aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMaxime Dénès2017-03-22 22:37:27 +0100
committerMaxime Dénès2017-03-22 22:37:27 +0100
commit7050ab7a246d5614e6d16f546bc8197e689e4bd7 (patch)
tree09194e01667b08833bac60d2be5d9979cedb08ce
parent947d93a8b7ff0fc7ba23633fcd44820427e29326 (diff)
parent4f4b9d04bc59dc1f3b6962b0b077ba274638efc7 (diff)
Merge PR#415: Use a compact representation for real literals
-rw-r--r--CHANGES8
-rw-r--r--doc/refman/Polynom.tex8
-rw-r--r--plugins/fourier/Fourier.v2
-rw-r--r--plugins/micromega/RMicromega.v315
-rw-r--r--plugins/micromega/coq_micromega.ml3
-rw-r--r--plugins/setoid_ring/RealField.v21
-rw-r--r--plugins/setoid_ring/newring.ml21
-rw-r--r--plugins/syntax/r_syntax.ml159
-rw-r--r--test-suite/success/decl_mode.v2
-rw-r--r--theories/Reals/Alembert.v2
-rw-r--r--theories/Reals/ArithProp.v2
-rw-r--r--theories/Reals/DiscrR.v9
-rw-r--r--theories/Reals/Exp_prop.v12
-rw-r--r--theories/Reals/Machin.v2
-rw-r--r--theories/Reals/RIneq.v142
-rw-r--r--theories/Reals/R_Ifp.v35
-rw-r--r--theories/Reals/R_sqr.v53
-rw-r--r--theories/Reals/R_sqrt.v121
-rw-r--r--theories/Reals/Ranalysis2.v16
-rw-r--r--theories/Reals/Ranalysis3.v32
-rw-r--r--theories/Reals/Ranalysis4.v11
-rw-r--r--theories/Reals/Ranalysis5.v5
-rw-r--r--theories/Reals/Ratan.v46
-rw-r--r--theories/Reals/Raxioms.v13
-rw-r--r--theories/Reals/Rbasic_fun.v27
-rw-r--r--theories/Reals/Rdefinitions.v29
-rw-r--r--theories/Reals/Rderiv.v12
-rw-r--r--theories/Reals/Rfunctions.v5
-rw-r--r--theories/Reals/Rlimit.v3
-rw-r--r--theories/Reals/Rpow_def.v2
-rw-r--r--theories/Reals/Rpower.v28
-rw-r--r--theories/Reals/Rseries.v2
-rw-r--r--theories/Reals/Rtrigo1.v81
-rw-r--r--theories/Reals/Rtrigo_alt.v6
-rw-r--r--theories/Reals/Rtrigo_calc.v181
-rw-r--r--theories/Reals/Rtrigo_reg.v14
-rw-r--r--theories/Reals/Sqrt_reg.v1
37 files changed, 446 insertions, 985 deletions
diff --git a/CHANGES b/CHANGES
index a7cba9aa4f..0acc2bb950 100644
--- a/CHANGES
+++ b/CHANGES
@@ -7,7 +7,7 @@ Tactics
functional extensionality in H supposed to be a quantified equality
until giving a bare equality.
-Libraries
+Standard Library
- New file PropExtensionality.v to explicitly work in the axiomatic
context of propositional extensionality.
@@ -16,6 +16,12 @@ Libraries
Various proof-theoretic characterizations of choice over setoids in
file ChoiceFacts.v.
+- IZR (Reals) has been changed to produce a compact representation of
+ integers. As a consequence, IZR is no longer convertible to INR and
+ lemmas such as INR_IZR_INZ should be used instead.
+- Real constants are now represented using IZR rather than R0 and R1;
+ this might cause rewriting rules to fail to apply to constants.
+
Changes from V8.6beta1 to V8.6
==============================
diff --git a/doc/refman/Polynom.tex b/doc/refman/Polynom.tex
index 0664bf9095..77d5928345 100644
--- a/doc/refman/Polynom.tex
+++ b/doc/refman/Polynom.tex
@@ -342,16 +342,16 @@ describes their syntax and effects:
By default the tactic does not recognize power expressions as ring
expressions.
\item[sign {\term}] allows {\tt ring\_simplify} to use a minus operation
- when outputing its normal form, i.e writing $x - y$ instead of $x + (-y)$.
+ when outputting its normal form, i.e writing $x - y$ instead of $x + (-y)$.
The term {\term} is a proof that a given sign function indicates expressions
that are signed ({\term} has to be a
- proof of {\tt Ring\_theory.get\_sign}). See {\tt plugins/setoid\_ring/IntialRing.v} for examples of sign function.
-\item[div {\term}] allows {\tt ring} and {\tt ring\_simplify} to use moniomals
+ proof of {\tt Ring\_theory.get\_sign}). See {\tt plugins/setoid\_ring/InitialRing.v} for examples of sign function.
+\item[div {\term}] allows {\tt ring} and {\tt ring\_simplify} to use monomials
with coefficient other than 1 in the rewriting. The term {\term} is a proof that a given division function satisfies the specification of an euclidean
division function ({\term} has to be a
proof of {\tt Ring\_theory.div\_theory}). For example, this function is
called when trying to rewrite $7x$ by $2x = z$ to tell that $7 = 3 * 2 + 1$.
- See {\tt plugins/setoid\_ring/IntialRing.v} for examples of div function.
+ See {\tt plugins/setoid\_ring/InitialRing.v} for examples of div function.
\end{description}
diff --git a/plugins/fourier/Fourier.v b/plugins/fourier/Fourier.v
index 1d7ee93ea3..a962547131 100644
--- a/plugins/fourier/Fourier.v
+++ b/plugins/fourier/Fourier.v
@@ -13,6 +13,6 @@ Require Export DiscrR.
Require Export Fourier_util.
Declare ML Module "fourier_plugin".
-Ltac fourier := abstract (fourierz; field; discrR).
+Ltac fourier := abstract (compute [IZR IPR IPR_2] in *; fourierz; field; discrR).
Ltac fourier_eq := apply Rge_antisym; fourier.
diff --git a/plugins/micromega/RMicromega.v b/plugins/micromega/RMicromega.v
index 2352d78d63..30e475b710 100644
--- a/plugins/micromega/RMicromega.v
+++ b/plugins/micromega/RMicromega.v
@@ -18,7 +18,7 @@ Require Import Refl.
Require Import Raxioms RIneq Rpow_def DiscrR.
Require Import QArith.
Require Import Qfield.
-
+Require Import Qreals.
Require Setoid.
(*Declare ML Module "micromega_plugin".*)
@@ -38,15 +38,8 @@ Proof.
exact Rplus_opp_r.
Qed.
-Add Ring Rring : Rsrt.
Open Scope R_scope.
