diff options
| author | Maxime Dénès | 2017-03-22 22:37:27 +0100 |
|---|---|---|
| committer | Maxime Dénès | 2017-03-22 22:37:27 +0100 |
| commit | 7050ab7a246d5614e6d16f546bc8197e689e4bd7 (patch) | |
| tree | 09194e01667b08833bac60d2be5d9979cedb08ce /plugins | |
| parent | 947d93a8b7ff0fc7ba23633fcd44820427e29326 (diff) | |
| parent | 4f4b9d04bc59dc1f3b6962b0b077ba274638efc7 (diff) | |
Merge PR#415: Use a compact representation for real literals
Diffstat (limited to 'plugins')
| -rw-r--r-- | plugins/fourier/Fourier.v | 2 | ||||
| -rw-r--r-- | plugins/micromega/RMicromega.v | 315 | ||||
| -rw-r--r-- | plugins/micromega/coq_micromega.ml | 3 | ||||
| -rw-r--r-- | plugins/setoid_ring/RealField.v | 21 | ||||
| -rw-r--r-- | plugins/setoid_ring/newring.ml | 21 | ||||
| -rw-r--r-- | plugins/syntax/r_syntax.ml | 159 |
6 files changed, 139 insertions, 382 deletions
diff --git a/plugins/fourier/Fourier.v b/plugins/fourier/Fourier.v index 1d7ee93ea3..a962547131 100644 --- a/plugins/fourier/Fourier.v +++ b/plugins/fourier/Fourier.v @@ -13,6 +13,6 @@ Require Export DiscrR. Require Export Fourier_util. Declare ML Module "fourier_plugin". -Ltac fourier := abstract (fourierz; field; discrR). +Ltac fourier := abstract (compute [IZR IPR IPR_2] in *; fourierz; field; discrR). Ltac fourier_eq := apply Rge_antisym; fourier. diff --git a/plugins/micromega/RMicromega.v b/plugins/micromega/RMicromega.v index 2352d78d63..30e475b710 100644 --- a/plugins/micromega/RMicromega.v +++ b/plugins/micromega/RMicromega.v @@ -18,7 +18,7 @@ Require Import Refl. Require Import Raxioms RIneq Rpow_def DiscrR. Require Import QArith. Require Import Qfield. - +Require Import Qreals. Require Setoid. (*Declare ML Module "micromega_plugin".*) @@ -38,15 +38,8 @@ Proof. exact Rplus_opp_r. Qed. -Add Ring Rring : Rsrt. Open Scope R_scope. -Lemma Rmult_neutral : forall x:R , 0 * x = 0. -Proof. - intro ; ring. -Qed. - - Lemma Rsor : SOR R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle Rlt. Proof. constructor; intros ; subst ; try (intuition (subst; try ring ; auto with real)). @@ -59,142 +52,41 @@ Proof. apply (Rlt_irrefl m) ; auto. apply Rnot_le_lt. auto with real. destruct (total_order_T n m) as [ [H1 | H1] | H1] ; auto. - intros. - rewrite <- (Rmult_neutral m). - apply (Rmult_lt_compat_r) ; auto. -Qed. - -Definition IQR := fun x : Q => (IZR (Qnum x) * / IZR (' Qden x))%R. - - -Lemma Rinv_elim : forall x y z, - y <> 0 -> (z * y = x <-> x * / y = z). -Proof. - intros. - split ; intros. - subst. - rewrite Rmult_assoc. - rewrite Rinv_r; auto. - ring. - subst. - rewrite Rmult_assoc. - rewrite (Rmult_comm (/ y)). - rewrite Rinv_r ; auto. - ring. -Qed. - -Ltac INR_nat_of_P := - match goal with - | H : context[INR (Pos.to_nat ?X)] |- _ => - revert H ; - let HH := fresh in - assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X)) - | |- context[INR (Pos.to_nat ?X)] => - let HH := fresh in - assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X)) - end. - -Ltac add_eq expr val := set (temp := expr) ; - generalize (eq_refl temp) ; - unfold temp at 1 ; generalize temp ; intro val ; clear temp. - -Ltac Rinv_elim := - match goal with - | |- context[?x * / ?y] => - let z := fresh "v" in - add_eq (x * / y) z ; - let H := fresh in intro H ; rewrite <- Rinv_elim in H - end. - -Lemma Rlt_neq : forall r , 0 < r -> r <> 0. -Proof. - red. intros. - subst. - apply (Rlt_irrefl 0 H). + now apply Rmult_lt_0_compat. Qed. +Notation IQR := Q2R (only parsing). Lemma Rinv_1 : forall x, x * / 1 = x. Proof. intro. - Rinv_elim. - subst ; ring. - apply R1_neq_R0. + rewrite Rinv_1. + apply Rmult_1_r. Qed. -Lemma Qeq_true : forall x y, - Qeq_bool x y = true -> - IQR x = IQR y. +Lemma Qeq_true : forall x y, Qeq_bool x y = true -> IQR x = IQR y. Proof. - unfold IQR. - simpl. - intros. - apply Qeq_bool_eq in H. - unfold Qeq in H. - assert (IZR (Qnum x * ' Qden y) = IZR (Qnum y * ' Qden x))%Z. - rewrite H. reflexivity. - repeat rewrite mult_IZR in H0. - simpl in H0. - revert H0. - repeat INR_nat_of_P. intros. - apply Rinv_elim in H2 ; [| apply Rlt_neq ; auto]. - rewrite <- H2. - field. - split ; apply Rlt_neq ; auto. + now apply Qeq_eqR, Qeq_bool_eq. Qed. Lemma Qeq_false : forall x y, Qeq_bool x y = false -> IQR x <> IQR y. Proof. intros. - apply Qeq_bool_neq in H. - intro. apply H. clear H. - unfold Qeq,IQR in *. - simpl in *. - revert H0. - repeat Rinv_elim. - intros. - subst. - assert (IZR (Qnum x * ' Qden y)%Z = IZR (Qnum y * ' Qden x)%Z). - repeat rewrite mult_IZR. - simpl. - rewrite <- H0. rewrite <- H. - ring. - apply eq_IZR ; auto. - INR_nat_of_P; intros; apply Rlt_neq ; auto. - INR_nat_of_P; intros ; apply Rlt_neq ; auto. + apply Qeq_bool_neq in H. + contradict H. + now apply eqR_Qeq. Qed. - - Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> IQR x <= IQR y. Proof. intros. - apply Qle_bool_imp_le in H. - unfold Qle in H. - unfold IQR. - simpl in *. - apply IZR_le in H. - repeat rewrite mult_IZR in H. - simpl in H. - repeat INR_nat_of_P; intros. - assert (Hr := Rlt_neq r H). - assert (Hr0 := Rlt_neq r0 H0). - replace (IZR (Qnum x) * / r) with ((IZR (Qnum x) * r0) * (/r * /r0)). - replace (IZR (Qnum y) * / r0) with ((IZR (Qnum y) * r) * (/r * /r0)). - apply Rmult_le_compat_r ; auto. - apply Rmult_le_pos. - unfold Rle. left. apply Rinv_0_lt_compat ; auto. - unfold Rle. left. apply Rinv_0_lt_compat ; auto. - field ; intuition. - field ; intuition. + now apply Qle_Rle, Qle_bool_imp_le. Qed. - - Lemma IQR_0 : IQR 0 = 0. Proof. - compute. apply Rinv_1. + apply Rmult_0_l. Qed. Lemma IQR_1 : IQR 1 = 1. @@ -202,160 +94,6 @@ Proof. compute. apply Rinv_1. Qed. -Lemma IQR_plus : forall x y, IQR (x + y) = IQR x + IQR y. -Proof. - intros. - unfold IQR. - simpl in *. - rewrite plus_IZR in *. - rewrite mult_IZR in *. - simpl. - rewrite Pos2Nat.inj_mul. - rewrite mult_INR. - rewrite mult_IZR. - simpl. - repeat INR_nat_of_P. - intros. field. - split ; apply Rlt_neq ; auto. -Qed. - -Lemma IQR_opp : forall x, IQR (- x) = - IQR x. -Proof. - intros. - unfold IQR. - simpl. - rewrite opp_IZR. - ring. -Qed. - -Lemma IQR_minus : forall x y, IQR (x - y) = IQR x - IQR y. -Proof. - intros. - unfold Qminus. - rewrite IQR_plus. - rewrite IQR_opp. - ring. -Qed. - - -Lemma IQR_mult : forall x y, IQR (x * y) = IQR x * IQR y. -Proof. - unfold IQR ; intros. - simpl. - repeat rewrite mult_IZR. - rewrite Pos2Nat.inj_mul. - rewrite mult_INR. - repeat INR_nat_of_P. - intros. field ; split ; apply Rlt_neq ; auto. -Qed. - -Lemma IQR_inv_lt : forall x, (0 < x)%Q -> - IQR (/ x) = / IQR x. -Proof. - unfold IQR ; simpl. - intros. - unfold Qlt in H. - revert H. - simpl. - intros. - unfold Qinv. - destruct x. - destruct Qnum ; simpl in *. - exfalso. auto with zarith. - clear H. - repeat INR_nat_of_P. - intros. - assert (HH := Rlt_neq _ H). - assert (HH0 := Rlt_neq _ H0). - rewrite Rinv_mult_distr ; auto. - rewrite Rinv_involutive ; auto. - ring. - apply Rinv_0_lt_compat in H0. - apply Rlt_neq ; auto. - simpl in H. - exfalso. - rewrite Pos.mul_comm in H. - compute in H. - discriminate. -Qed. - -Lemma Qinv_opp : forall x, (- (/ x) = / ( -x))%Q. -Proof. - destruct x ; destruct Qnum ; reflexivity. -Qed. - -Lemma Qopp_involutive_strong : forall x, (- - x = x)%Q. -Proof. - intros. - destruct x. - unfold Qopp. - simpl. - rewrite Z.opp_involutive. - reflexivity. -Qed. - -Lemma Ropp_0 : forall r , - r = 0 -> r = 0. -Proof. - intros. - rewrite <- (Ropp_involutive r). - apply Ropp_eq_0_compat ; auto. -Qed. - -Lemma IQR_x_0 : forall x, IQR x = 0 -> x == 0%Q. -Proof. - destruct x ; simpl. - unfold IQR. - simpl. - INR_nat_of_P. - intros. - apply Rmult_integral in H0. - destruct H0. - apply eq_IZR_R0 in H0. - subst. - reflexivity. - exfalso. - apply Rinv_0_lt_compat in H. - rewrite <- H0 in H. - apply Rlt_irrefl in H. auto. -Qed. - - -Lemma IQR_inv_gt : forall x, (0 > x)%Q -> - IQR (/ x) = / IQR x. -Proof. - intros. - rewrite <- (Qopp_involutive_strong x). - rewrite <- Qinv_opp. - rewrite IQR_opp. - rewrite IQR_inv_lt. - repeat rewrite IQR_opp. - rewrite Ropp_inv_permute. - auto. - intro. - apply Ropp_0 in H0. - apply IQR_x_0 in H0. - rewrite H0 in H. - compute in H. discriminate. - unfold Qlt in *. - destruct x ; simpl in *. - auto with zarith. -Qed. - -Lemma IQR_inv : forall x, ~ x == 0 -> - IQR (/ x) = / IQR x. -Proof. - intros. - assert ( 0 > x \/ 0 < x)%Q. - destruct x ; unfold Qlt, Qeq in * ; simpl in *. - rewrite Z.mul_1_r in *. - destruct Qnum ; simpl in * ; intuition auto. - right. reflexivity. - left ; reflexivity. - destruct H0. - apply IQR_inv_gt ; auto. - apply IQR_inv_lt ; auto. -Qed. - Lemma IQR_inv_ext : forall x, IQR (/ x) = (if Qeq_bool x 0 then 0 else / IQR x). Proof. @@ -366,18 +104,13 @@ Proof. destruct x ; simpl. unfold Qeq in H. simpl in H. - replace Qnum with 0%Z. - compute. rewrite Rinv_1. - reflexivity. - rewrite <- H. ring. + rewrite Zmult_1_r in H. + rewrite H. + apply Rmult_0_l. intros. - apply IQR_inv. - intro. - rewrite <- Qeq_bool_iff in H0. - congruence. + now apply Q2R_inv, Qeq_bool_neq. Qed. - Notation to_nat := N.to_nat. Lemma QSORaddon : @@ -391,10 +124,10 @@ Proof. constructor ; intros ; try reflexivity. apply IQR_0. apply IQR_1. - apply IQR_plus. - apply IQR_minus. - apply IQR_mult. - apply IQR_opp. + apply Q2R_plus. + apply Q2R_minus. + apply Q2R_mult. + apply Q2R_opp. apply Qeq_true ; auto. apply R_power_theory. apply Qeq_false. @@ -453,13 +186,13 @@ Proof. apply