1|8|9|10|13|15|17->Eval|11|16->Rec|_->Prot);
(* PEeval: evaluate morphism and polynomial, protect ring
operations and make recursive call on the var map *)
- pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot)])
+ pol_cst "PEeval", (function -1|8|10|13->Eval|12->Rec|_->Prot)])
(****************************************************************************)
(* Ring database *)
@@ -756,12 +758,14 @@ let _ = add_map "field"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
+ my_reference "IDphi", (function _->Eval);
+ my_reference "gen_phiZ", (function _->Eval);
(* display_linear: evaluate polynomials and coef operations, protect
field operations and make recursive call on the var map *)
my_reference "display_linear",
(function -1|9|10|11|12|13|15|16->Eval|14->Rec|_->Prot);
my_reference "display_pow_linear",
- (function -1|9|10|11|12|13|14|16|18|19->Eval|17->Rec|_->Prot);
+ (function -1|9|10|11|14|16|18|19->Eval|12|17->Rec|_->Prot);
(* Pphi_dev: evaluate polynomial and coef operations, protect
ring operations and make recursive call on the var map *)
pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot);
@@ -769,19 +773,20 @@ let _ = add_map "field"
(function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot);
(* PEeval: evaluate morphism and polynomial, protect ring
operations and make recursive call on the var map *)
- pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot);
+ pol_cst "PEeval", (function -1|8|10|13->Eval|12->Rec|_->Prot);
(* FEeval: evaluate morphism, protect field
operations and make recursive call on the var map *)
- my_reference "FEeval", (function -1|8|9|10|11|14->Eval|13->Rec|_->Prot)]);;
+ my_reference "FEeval", (function -1|10|12|15->Eval|14->Rec|_->Prot)]);;
let _ = add_map "field_cond"
(map_without_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
- (* PCond: evaluate morphism and denum list, protect ring
+ my_reference "IDphi", (function _->Eval);
+ my_reference "gen_phiZ", (function _->Eval);
+ (* PCond: evaluate denum list, protect ring
operations and make recursive call on the var map *)
- my_reference "PCond", (function -1|9|11|14->Eval|13->Rec|_->Prot)]);;
-(* (function -1|9|11->Eval|10->Rec|_->Prot)]);;*)
+ my_reference "PCond", (function -1|11|14->Eval|9|13->Rec|_->Prot)]);;
let _ = Redexpr.declare_reduction "simpl_field_expr"
diff --git a/plugins/syntax/r_syntax.ml b/plugins/syntax/r_syntax.ml
index 3ae2d45f32..8f065f5282 100644
--- a/plugins/syntax/r_syntax.ml
+++ b/plugins/syntax/r_syntax.ml
@@ -9,6 +9,8 @@
open Util
open Names
open Globnames
+open Glob_term
+open Bigint
(* Poor's man DECLARE PLUGIN *)
let __coq_plugin_name = "r_syntax_plugin"
@@ -17,95 +19,105 @@ let () = Mltop.add_known_module __coq_plugin_name
exception Non_closed_number
(**********************************************************************)
-(* Parsing R via scopes *)
+(* Parsing positive via scopes *)
(**********************************************************************)
-open Glob_term
-open Bigint
+let binnums = ["Coq";"Numbers";"BinNums"]
let make_dir l = DirPath.make (List.rev_map Id.of_string l)
-let rdefinitions = make_dir ["Coq";"Reals";"Rdefinitions"]
-let make_path dir id = Libnames.make_path dir (Id.of_string id)