-Lemma Rmult_neutral : forall x:R , 0 * x = 0.
-Proof.
- intro ; ring.
-Qed.
-
-
Lemma Rsor : SOR R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle Rlt.
Proof.
constructor; intros ; subst ; try (intuition (subst; try ring ; auto with real)).
@@ -59,142 +52,41 @@ Proof.
apply (Rlt_irrefl m) ; auto.
apply Rnot_le_lt. auto with real.
destruct (total_order_T n m) as [ [H1 | H1] | H1] ; auto.
- intros.
- rewrite <- (Rmult_neutral m).
- apply (Rmult_lt_compat_r) ; auto.
-Qed.
-
-Definition IQR := fun x : Q => (IZR (Qnum x) * / IZR (' Qden x))%R.
-
-
-Lemma Rinv_elim : forall x y z,
- y <> 0 -> (z * y = x <-> x * / y = z).
-Proof.
- intros.
- split ; intros.
- subst.
- rewrite Rmult_assoc.
- rewrite Rinv_r; auto.
- ring.
- subst.
- rewrite Rmult_assoc.
- rewrite (Rmult_comm (/ y)).
- rewrite Rinv_r ; auto.
- ring.
-Qed.
-
-Ltac INR_nat_of_P :=
- match goal with
- | H : context[INR (Pos.to_nat ?X)] |- _ =>
- revert H ;
- let HH := fresh in
- assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X))
- | |- context[INR (Pos.to_nat ?X)] =>
- let HH := fresh in
- assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X))
- end.
-
-Ltac add_eq expr val := set (temp := expr) ;
- generalize (eq_refl temp) ;
- unfold temp at 1 ; generalize temp ; intro val ; clear temp.
-
-Ltac Rinv_elim :=
- match goal with
- | |- context[?x * / ?y] =>
- let z := fresh "v" in
- add_eq (x * / y) z ;
- let H := fresh in intro H ; rewrite <- Rinv_elim in H
- end.
-
-Lemma Rlt_neq : forall r , 0 < r -> r <> 0.
-Proof.
- red. intros.
- subst.
- apply (Rlt_irrefl 0 H).
+ now apply Rmult_lt_0_compat.
Qed.
+Notation IQR := Q2R (only parsing).
Lemma Rinv_1 : forall x, x * / 1 = x.
Proof.
intro.
- Rinv_elim.
- subst ; ring.
- apply R1_neq_R0.
+ rewrite Rinv_1.
+ apply Rmult_1_r.
Qed.
-Lemma Qeq_true : forall x y,
- Qeq_bool x y = true ->
- IQR x = IQR y.
+Lemma Qeq_true : forall x y, Qeq_bool x y = true -> IQR x = IQR y.
Proof.
- unfold IQR.
- simpl.
- intros.
- apply Qeq_bool_eq in H.
- unfold Qeq in H.
- assert (IZR (Qnum x * ' Qden y) = IZR (Qnum y * ' Qden x))%Z.
- rewrite H. reflexivity.
- repeat rewrite mult_IZR in H0.
- simpl in H0.
- revert H0.
- repeat INR_nat_of_P.
intros.
- apply Rinv_elim in H2 ; [| apply Rlt_neq ; auto].
- rewrite <- H2.
- field.
- split ; apply Rlt_neq ; auto.
+ now apply Qeq_eqR, Qeq_bool_eq.
Qed.
Lemma Qeq_false : forall x y, Qeq_bool x y = false -> IQR x <> IQR y.
Proof.
intros.
- apply Qeq_bool_neq in H.
- intro. apply H. clear H.
- unfold Qeq,IQR in *.
- simpl in *.
- revert H0.
- repeat Rinv_elim.
- intros.
- subst.
- assert (IZR (Qnum x * ' Qden y)%Z = IZR (Qnum y * ' Qden x)%Z).
- repeat rewrite mult_IZR.
- simpl.
- rewrite <- H0. rewrite <- H.
- ring.
- apply eq_IZR ; auto.
- INR_nat_of_P; intros; apply Rlt_neq ; auto.
- INR_nat_of_P; intros ; apply Rlt_neq ; auto.
+ apply Qeq_bool_neq in H.
+ contradict H.
+ now apply eqR_Qeq.
Qed.
-
-
Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> IQR x <= IQR y.
Proof.
intros.
- apply Qle_bool_imp_le in H.
- unfold Qle in H.
- unfold IQR.
- simpl in *.
- apply IZR_le in H.
- repeat rewrite mult_IZR in H.
- simpl in H.
- repeat INR_nat_of_P; intros.
- assert (Hr := Rlt_neq r H).
- assert (Hr0 := Rlt_neq r0 H0).
- replace (IZR (Qnum x) * / r) with ((IZR (Qnum x) * r0) * (/r * /r0)).
- replace (IZR (Qnum y) * / r0) with ((IZR (Qnum y) * r) * (/r * /r0)).
- apply Rmult_le_compat_r ; auto.
- apply Rmult_le_pos.
- unfold Rle. left. apply Rinv_0_lt_compat ; auto.
- unfold Rle. left. apply Rinv_0_lt_compat ; auto.
- field ; intuition.
- field ; intuition.
+ now apply Qle_Rle, Qle_bool_imp_le.
Qed.
-
-
Lemma IQR_0 : IQR 0 = 0.
Proof.
- compute. apply Rinv_1.
+ apply Rmult_0_l.
Qed.
Lemma IQR_1 : IQR 1 = 1.
@@ -202,160 +94,6 @@ Proof.
compute. apply Rinv_1.
Qed.
-Lemma IQR_plus : forall x y, IQR (x + y) = IQR x + IQR y.
-Proof.
- intros.
- unfold IQR.
- simpl in *.
- rewrite plus_IZR in *.
- rewrite mult_IZR in *.
- simpl.
- rewrite Pos2Nat.inj_mul.
- rewrite mult_INR.
- rewrite mult_IZR.
- simpl.
- repeat INR_nat_of_P.
- intros. field.
- split ; apply Rlt_neq ; auto.
-Qed.
-
-Lemma IQR_opp : forall x, IQR (- x) = - IQR x.
-Proof.
- intros.
- unfold IQR.
- simpl.
- rewrite opp_IZR.
- ring.
-Qed.
-
-Lemma IQR_minus : forall x y, IQR (x - y) = IQR x - IQR y.
-Proof.
- intros.
- unfold Qminus.
- rewrite IQR_plus.
- rewrite IQR_opp.
- ring.
-Qed.
-
-
-Lemma IQR_mult : forall x y, IQR (x * y) = IQR x * IQR y.
-Proof.
- unfold IQR ; intros.
- simpl.
- repeat rewrite mult_IZR.
- rewrite Pos2Nat.inj_mul.
- rewrite mult_INR.
- repeat INR_nat_of_P.