IQR_1. reflexivity. unfold IQR. simpl. rewrite Rinv_1. reflexivity. - apply IQR_plus. - apply IQR_minus. - apply IQR_mult. + apply Q2R_plus. + apply Q2R_minus. + apply Q2R_mult. rewrite <- IHc. apply IQR_inv_ext. rewrite <- IHc. - apply IQR_opp. + apply Q2R_opp. Qed. Require Import EnvRing. diff --git a/plugins/micromega/coq_micromega.ml b/plugins/micromega/coq_micromega.ml index 97f29df823..6051cb3d3c 100644 --- a/plugins/micromega/coq_micromega.ml +++ b/plugins/micromega/coq_micromega.ml @@ -364,6 +364,7 @@ struct [["Coq";"Reals" ; "Rdefinitions"]; ["Coq";"Reals" ; "Rpow_def"] ; ["Coq";"Reals" ; "Raxioms"] ; + ["Coq";"QArith"; "Qreals"] ; ] let z_modules = [["Coq";"ZArith";"BinInt"]] @@ -479,7 +480,7 @@ struct let coq_Rinv = lazy (r_constant "Rinv") let coq_Rpower = lazy (r_constant "pow") let coq_IZR = lazy (r_constant "IZR") - let coq_IQR = lazy (constant "IQR") + let coq_IQR = lazy (r_constant "Q2R") let coq_PEX = lazy (constant "PEX" ) diff --git a/plugins/setoid_ring/RealField.v b/plugins/setoid_ring/RealField.v index 293722125b..facd2e0625 100644 --- a/plugins/setoid_ring/RealField.v +++ b/plugins/setoid_ring/RealField.v @@ -59,11 +59,12 @@ Notation Rset := (Eqsth R). Notation Rext := (Eq_ext Rplus Rmult Ropp). Lemma Rlt_0_2 : 0 < 2. +Proof. apply Rlt_trans with (0 + 1). apply Rlt_n_Sn. rewrite Rplus_comm. apply Rplus_lt_compat_l. - replace 1 with (0 + 1). + replace R1 with (0 + 1). apply Rlt_n_Sn. apply Rplus_0_l. Qed. @@ -126,9 +127,17 @@ Ltac Rpow_tac t := | _ => constr:(N.of_nat t) end. -Add Field RField : Rfield - (completeness Zeq_bool_complete, power_tac R_power_theory [Rpow_tac]). - - - +Ltac IZR_tac t := + match t with + | R0 => constr:(0%Z) + | R1 => constr:(1%Z) + | IZR ?u => + match isZcst u with + | true => u + | _ => constr:(InitialRing.NotConstant) + end + | _ => constr:(InitialRing.NotConstant) + end. +Add Field RField : Rfield + (completeness Zeq_bool_complete, constants [IZR_tac], power_tac R_power_theory [Rpow_tac]). diff --git a/plugins/setoid_ring/newring.ml b/plugins/setoid_ring/newring.ml index eb35d3f806..87ee666605 100644 --- a/plugins/setoid_ring/newring.ml +++ b/plugins/setoid_ring/newring.ml @@ -323,14 +323,16 @@ let _ = add_map "ring" (map_with_eq [coq_cons,(function -1->Eval|2->Rec|_->Prot); coq_nil, (function -1->Eval|_ -> Prot); + my_reference "IDphi", (function _->Eval); + my_reference "gen_phiZ", (function _->Eval); (* Pphi_dev: evaluate polynomial and coef operations, protect ring operations and make recursive call on the var map *) pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot); pol_cst "Pphi_pow", - (function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot); + (function -1|8|9|10|13|15|17->Eval|11|16->Rec|_->Prot); (* PEeval: evaluate morphism and polynomial, protect ring operations and make recursive call on the var map *) - pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot)]) + pol_cst "PEeval", (function -1|8|10|13->Eval|12->Rec|_->Prot)]) (****************************************************************************) (* Ring database *) @@ -756,12 +758,14 @@ let _ = add_map "field" (map_with_eq [coq_cons,(function -1->Eval|2->Rec|_->Prot); coq_nil, (function -1->Eval|_ -> Prot); + my_reference "IDphi", (function _->Eval); + my_reference "gen_phiZ", (function _->Eval); (* display_linear: evaluate polynomials and coef operations, protect field operations and make recursive call on the var map *) my_reference "display_linear", (function -1|9|10|11|12|13|15|16->Eval|14->Rec|_->Prot); my_reference "display_pow_linear", - (function -1|9|10|11|12|13|14|16|18|19->Eval|17->Rec|_->Prot); + (function -1|9|10|11|14|16|18|19->Eval|12|17->Rec|_->Prot); (* Pphi_dev: evaluate polynomial and coef operations, protect ring operations and make recursive call on the var map *) pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot); @@ -769,19 +773,20 @@ let _ = add_map "field" (function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot); (* PEeval: evaluate morphism and polynomial, protect ring operations and make recursive call on the var map *) - pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot); + pol_cst "PEeval", (function -1|8|10|13->Eval|12->Rec|_->Prot); (* FEeval: evaluate morphism, protect field operations and make recursive call on the var map *) - my_reference "FEeval", (function -1|8|9|10|11|14->Eval|13->Rec|_->Prot)]);; + my_reference "FEeval", (function -1|10|12|15->Eval|14->Rec|_->Prot)]);; let _ = add_map "field_cond" (map_without_eq [coq_cons,(function -1->Eval|2->Rec|_->Prot); coq_nil, (function -1->Eval|_ -> Prot); - (* PCond: evaluate morphism and denum list, protect ring + my_reference "IDphi", (function _->Eval); + my_reference "gen_phiZ", (function _->Eval); + (* PCond: evaluate denum list, protect ring operations and make recursive call on the var map *) - my_reference "PCond", (function -1|9|11|14->Eval|13->Rec|_->Prot)]);; -(* (function -1|9|11->Eval|10->Rec|_->Prot)]);;*) + my_reference "PCond", (function -1|11|14->Eval|9|13->Rec|_->Prot)]);; let _ = Redexpr.declare_reduction "simpl_field_expr" diff --git a/plugins/syntax/r_syntax.ml b/plugins/syntax/r_syntax.ml index 3ae2d45f32..8f065f5282 100644 --- a/plugins/syntax/r_syntax.ml +++ b/plugins/syntax/r_syntax.ml @@ -9,6 +9,8 @@ open Util open Names open Globnames +open Glob_term +open Bigint (* Poor's man DECLARE PLUGIN *) let __coq_plugin_name = "r_syntax_plugin" @@ -17,95 +19,105 @@ let () = Mltop.add_known_module __coq_plugin_name exception Non_closed_number (**********************************************************************) -(* Parsing R via scopes *) +(* Parsing positive via scopes *) (**********************************************************************) -open Glob_term -open Bigint +let binnums = ["Coq";"Numbers";"BinNums"] let make_dir l = DirPath.make (List.rev_map Id.of_string l) -let rdefinitions = make_dir ["Coq";"Reals";"Rdefinitions"] -let make_path dir id = Libnames.make_path dir (Id.of_string id) +let make_path dir id = Libnames.make_path (make_dir dir) (Id.of_string id) + +let positive_path = make_path binnums "positive" + +(* TODO: temporary hack *) +let make_kn dir id = Globnames.encode_mind dir id + +let positive_kn = make_kn (make_dir binnums) (Id.of_string "positive") +let glob_positive = IndRef (positive_kn,0) +let path_of_xI = ((positive_kn,0),1) +let path_of_xO = ((positive_kn,0),2) +let path_of_xH = ((positive_kn,0),3) +let glob_xI = ConstructRef path_of_xI +let glob_xO = ConstructRef path_of_xO +let glob_xH = ConstructRef path_of_xH + +let pos_of_bignat dloc x = + let ref_xI = GRef (dloc, glob_xI, None) in + let ref_xH = GRef (dloc, glob_xH, None) in + let ref_xO = GRef (dloc, glob_xO, None) in + let rec pos_of x = + match div2_with_rest x with + | (q,false) -> GApp (dloc, ref_xO,[pos_of q]) + | (q,true) when not (Bigint.equal q zero) -> GApp (dloc,ref_xI,[pos_of q]) + | (q,true) -> ref_xH + in + pos_of x + +(**********************************************************************) +(* Printing positive via scopes *) +(**********************************************************************) + +let rec bignat_of_pos = function + | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_xO -> mult_2(bignat_of_pos a) + | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_xI -> add_1(mult_2(bignat_of_pos a)) + | GRef (_, a, _) when Globnames.eq_gr a glob_xH -> Bigint.one + | _ -> raise Non_closed_number + +(**********************************************************************) +(* Parsing Z via scopes *) +(**********************************************************************) +let z_path = make_path binnums "Z" +let z_kn = make_kn (make_dir binnums) (Id.of_string "Z") +let glob_z = IndRef (z_kn,0) +let path_of_ZERO = ((z_kn,0),1) +let path_of_POS = ((z_kn,0),2) +let path_of_NEG = ((z_kn,0),3) +let glob_ZERO = ConstructRef path_of_ZERO +let glob_POS = ConstructRef path_of_POS +let glob_NEG = ConstructRef path_of_NEG + +let z_of_int dloc n = + if not (Bigint.equal n zero) then + let sgn, n = + if is_pos_or_zero n then glob_POS, n else glob_NEG, Bigint.neg n in + GApp(dloc, GRef (dloc,sgn,None), [pos_of_bignat dloc n]) + else + GRef (dloc, glob_ZERO, None) + +(**********************************************************************) +(* Printing Z via scopes *) +(**********************************************************************) + +let bigint_of_z = function + | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_POS -> bignat_of_pos a + | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_NEG -> Bigint.neg (bignat_of_pos a) + | GRef (_, a, _) when Globnames.eq_gr a glob_ZERO -> Bigint.zero + | _ -> raise Non_closed_number + +(**********************************************************************) +(* Parsing R via scopes *) +(**********************************************************************) + +let rdefinitions = ["Coq";"Reals";"Rdefinitions"] let r_path = make_path rdefinitions "R" (* TODO: temporary hack *) let make_path dir id = Globnames.encode_con dir (Id.of_string id) -let r_kn = make_path rdefinitions "R" -let glob_R = ConstRef r_kn -let glob_R1 = ConstRef (make_path rdefinitions "R1") -let glob_R0 = ConstRef (make_path rdefinitions "R0") -let glob_Ropp = ConstRef (make_path rdefinitions "Ropp") -let glob_Rplus = ConstRef (make_path rdefinitions "Rplus") -let glob_Rmult = ConstRef (make_path rdefinitions "Rmult") - -let two = mult_2 one -let three = add_1 two -let four = mult_2 two - -(* Unary representation of strictly positive numbers *) -let rec small_r dloc n = - if equal one n then GRef (dloc, glob_R1, None) - else GApp(dloc,GRef (dloc,glob_Rplus, None), - [GRef (dloc, glob_R1, None);small_r dloc (sub_1 n)]) - -let r_of_posint dloc n = - let r1 = GRef (dloc, glob_R1, None) in - let r2 = small_r dloc two in - let rec r_of_pos n = - if less_than n four then small_r dloc n - else - let (q,r) = div2_with_rest n in - let b = GApp(dloc,GRef(dloc,glob_Rmult,None),[r2;r_of_pos q]) in - if r then GApp(dloc,GRef(dloc,glob_Rplus,None),[r1;b]) else b in - if not (Bigint.equal n zero) then r_of_pos n else GRef(dloc,glob_R0,None) +let glob_IZR = ConstRef (make_path (make_dir rdefinitions) "IZR") let r_of_int dloc z = - if is_strictly_neg z then - GApp (dloc, GRef(dloc,glob_Ropp,None), [r_of_posint dloc (neg z)]) - else - r_of_posint dloc z + GApp (dloc, GRef(dloc,glob_IZR,None), [z_of_int dloc z]) (**********************************************************************) (* Printing R via scopes *) (**********************************************************************) -let bignat_of_r = -(* for numbers > 1 *) -let rec bignat_of_pos = function - (* 1+1 *) - | GApp (_,GRef (_,p,_), [GRef (_,o1,_); GRef (_,o2,_)]) - when Globnames.eq_gr p glob_Rplus && Globnames.eq_gr o1 glob_R1 && Globnames.eq_gr o2 glob_R1 -> two - (* 1+(1+1) *) - | GApp (_,GRef (_,p1,_), [GRef (_,o1,_); - GApp(_,GRef (_,p2,_),[GRef(_,o2,_);GRef(_,o3,_)])]) - when Globnames.eq_gr p1 glob_Rplus && Globnames.eq_gr p2 glob_Rplus && - Globnames.eq_gr o1 glob_R1 && Globnames.eq_gr o2 glob_R1 && Globnames.eq_gr o3 glob_R1 -> three - (* (1+1)*b *) - | GApp (_,GRef (_,p,_), [a; b]) when Globnames.eq_gr p glob_Rmult -> - if not (Bigint.equal (bignat_of_pos a) two) then raise Non_closed_number; - mult_2 (bignat_of_pos b) - (* 1+(1+1)*b *) - | GApp (_,GRef (_,p1,_), [GRef (_,o,_); GApp (_,GRef (_,p2,_),[a;b])]) - when Globnames.eq_gr p1 glob_Rplus && Globnames.eq_gr p2 glob_Rmult && Globnames.eq_gr o glob_R1 -> - if not (Bigint.equal (bignat_of_pos a) two) then raise Non_closed_number; - add_1 (mult_2 (bignat_of_pos b)) - | _ -> raise Non_closed_number -in -let bignat_of_r = function - | GRef (_,a,_) when Globnames.eq_gr a glob_R0 -> zero - | GRef (_,a,_) when Globnames.eq_gr a glob_R1 -> one - | r -> bignat_of_pos r -in -bignat_of_r - let bigint_of_r = function - | GApp (_,GRef (_,o,_), [a]) when Globnames.eq_gr o glob_Ropp -> - let n = bignat_of_r a in - if Bigint.equal n zero then raise Non_closed_number; - neg n - | a -> bignat_of_r a + | GApp (_,GRef (_,o,_), [a]) when Globnames.eq_gr o glob_IZR -> + bigint_of_z a + | _ -> raise Non_closed_number let uninterp_r p = try @@ -113,12 +125,9 @@ let uninterp_r p = with Non_closed_number -> None -let mkGRef gr = GRef (Loc.ghost,gr,None) - let _ = Notation.declare_numeral_interpreter "R_scope" (r_path,["Coq";"Reals";"Rdefinitions"]) r_of_int - (List.map mkGRef - [glob_Ropp;glob_R0;glob_Rplus;glob_Rmult;glob_R1], + ([GRef (Loc.ghost,glob_IZR,None)], uninterp_r, false) |