+let make_path dir id = Libnames.make_path (make_dir dir) (Id.of_string id)
+
+let positive_path = make_path binnums "positive"
+
+(* TODO: temporary hack *)
+let make_kn dir id = Globnames.encode_mind dir id
+
+let positive_kn = make_kn (make_dir binnums) (Id.of_string "positive")
+let glob_positive = IndRef (positive_kn,0)
+let path_of_xI = ((positive_kn,0),1)
+let path_of_xO = ((positive_kn,0),2)
+let path_of_xH = ((positive_kn,0),3)
+let glob_xI = ConstructRef path_of_xI
+let glob_xO = ConstructRef path_of_xO
+let glob_xH = ConstructRef path_of_xH
+
+let pos_of_bignat dloc x =
+ let ref_xI = GRef (dloc, glob_xI, None) in
+ let ref_xH = GRef (dloc, glob_xH, None) in
+ let ref_xO = GRef (dloc, glob_xO, None) in
+ let rec pos_of x =
+ match div2_with_rest x with
+ | (q,false) -> GApp (dloc, ref_xO,[pos_of q])
+ | (q,true) when not (Bigint.equal q zero) -> GApp (dloc,ref_xI,[pos_of q])
+ | (q,true) -> ref_xH
+ in
+ pos_of x
+
+(**********************************************************************)
+(* Printing positive via scopes *)
+(**********************************************************************)
+
+let rec bignat_of_pos = function
+ | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_xO -> mult_2(bignat_of_pos a)
+ | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_xI -> add_1(mult_2(bignat_of_pos a))
+ | GRef (_, a, _) when Globnames.eq_gr a glob_xH -> Bigint.one
+ | _ -> raise Non_closed_number
+
+(**********************************************************************)
+(* Parsing Z via scopes *)
+(**********************************************************************)
+let z_path = make_path binnums "Z"
+let z_kn = make_kn (make_dir binnums) (Id.of_string "Z")
+let glob_z = IndRef (z_kn,0)
+let path_of_ZERO = ((z_kn,0),1)
+let path_of_POS = ((z_kn,0),2)
+let path_of_NEG = ((z_kn,0),3)
+let glob_ZERO = ConstructRef path_of_ZERO
+let glob_POS = ConstructRef path_of_POS
+let glob_NEG = ConstructRef path_of_NEG
+
+let z_of_int dloc n =
+ if not (Bigint.equal n zero) then
+ let sgn, n =
+ if is_pos_or_zero n then glob_POS, n else glob_NEG, Bigint.neg n in
+ GApp(dloc, GRef (dloc,sgn,None), [pos_of_bignat dloc n])
+ else
+ GRef (dloc, glob_ZERO, None)
+
+(**********************************************************************)
+(* Printing Z via scopes *)
+(**********************************************************************)
+
+let bigint_of_z = function
+ | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_POS -> bignat_of_pos a
+ | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_NEG -> Bigint.neg (bignat_of_pos a)
+ | GRef (_, a, _) when Globnames.eq_gr a glob_ZERO -> Bigint.zero
+ | _ -> raise Non_closed_number
+
+(**********************************************************************)
+(* Parsing R via scopes *)
+(**********************************************************************)
+
+let rdefinitions = ["Coq";"Reals";"Rdefinitions"]
let r_path = make_path rdefinitions "R"
(* TODO: temporary hack *)
let make_path dir id = Globnames.encode_con dir (Id.of_string id)
-let r_kn = make_path rdefinitions "R"
-let glob_R = ConstRef r_kn
-let glob_R1 = ConstRef (make_path rdefinitions "R1")
-let glob_R0 = ConstRef (make_path rdefinitions "R0")
-let glob_Ropp = ConstRef (make_path rdefinitions "Ropp")