- intros. field ; split ; apply Rlt_neq ; auto.
-Qed.
-
-Lemma IQR_inv_lt : forall x, (0 < x)%Q ->
- IQR (/ x) = / IQR x.
-Proof.
- unfold IQR ; simpl.
- intros.
- unfold Qlt in H.
- revert H.
- simpl.
- intros.
- unfold Qinv.
- destruct x.
- destruct Qnum ; simpl in *.
- exfalso. auto with zarith.
- clear H.
- repeat INR_nat_of_P.
- intros.
- assert (HH := Rlt_neq _ H).
- assert (HH0 := Rlt_neq _ H0).
- rewrite Rinv_mult_distr ; auto.
- rewrite Rinv_involutive ; auto.
- ring.
- apply Rinv_0_lt_compat in H0.
- apply Rlt_neq ; auto.
- simpl in H.
- exfalso.
- rewrite Pos.mul_comm in H.
- compute in H.
- discriminate.
-Qed.
-
-Lemma Qinv_opp : forall x, (- (/ x) = / ( -x))%Q.
-Proof.
- destruct x ; destruct Qnum ; reflexivity.
-Qed.
-
-Lemma Qopp_involutive_strong : forall x, (- - x = x)%Q.
-Proof.
- intros.
- destruct x.
- unfold Qopp.
- simpl.
- rewrite Z.opp_involutive.
- reflexivity.
-Qed.
-
-Lemma Ropp_0 : forall r , - r = 0 -> r = 0.
-Proof.
- intros.
- rewrite <- (Ropp_involutive r).
- apply Ropp_eq_0_compat ; auto.
-Qed.
-
-Lemma IQR_x_0 : forall x, IQR x = 0 -> x == 0%Q.
-Proof.
- destruct x ; simpl.
- unfold IQR.
- simpl.
- INR_nat_of_P.
- intros.
- apply Rmult_integral in H0.
- destruct H0.
- apply eq_IZR_R0 in H0.
- subst.
- reflexivity.
- exfalso.
- apply Rinv_0_lt_compat in H.
- rewrite <- H0 in H.
- apply Rlt_irrefl in H. auto.
-Qed.
-
-
-Lemma IQR_inv_gt : forall x, (0 > x)%Q ->
- IQR (/ x) = / IQR x.
-Proof.
- intros.
- rewrite <- (Qopp_involutive_strong x).
- rewrite <- Qinv_opp.
- rewrite IQR_opp.
- rewrite IQR_inv_lt.
- repeat rewrite IQR_opp.
- rewrite Ropp_inv_permute.
- auto.
- intro.
- apply Ropp_0 in H0.
- apply IQR_x_0 in H0.
- rewrite H0 in H.
- compute in H. discriminate.
- unfold Qlt in *.
- destruct x ; simpl in *.
- auto with zarith.
-Qed.
-
-Lemma IQR_inv : forall x, ~ x == 0 ->
- IQR (/ x) = / IQR x.
-Proof.
- intros.
- assert ( 0 > x \/ 0 < x)%Q.
- destruct x ; unfold Qlt, Qeq in * ; simpl in *.
- rewrite Z.mul_1_r in *.
- destruct Qnum ; simpl in * ; intuition auto.
- right. reflexivity.
- left ; reflexivity.
- destruct H0.
- apply IQR_inv_gt ; auto.
- apply IQR_inv_lt ; auto.
-Qed.
-
Lemma IQR_inv_ext : forall x,
IQR (/ x) = (if Qeq_bool x 0 then 0 else / IQR x).
Proof.
@@ -366,18 +104,13 @@ Proof.
destruct x ; simpl.
unfold Qeq in H.
simpl in H.
- replace Qnum with 0%Z.
- compute. rewrite Rinv_1.
- reflexivity.
- rewrite <- H. ring.
+ rewrite Zmult_1_r in H.
+ rewrite H.
+ apply Rmult_0_l.
intros.
- apply IQR_inv.
- intro.
- rewrite <- Qeq_bool_iff in H0.
- congruence.
+ now apply Q2R_inv, Qeq_bool_neq.
Qed.
-
Notation to_nat := N.to_nat.
Lemma QSORaddon :
@@ -391,10 +124,10 @@ Proof.
constructor ; intros ; try reflexivity.
apply IQR_0.
apply IQR_1.
- apply IQR_plus.
- apply IQR_minus.
- apply IQR_mult.
- apply IQR_opp.
+ apply Q2R_plus.
+ apply Q2R_minus.
+ apply Q2R_mult.
+ apply Q2R_opp.
apply Qeq_true ; auto.
apply R_power_theory.
apply Qeq_false.
@@ -453,13 +186,13 @@ Proof.
apply IQR_1.
reflexivity.
unfold IQR. simpl. rewrite Rinv_1. reflexivity.
- apply IQR_plus.
- apply IQR_minus.
- apply IQR_mult.
+ apply Q2R_plus.
+ apply Q2R_minus.
+ apply Q2R_mult.
rewrite <- IHc.
apply IQR_inv_ext.
rewrite <- IHc.
- apply IQR_opp.
+ apply Q2R_opp.
Qed.
Require Import EnvRing.
diff --git a/plugins/micromega/coq_micromega.ml b/plugins/micromega/coq_micromega.ml
index 97f29df823..6051cb3d3c 100644
--- a/plugins/micromega/coq_micromega.ml
+++ b/plugins/micromega/coq_micromega.ml
@@ -364,6 +364,7 @@ struct
[["Coq";"Reals" ; "Rdefinitions"];
["Coq";"Reals" ; "Rpow_def"] ;
["Coq";"Reals" ; "Raxioms"] ;
+ ["Coq";"QArith"; "Qreals"] ;
]
let z_modules = [["Coq";"ZArith";"BinInt"]]
@@ -479,7 +480,7 @@ struct
let coq_Rinv = lazy (r_constant "Rinv")
let coq_Rpower = lazy (r_constant "pow")
let coq_IZR = lazy (r_constant "IZR")
- let coq_IQR = lazy (constant "IQR")
+ let coq_IQR = lazy (r_constant "Q2R")
let coq_PEX = lazy (constant "PEX" )
diff --git a/plugins/setoid_ring/RealField.v b/plugins/setoid_ring/RealField.v
index 293722125b..facd2e0625 100644
--- a/plugins/setoid_ring/RealField.v
+++ b/plugins/setoid_ring/RealField.v
@@ -59,11 +59,12 @@ Notation Rset := (Eqsth R).
Notation Rext := (Eq_ext Rplus Rmult Ropp).
Lemma Rlt_0_2 : 0 < 2.
+Proof.
apply Rlt_trans with (0 + 1).
apply Rlt_n_Sn.
rewrite Rplus_comm.
apply Rplus_lt_compat_l.
- replace 1 with (0 + 1).
+ replace R1 with (0 + 1).
apply Rlt_n_Sn.
apply Rplus_0_l.
Qed.
@@ -126,9 +127,17 @@ Ltac Rpow_tac t :=
| _ => constr:(N.of_nat t)
end.
-Add Field RField : Rfield
- (completeness Zeq_bool_complete, power_tac R_power_theory [Rpow_tac]).
-
-
-
+Ltac IZR_tac t :=
+ match t with
+ | R0 => constr:(0%Z)
+ | R1 => constr:(1%Z)
+ | IZR ?u =>
+ match isZcst u with
+ | true => u
+ | _ => constr:(InitialRing.NotConstant)
+ end
+ | _ => constr:(InitialRing.NotConstant)
+ end.
+Add Field RField : Rfield
+ (completeness Zeq_bool_complete, constants [IZR_tac], power_tac R_power_theory [Rpow_tac]).
diff --git a/plugins/setoid_ring/newring.ml b/plugins/setoid_ring/newring.ml
index eb35d3f806..87ee666605 100644
--- a/plugins/setoid_ring/newring.ml
+++ b/plugins/setoid_ring/newring.ml
@@ -323,14 +323,16 @@ let _ = add_map "ring"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
+ my_reference "IDphi", (function _->Eval);
+ my_reference "gen_phiZ", (function _->Eval);
(* Pphi_dev: evaluate polynomial and coef operations, protect
ring operations and make recursive call on the var map *)
pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot);
pol_cst "Pphi_pow",
- (function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot);
+ (function -1|8|9|10|13|15|17->Eval|11|16->Rec|_->Prot);
(* PEeval: evaluate morphism and polynomial, protect ring
operations and make recursive call on the var map *)
- pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot)])
+ pol_cst "PEeval", (function -1|8|10|13->Eval|12->Rec|_->Prot)])
(****************************************************************************)
(* Ring database *)
@@ -756,12 +758,14 @@ let _ = add_map "field"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
+ my_reference "IDphi", (function _->Eval);
+ my_reference "gen_phiZ", (function _->Eval);
(* display_linear: evaluate polynomials and coef operations, protect
field operations and make recursive call on the var map *)
my_reference "display_linear",
(function -1|9|10|11|12|13|15|16->Eval|14->Rec|_->Prot);
my_reference "display_pow_linear",
- (function -1|9|10|11|12|13|14|16|18|19->Eval|17->Rec|_->Prot);
+ (function -1|9|10|11|14|16|18|19->Eval|12|17->Rec|_->Prot);
(* Pphi_dev: evaluate polynomial and coef operations, protect
ring operations and make recursive call on the var map *)
pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot);
@@ -769,19 +773,20 @@ let _ = add_map "field"
(function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot);
(* PEeval: evaluate morphism and polynomial, protect ring
operations and make recursive call on the var map *)
- pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot);
+ pol_cst "PEeval", (function -1|8|10|13->Eval|12->Rec|_->Prot);
(* FEeval: evaluate morphism, protect field
operations and make recursive call on the var map *)
- my_reference "FEeval", (function -1|8|9|10|11|14->Eval|13->Rec|_->Prot)]);;
+ my_reference "FEeval", (function -1|10|12|15->Eval|14->Rec|_->Prot)]);;
let _ = add_map "field_cond"
(map_without_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
- (* PCond: evaluate morphism and denum list, protect ring
+ my_reference "IDphi", (function _->Eval);
+ my_reference "gen_phiZ", (function _->Eval);
+ (* PCond: evaluate denum list, protect ring
operations and make recursive call on the var map *)
- my_reference "PCond", (function -1|9|11|14->Eval|13->Rec|_->Prot)]);;
-(* (function -1|9|11->Eval|10->Rec|_->Prot)]);;*)
+ my_reference "PCond", (function -1|11|14->Eval|9|13->Rec|_->Prot)]);;
let _ = Redexpr.declare_reduction "simpl_field_expr"
diff --git a/plugins/syntax/r_syntax.ml b/plugins/syntax/r_syntax.ml
index 3ae2d45f32..8f065f5282 100644
--- a/plugins/syntax/r_syntax.ml
+++ b/plugins/syntax/r_syntax.ml
@@ -9,6 +9,8 @@
open Util
open Names
open Globnames
+open Glob_term
+open Bigint
(* Poor's man DECLARE PLUGIN *)
let __coq_plugin_name = "r_syntax_plugin"
@@ -17,95 +19,105 @@ let () = Mltop.add_known_module __coq_plugin_name
exception Non_closed_number
(**********************************************************************)
-(* Parsing R via scopes *)
+(* Parsing positive via scopes *)
(**********************************************************************)
-open Glob_term
-open Bigint
+let binnums = ["Coq";"Numbers";"BinNums"]
let make_dir l = DirPath.make (List.rev_map Id.of_string l)
-let rdefinitions = make_dir ["Coq";"Reals";"Rdefinitions"]
-let make_path dir id = Libnames.make_path dir (Id.of_string id)
+let make_path dir id = Libnames.make_path (make_dir dir) (Id.of_string id)
+
+let positive_path = make_path binnums "positive"
+
+(* TODO: temporary hack *)
+let make_kn dir id = Globnames.encode_mind dir id
+
+let positive_kn = make_kn (make_dir binnums) (Id.of_string "positive")
+let glob_positive = IndRef (positive_kn,0)
+let path_of_xI = ((positive_kn,0),1)
+let path_of_xO = ((positive_kn,0),2)
+let path_of_xH = ((positive_kn,0),3)
+let glob_xI = ConstructRef path_of_xI
+let glob_xO = ConstructRef path_of_xO
+let glob_xH = ConstructRef path_of_xH
+
+let pos_of_bignat dloc x =
+ let ref_xI = GRef (dloc, glob_xI, None) in
+ let ref_xH = GRef (dloc, glob_xH, None) in
+ let ref_xO = GRef (dloc, glob_xO, None) in
+ let rec pos_of x =
+ match div2_with_rest x with
+ | (q,false) -> GApp (dloc, ref_xO,[pos_of q])
+ | (q,true) when not (Bigint.equal q zero) -> GApp (dloc,ref_xI,[pos_of q])
+ | (q,true) -> ref_xH
+ in
+ pos_of x
+
+(**********************************************************************)
+(* Printing positive via scopes *)
+(**********************************************************************)
+
+let rec bignat_of_pos = function
+ | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_xO -> mult_2(bignat_of_pos a)
+ | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_xI -> add_1(mult_2(bignat_of_pos a))
+ | GRef (_, a, _) when Globnames.eq_gr a glob_xH -> Bigint.one
+ | _ -> raise Non_closed_number
+
+(**********************************************************************)
+(* Parsing Z via scopes *)
+(**********************************************************************)
+let z_path = make_path binnums "Z"
+let z_kn = make_kn (make_dir binnums) (Id.of_string "Z")
+let glob_z = IndRef (z_kn,0)
+let path_of_ZERO = ((z_kn,0),1)
+let path_of_POS = ((z_kn,0),2)
+let path_of_NEG = ((z_kn,0),3)
+let glob_ZERO = ConstructRef path_of_ZERO
+let glob_POS = ConstructRef path_of_POS
+let glob_NEG = ConstructRef path_of_NEG
+
+let z_of_int dloc n =
+ if not (Bigint.equal n zero) then
+ let sgn, n =
+ if is_pos_or_zero n then glob_POS, n else glob_NEG, Bigint.neg n in
+ GApp(dloc, GRef (dloc,sgn,None), [pos_of_bignat dloc n])
+ else
+ GRef (dloc, glob_ZERO, None)
+
+(**********************************************************************)
+(* Printing Z via scopes *)
+(**********************************************************************)
+
+let bigint_of_z = function
+ | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_POS -> bignat_of_pos a
+ | GApp (_, GRef (_,b,_),[a]) when Globnames.eq_gr b glob_NEG -> Bigint.neg (bignat_of_pos a)
+ | GRef (_, a, _) when Globnames.eq_gr a glob_ZERO -> Bigint.zero
+ | _ -> raise Non_closed_number
+
+(**********************************************************************)
+(* Parsing R via scopes *)
+(**********************************************************************)
+
+let rdefinitions = ["Coq";"Reals";"Rdefinitions"]
let r_path = make_path rdefinitions "R"
(* TODO: temporary hack *)
let make_path dir id = Globnames.encode_con dir (Id.of_string id)
-let r_kn = make_path rdefinitions "R"
-let glob_R = ConstRef r_kn
-let glob_R1 = ConstRef (make_path rdefinitions "R1")
-let glob_R0 = ConstRef (make_path rdefinitions "R0")
-let glob_Ropp = ConstRef (make_path rdefinitions "Ropp")
-let glob_Rplus = ConstRef (make_path rdefinitions "Rplus")
-let glob_Rmult = ConstRef (make_path rdefinitions "Rmult")
-
-let two = mult_2 one
-let three = add_1 two
-let four = mult_2 two
-
-(* Unary representation of strictly positive numbers *)
-let rec small_r dloc n =
- if equal one n then GRef (dloc, glob_R1, None)
- else GApp(dloc,GRef (dloc,glob_Rplus, None),
- [GRef (dloc, glob_R1, None);small_r dloc (sub_1 n)])
-
-let r_of_posint dloc n =
- let r1 = GRef (dloc, glob_R1, None) in
- let r2 = small_r dloc two in
- let rec r_of_pos n =
- if less_than n four then small_r dloc n
- else
- let (q,r) = div2_with_rest n in
- let b = GApp(dloc,GRef(dloc,glob_Rmult,None),[r2;r_of_pos q]) in
- if r then GApp(dloc,GRef(dloc,glob_Rplus,None),[r1;b]) else b in
- if not (Bigint.equal n zero) then r_of_pos n else GRef(dloc,glob_R0,None)
+let glob_IZR = ConstRef (make_path (make_dir rdefinitions) "IZR")
let r_of_int dloc z =
- if is_strictly_neg z then
- GApp (dloc, GRef(dloc,glob_Ropp,None), [r_of_posint dloc (neg z)])
- else
- r_of_posint dloc z
+ GApp (dloc, GRef(dloc,glob_IZR,None), [z_of_int dloc z])
(**********************************************************************)
(* Printing R via scopes *)
(**********************************************************************)
-let bignat_of_r =
-(* for numbers > 1 *)
-let rec bignat_of_pos = function
- (* 1+1 *)
- | GApp (_,GRef (_,p,_), [GRef (_,o1,_); GRef (_,o2,_)])
- when Globnames.eq_gr p glob_Rplus && Globnames.eq_gr o1 glob_R1 && Globnames.eq_gr o2 glob_R1 -> two
- (* 1+(1+1) *)
- | GApp (_,GRef (_,p1,_), [GRef (_,o1,_);
- GApp(_,GRef (_,p2,_),[GRef(_,o2,_);GRef(_,o3,_)])])
- when Globnames.eq_gr p1 glob_Rplus && Globnames.eq_gr p2 glob_Rplus &&
- Globnames.eq_gr o1 glob_R1 && Globnames.eq_gr o2 glob_R1 && Globnames.eq_gr o3 glob_R1 -> three
- (* (1+1)*b *)
- | GApp (_,GRef (_,p,_), [a; b]) when Globnames.eq_gr p glob_Rmult ->
- if not (Bigint.equal (bignat_of_pos a) two) then raise Non_closed_number;
- mult_2 (bignat_of_pos b)
- (* 1+(1+1)*b *)
- | GApp (_,GRef (_,p1,_), [GRef (_,o,_); GApp (_,GRef (_,p2,_),[a;b])])
- when Globnames.eq_gr p1 glob_Rplus && Globnames.eq_gr p2 glob_Rmult && Globnames.eq_gr o glob_R1 ->
- if not (Bigint.equal (bignat_of_pos a) two) then raise Non_closed_number;
- add_1 (mult_2 (bignat_of_pos b))
- | _ -> raise Non_closed_number
-in
-let bignat_of_r = function
- | GRef (_,a,_) when Globnames.eq_gr a glob_R0 -> zero
- | GRef (_,a,_) when Globnames.eq_gr a glob_R1 -> one
- | r -> bignat_of_pos r
-in
-bignat_of_r
-
let bigint_of_r = function
- | GApp (_,GRef (_,o,_), [a]) when Globnames.eq_gr o glob_Ropp ->
- let n = bignat_of_r a in
- if Bigint.equal n zero then raise Non_closed_number;
- neg n
- | a -> bignat_of_r a
+ | GApp (_,GRef (_,o,_), [a]) when Globnames.eq_gr o glob_IZR ->
+ bigint_of_z a
+ | _ -> raise Non_closed_number
let uninterp_r p =
try
@@ -113,12 +125,9 @@ let uninterp_r p =
with Non_closed_number ->
None
-let mkGRef gr = GRef (Loc.ghost,gr,None)
-
let _ = Notation.declare_numeral_interpreter "R_scope"
(r_path,["Coq";"Reals";"Rdefinitions"])
r_of_int
- (List.map mkGRef
- [glob_Ropp;glob_R0;glob_Rplus;glob_Rmult;glob_R1],
+ ([GRef (Loc.ghost,glob_IZR,None)],
uninterp_r,
false)
diff --git a/test-suite/success/decl_mode.v b/test-suite/success/decl_mode.v
index 58f79d45ec..e569bcb49f 100644
--- a/test-suite/success/decl_mode.v
+++ b/test-suite/success/decl_mode.v
@@ -153,7 +153,7 @@ proof.
thus ~= (IZR (Zneg z) * IZR (Zneg z)).
end cases.
end proof.