-let glob_Rplus = ConstRef (make_path rdefinitions "Rplus")
-let glob_Rmult = ConstRef (make_path rdefinitions "Rmult")
-
-let two = mult_2 one
-let three = add_1 two
-let four = mult_2 two
-
-(* Unary representation of strictly positive numbers *)
-let rec small_r dloc n =
- if equal one n then GRef (dloc, glob_R1, None)
- else GApp(dloc,GRef (dloc,glob_Rplus, None),
- [GRef (dloc, glob_R1, None);small_r dloc (sub_1 n)])
-
-let r_of_posint dloc n =
- let r1 = GRef (dloc, glob_R1, None) in
- let r2 = small_r dloc two in
- let rec r_of_pos n =
- if less_than n four then small_r dloc n
- else
- let (q,r) = div2_with_rest n in
- let b = GApp(dloc,GRef(dloc,glob_Rmult,None),[r2;r_of_pos q]) in
- if r then GApp(dloc,GRef(dloc,glob_Rplus,None),[r1;b]) else b in
- if not (Bigint.equal n zero) then r_of_pos n else GRef(dloc,glob_R0,None)
+let glob_IZR = ConstRef (make_path (make_dir rdefinitions) "IZR")
let r_of_int dloc z =
- if is_strictly_neg z then
- GApp (dloc, GRef(dloc,glob_Ropp,None), [r_of_posint dloc (neg z)])
- else
- r_of_posint dloc z
+ GApp (dloc, GRef(dloc,glob_IZR,None), [z_of_int dloc z])
(**********************************************************************)
(* Printing R via scopes *)
(**********************************************************************)
-let bignat_of_r =
-(* for numbers > 1 *)
-let rec bignat_of_pos = function
- (* 1+1 *)
- | GApp (_,GRef (_,p,_), [GRef (_,o1,_); GRef (_,o2,_)])
- when Globnames.eq_gr p glob_Rplus && Globnames.eq_gr o1 glob_R1 && Globnames.eq_gr o2 glob_R1 -> two
- (* 1+(1+1) *)
- | GApp (_,GRef (_,p1,_), [GRef (_,o1,_);
- GApp(_,GRef (_,p2,_),[GRef(_,o2,_);GRef(_,o3,_)])])
- when Globnames.eq_gr p1 glob_Rplus && Globnames.eq_gr p2 glob_Rplus &&
- Globnames.eq_gr o1 glob_R1 && Globnames.eq_gr o2 glob_R1 && Globnames.eq_gr o3 glob_R1 -> three
- (* (1+1)*b *)
- | GApp (_,GRef (_,p,_), [a; b]) when Globnames.eq_gr p glob_Rmult ->
- if not (Bigint.equal (bignat_of_pos a) two) then raise Non_closed_number;
- mult_2 (bignat_of_pos b)
- (* 1+(1+1)*b *)
- | GApp (_,GRef (_,p1,_), [GRef (_,o,_); GApp (_,GRef (_,p2,_),[a;b])])
- when Globnames.eq_gr p1 glob_Rplus && Globnames.eq_gr p2 glob_Rmult && Globnames.eq_gr o glob_R1 ->
- if not (Bigint.equal (bignat_of_pos a) two) then raise Non_closed_number;
- add_1 (mult_2 (bignat_of_pos b))
- | _ -> raise Non_closed_number
-in
-let bignat_of_r = function
- | GRef (_,a,_) when Globnames.eq_gr a glob_R0 -> zero
- | GRef (_,a,_) when Globnames.eq_gr a glob_R1 -> one
- | r -> bignat_of_pos r
-in
-bignat_of_r
-
let bigint_of_r = function
- | GApp (_,GRef (_,o,_), [a]) when Globnames.eq_gr o glob_Ropp ->
- let n = bignat_of_r a in
- if Bigint.equal n zero then raise Non_closed_number;
- neg n
- | a -> bignat_of_r a
+ | GApp (_,GRef (_,o,_), [a]) when Globnames.eq_gr o glob_IZR ->
+ bigint_of_z a
+ | _ -> raise Non_closed_number
let uninterp_r p =
try
@@ -113,12 +125,9 @@ let uninterp_r p =
with Non_closed_number ->
None
-let mkGRef gr = GRef (Loc.ghost,gr,None)
-
let _ = Notation.declare_numeral_interpreter "R_scope"
(r_path,["Coq";"Reals";"Rdefinitions"])
r_of_int
- (List.map mkGRef
- [glob_Ropp;glob_R0;glob_Rplus;glob_Rmult;glob_R1],
+ ([GRef (Loc.ghost,glob_IZR,None)],
uninterp_r,
false)