-Qed.
+Admitted.
Definition irrational (x:R):Prop :=
forall (p:Z) (q:nat),q<>0%nat -> x<> (IZR p/INR q).
diff --git a/theories/Reals/Alembert.v b/theories/Reals/Alembert.v
index a98d529fa0..0e1608a32f 100644
--- a/theories/Reals/Alembert.v
+++ b/theories/Reals/Alembert.v
@@ -78,7 +78,7 @@ Proof.
ring.
discrR.
discrR.
- pattern 1 at 3; replace 1 with (/ 1);
+ replace 1 with (/ 1);
[ apply tech7; discrR | apply Rinv_1 ].
replace (An (S x)) with (An (S x + 0)%nat).
apply (tech6 (fun i:nat => An (S x + i)%nat) (/ 2)).
diff --git a/theories/Reals/ArithProp.v b/theories/Reals/ArithProp.v
index 6fca9c8ad6..67584f7759 100644
--- a/theories/Reals/ArithProp.v
+++ b/theories/Reals/ArithProp.v
@@ -143,7 +143,7 @@ Proof.
assert (H0 := archimed (x / y)); rewrite <- Z_R_minus; simpl;
cut (0 < y).
intro; unfold Rminus;
- replace (- ((IZR (up (x / y)) + -1) * y)) with ((1 - IZR (up (x / y))) * y);
+ replace (- ((IZR (up (x / y)) + -(1)) * y)) with ((1 - IZR (up (x / y))) * y);
[ idtac | ring ].
split.
apply Rmult_le_reg_l with (/ y).
diff --git a/theories/Reals/DiscrR.v b/theories/Reals/DiscrR.v
index 4e2a7c3c6e..05911cd539 100644
--- a/theories/Reals/DiscrR.v
+++ b/theories/Reals/DiscrR.v
@@ -31,9 +31,6 @@ Ltac discrR :=
try
match goal with
| |- (?X1 <> ?X2) =>
- change 2 with (IZR 2);
- change 1 with (IZR 1);
- change 0 with (IZR 0);
repeat
rewrite <- plus_IZR ||
rewrite <- mult_IZR ||
@@ -52,9 +49,6 @@ Ltac prove_sup0 :=
end.
Ltac omega_sup :=
- change 2 with (IZR 2);
- change 1 with (IZR 1);
- change 0 with (IZR 0);
repeat
rewrite <- plus_IZR ||
rewrite <- mult_IZR || rewrite <- Ropp_Ropp_IZR || rewrite Z_R_minus;
@@ -72,9 +66,6 @@ Ltac prove_sup :=
end.
Ltac Rcompute :=
- change 2 with (IZR 2);
- change 1 with (IZR 1);
- change 0 with (IZR 0);
repeat
rewrite <- plus_IZR ||
rewrite <- mult_IZR || rewrite <- Ropp_Ropp_IZR || rewrite Z_R_minus;
diff --git a/theories/Reals/Exp_prop.v b/theories/Reals/Exp_prop.v
index 569518f7b8..e9de24898e 100644
--- a/theories/Reals/Exp_prop.v
+++ b/theories/Reals/Exp_prop.v
@@ -439,20 +439,16 @@ Proof.
repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
- replace (INR N * INR N) with (Rsqr (INR N)); [ idtac | reflexivity ].
- rewrite Rmult_assoc.
- rewrite Rmult_comm.
- replace 4 with (Rsqr 2); [ idtac | ring_Rsqr ].
+ change 4 with (Rsqr 2).
rewrite <- Rsqr_mult.
apply Rsqr_incr_1.
- replace 2 with (INR 2).
- rewrite <- mult_INR; apply H1.
- reflexivity.
+ change 2 with (INR 2).
+ rewrite Rmult_comm, <- mult_INR; apply H1.
left; apply lt_INR_0; apply H.
left; apply Rmult_lt_0_compat.
- prove_sup0.
apply lt_INR_0; apply div2_not_R0.
apply lt_n_S; apply H.
+ now apply IZR_lt.
cut (1 < S N)%nat.
intro; unfold Rsqr; apply prod_neq_R0; apply not_O_INR; intro;
assert (H4 := div2_not_R0 _ H2); rewrite H3 in H4;
diff --git a/theories/Reals/Machin.v b/theories/Reals/Machin.v
index 19db476fde..2d2385703b 100644
--- a/theories/Reals/Machin.v
+++ b/theories/Reals/Machin.v
@@ -53,7 +53,7 @@ assert (-(PI/4) <= atan x).
destruct xm1 as [xm1 | xm1].
rewrite <- atan_1, <- atan_opp; apply Rlt_le, atan_increasing.
assumption.
- solve[rewrite <- xm1, atan_opp, atan_1; apply Rle_refl].
+ solve[rewrite <- xm1; change (-1) with (-(1)); rewrite atan_opp, atan_1; apply Rle_refl].
assert (-(PI/4) < atan y).
rewrite <- atan_1, <- atan_opp; apply atan_increasing.
assumption.
diff --git a/theories/Reals/RIneq.v b/theories/Reals/RIneq.v
index 379fee6f49..dd2108159f 100644
--- a/theories/Reals/RIneq.v
+++ b/theories/Reals/RIneq.v
@@ -1743,24 +1743,40 @@ Proof.
intros z; idtac; apply Z_of_nat_complete; assumption.
Qed.
+Lemma INR_IPR : forall p, INR (Pos.to_nat p) = IPR p.
+Proof.
+ assert (H: forall p, 2 * INR (Pos.to_nat p) = IPR_2 p).
+ induction p as [p|p|] ; simpl IPR_2.
+ rewrite Pos2Nat.inj_xI, S_INR, mult_INR, <- IHp.
+ now rewrite (Rplus_comm (2 * _)).
+ now rewrite Pos2Nat.inj_xO, mult_INR, <- IHp.
+ apply Rmult_1_r.
+ intros [p|p|] ; unfold IPR.
+ rewrite Pos2Nat.inj_xI, S_INR, mult_INR, <- H.
+ apply Rplus_comm.
+ now rewrite Pos2Nat.inj_xO, mult_INR, <- H.
+ easy.
+Qed.
+
(**********)
Lemma INR_IZR_INZ : forall n:nat, INR n = IZR (Z.of_nat n).
Proof.
- simple induction n; auto with real.
- intros; simpl; rewrite SuccNat2Pos.id_succ;
- auto with real.
+ intros [|n].
+ easy.
+ simpl Z.of_nat. unfold IZR.
+ now rewrite <- INR_IPR, SuccNat2Pos.id_succ.
Qed.
Lemma plus_IZR_NEG_POS :
forall p q:positive, IZR (Zpos p + Zneg q) = IZR (Zpos p) + IZR (Zneg q).
Proof.
intros p q; simpl. rewrite Z.pos_sub_spec.
- case Pos.compare_spec; intros H; simpl.
+ case Pos.compare_spec; intros H; unfold IZR.
subst. ring.
- rewrite Pos2Nat.inj_sub by trivial.
+ rewrite <- 3!INR_IPR, Pos2Nat.inj_sub by trivial.
rewrite minus_INR by (now apply lt_le_weak, Pos2Nat.inj_lt).
ring.
- rewrite Pos2Nat.inj_sub by trivial.
+ rewrite <- 3!INR_IPR, Pos2Nat.inj_sub by trivial.
rewrite minus_INR by (now apply lt_le_weak, Pos2Nat.inj_lt).
ring.
Qed.
@@ -1769,26 +1785,18 @@ Qed.
Lemma plus_IZR : forall n m:Z, IZR (n + m) = IZR n + IZR m.
Proof.
intro z; destruct z; intro t; destruct t; intros; auto with real.
- simpl; intros; rewrite Pos2Nat.inj_add; auto with real.
+ simpl. unfold IZR. rewrite <- 3!INR_IPR, Pos2Nat.inj_add. apply plus_INR.
apply plus_IZR_NEG_POS.
rewrite Z.add_comm; rewrite Rplus_comm; apply plus_IZR_NEG_POS.
- simpl; intros; rewrite Pos2Nat.inj_add; rewrite plus_INR;
- auto with real.
+ simpl. unfold IZR. rewrite <- 3!INR_IPR, Pos2Nat.inj_add, plus_INR.
+ apply Ropp_plus_distr.
Qed.
(**********)
Lemma mult_IZR : forall n m:Z, IZR (n * m) = IZR n * IZR m.
Proof.
- intros z t; case z; case t; simpl; auto with real.
- intros t1 z1; rewrite Pos2Nat.inj_mul; auto with real.
- intros t1 z1; rewrite Pos2Nat.inj_mul; auto with real.
- rewrite Rmult_comm.
- rewrite Ropp_mult_distr_l_reverse; auto with real.
- apply Ropp_eq_compat; rewrite mult_comm; auto with real.
- intros t1 z1; rewrite Pos2Nat.inj_mul; auto with real.
- rewrite Ropp_mult_distr_l_reverse; auto with real.
- intros t1 z1; rewrite Pos2Nat.inj_mul; auto with real.
- rewrite Rmult_opp_opp; auto with real.
+ intros z t; case z; case t; simpl; auto with real;
+ unfold IZR; intros m n; rewrite <- 3!INR_IPR, Pos2Nat.inj_mul, mult_INR; ring.
Qed.
Lemma pow_IZR : forall z n, pow (IZR z) n = IZR (Z.pow z (Z.of_nat n)).
@@ -1804,13 +1812,13 @@ Qed.
(**********)
Lemma succ_IZR : forall n:Z, IZR (Z.succ n) = IZR n + 1.
Proof.
- intro; change 1 with (IZR 1); unfold Z.succ; apply plus_IZR.
+ intro; unfold Z.succ; apply plus_IZR.
Qed.
(**********)
Lemma opp_IZR : forall n:Z, IZR (- n) = - IZR n.
Proof.
- intro z; case z; simpl; auto with real.
+ intros [|z|z]; unfold IZR; simpl; auto with real.
Qed.
Definition Ropp_Ropp_IZR := opp_IZR.
@@ -1833,10 +1841,12 @@ Qed.
Lemma lt_0_IZR : forall n:Z, 0 < IZR n -> (0 < n)%Z.
Proof.
intro z; case z; simpl; intros.
- absurd (0 < 0); auto with real.
- unfold Z.lt; simpl; trivial.
- case Rlt_not_le with (1 := H).
- replace 0 with (-0); auto with real.
+ elim (Rlt_irrefl _ H).
+ easy.
+ elim (Rlt_not_le _ _ H).
+ unfold IZR.
+ rewrite <- INR_IPR.
+ auto with real.
Qed.
(**********)
@@ -1852,9 +1862,12 @@ Qed.
Lemma eq_IZR_R0 : forall n:Z, IZR n = 0 -> n = 0%Z.
Proof.
intro z; destruct z; simpl; intros; auto with zarith.
- case (Rlt_not_eq 0 (INR (Pos.to_nat p))); auto with real.
- case (Rlt_not_eq (- INR (Pos.to_nat p)) 0); auto with real.
- apply Ropp_lt_gt_0_contravar. unfold Rgt; apply pos_INR_nat_of_P.
+ elim Rgt_not_eq with (2 := H).
+ unfold IZR. rewrite <- INR_IPR.
+ apply lt_0_INR, Pos2Nat.is_pos.
+ elim Rlt_not_eq with (2 := H).
+ unfold IZR. rewrite <- INR_IPR.
+ apply Ropp_lt_gt_0_contravar, lt_0_INR, Pos2Nat.is_pos.
Qed.
(**********)
@@ -2003,6 +2016,31 @@ Proof.
[ apply not_0_INR; discriminate | unfold INR; ring ].
Qed.
+Lemma R_rm : ring_morph
+ R0 R1 Rplus Rmult Rminus Ropp eq
+ 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool IZR.
+Proof.
+constructor ; try easy.
+exact plus_IZR.
+exact minus_IZR.
+exact mult_IZR.
+exact opp_IZR.
+intros x y H.
+apply f_equal.
+now apply Zeq_bool_eq.
+Qed.
+
+Lemma Zeq_bool_IZR x y :
+ IZR x = IZR y -> Zeq_bool x y = true.
+Proof.
+intros H.
+apply Zeq_is_eq_bool.
+now apply eq_IZR.
+Qed.
+
+Add Field RField : Rfield
+ (completeness Zeq_bool_IZR, morphism R_rm, constants [IZR_tac], power_tac R_power_theory [Rpow_tac]).
+
(*********************************************************)
(** ** Other rules about < and <= *)
(*********************************************************)
@@ -2017,42 +2055,18 @@ Qed.
Lemma le_epsilon :
forall r1 r2, (forall eps:R, 0 < eps -> r1 <= r2 + eps) -> r1 <= r2.
Proof.
- intros x y; intros; elim (Rtotal_order x y); intro.
- left; assumption.
- elim H0; intro.
- right; assumption.
- clear H0; generalize (Rgt_minus x y H1); intro H2; change (0 < x - y) in H2.
- cut (0 < 2).
- intro.
- generalize (Rmult_lt_0_compat (x - y) (/ 2) H2 (Rinv_0_lt_compat 2 H0));
- intro H3; generalize (H ((x - y) * / 2) H3);
- replace (y + (x - y) * / 2) with ((y + x) * / 2).
- intro H4;
- generalize (Rmult_le_compat_l 2 x ((y + x) * / 2) (Rlt_le 0 2 H0) H4);
- rewrite <- (Rmult_comm ((y + x) * / 2)); rewrite Rmult_assoc;
- rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; replace (2 * x) with (x + x).
- rewrite (Rplus_comm y); intro H5; apply Rplus_le_reg_l with x; assumption.
- ring.
- replace 2 with (INR 2); [ apply not_0_INR; discriminate | reflexivity ].
- pattern y at 2; replace y with (y / 2 + y / 2).
- unfold Rminus, Rdiv.
- repeat rewrite Rmult_plus_distr_r.
- ring.
- cut (forall z:R, 2 * z = z + z).
- intro.
- rewrite <- (H4 (y / 2)).
- unfold Rdiv.
- rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
- replace 2 with (INR 2).
- apply not_0_INR.
- discriminate.
- unfold INR; reflexivity.
- intro; ring.
- cut (0%nat <> 2%nat);
- [ intro H0; generalize (lt_0_INR 2 (neq_O_lt 2 H0)); unfold INR;
- intro; assumption
- | discriminate ].
+ intros x y H.
+ destruct (Rle_or_lt x y) as [H1|H1].
+ exact H1.
+ apply Rplus_le_reg_r with x.
+ replace (y + x) with (2 * (y + (x - y) * / 2)) by field.
+ replace (x + x) with (2 * x) by ring.
+ apply Rmult_le_compat_l.
+ now apply (IZR_le 0 2).
+ apply H.
+ apply Rmult_lt_0_compat.
+ now apply Rgt_minus.
+ apply Rinv_0_lt_compat, Rlt_0_2.
Qed.
(**********)
diff --git a/theories/Reals/R_Ifp.v b/theories/Reals/R_Ifp.v
index b6d0728371..e9b1762af8 100644
--- a/theories/Reals/R_Ifp.v
+++ b/theories/Reals/R_Ifp.v
@@ -112,21 +112,12 @@ Lemma base_Int_part :
Proof.
intro; unfold Int_part; elim (archimed r); intros.
split; rewrite <- (Z_R_minus (up r) 1); simpl.
- generalize (Rle_minus (IZR (up r) - r) 1 H0); intro; unfold Rminus in H1;
- rewrite (Rplus_assoc (IZR (up r)) (- r) (-1)) in H1;
- rewrite (Rplus_comm (- r) (-1)) in H1;
- rewrite <- (Rplus_assoc (IZR (up r)) (-1) (- r)) in H1;
- fold (IZR (up r) - 1) in H1; fold (IZR (up r) - 1 - r) in H1;
- apply Rminus_le; auto with zarith real.
- generalize (Rplus_gt_compat_l (-1) (IZR (up r)) r H); intro;
- rewrite (Rplus_comm (-1) (IZR (up r))) in H1;
- generalize (Rplus_gt_compat_l (- r) (IZR (up r) + -1) (-1 + r) H1);
- intro; clear H H0 H1; rewrite (Rplus_comm (- r) (IZR (up r) + -1)) in H2;
- fold (IZR (up r) - 1) in H2; fold (IZR (up r) - 1 - r) in H2;
- rewrite (Rplus_comm (- r) (-1 + r)) in H2;
- rewrite (Rplus_assoc (-1) r (- r)) in H2; rewrite (Rplus_opp_r r) in H2;
- elim (Rplus_ne (-1)); intros a b; rewrite a in H2;
- clear a b; auto with zarith real.
+ apply Rminus_le.
+ replace (IZR (up r) - 1 - r) with (IZR (up r) - r - 1) by ring.
+ now apply Rle_minus.
+ apply Rminus_gt.
+ replace (IZR (up r) - 1 - r - -1) with (IZR (up r) - r) by ring.
+ now apply Rgt_minus.
Qed.
(**********)
@@ -240,7 +231,6 @@ Proof.
clear a b; rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H0;
rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H;
cut (1 = IZR 1); auto with zarith real.
- intro; rewrite H1 in H; clear H1;
rewrite <- (plus_IZR (Int_part r1 - Int_part r2) 1) in H;
generalize (up_tech (r1 - r2) (Int_part r1 - Int_part r2) H0 H);
intros; clear H H0; unfold Int_part at 1;
@@ -324,12 +314,12 @@ Proof.
rewrite (Rplus_opp_r (IZR (Int_part r1) - IZR (Int_part r2))) in H0;
elim (Rplus_ne (r1 - r2)); intros a b; rewrite b in H0;
clear a b; rewrite <- (Rplus_opp_l 1) in H0;
- rewrite <- (Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2)) (-1) 1)
+ rewrite <- (Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2)) (-(1)) 1)
in H0; fold (IZR (Int_part r1) - IZR (Int_part r2) - 1) in H0;
rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H0;
rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H;
- cut (1 = IZR 1); auto with zarith real.
- intro; rewrite H1 in H; rewrite H1 in H0; clear H1;
+ auto with zarith real.
+ change (_ + -1) with (IZR (Int_part r1 - Int_part r2) - 1) in H;
rewrite (Z_R_minus (Int_part r1 - Int_part r2) 1) in H;
rewrite (Z_R_minus (Int_part r1 - Int_part r2) 1) in H0;
rewrite <- (plus_IZR (Int_part r1 - Int_part r2 - 1) 1) in H0;
@@ -442,9 +432,9 @@ Proof.
in H0; rewrite (Rplus_opp_r (IZR (Int_part r1) + IZR (Int_part r2))) in H0;
elim (Rplus_ne (r1 + r2)); intros a b; rewrite b in H0;
clear a b;
+ change 2 with (1 + 1) in H0;
rewrite <- (Rplus_assoc (IZR (Int_part r1) + IZR (Int_part r2)) 1 1) in H0;
- cut (1 = IZR 1); auto with zarith real.
- intro; rewrite H1 in H0; rewrite H1 in H; clear H1;
+ auto with zarith real.
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H;
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H0;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H;
@@ -509,7 +499,6 @@ Proof.
intros a b; rewrite a in H0; clear a b; elim (Rplus_ne (r1 + r2));
intros a b; rewrite b in H0; clear a b; cut (1 = IZR 1);
auto with zarith real.
- intro; rewrite H in H1; clear H;
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H0;
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H1;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H1;
@@ -536,7 +525,7 @@ Proof.
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2)));
unfold Rminus;
rewrite
- (Rplus_assoc (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))) (-1))
+ (Rplus_assoc (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))) (-(1)))
; rewrite <- (Ropp_plus_distr (IZR (Int_part r1) + IZR (Int_part r2)) 1);
trivial with zarith real.
Qed.
diff --git a/theories/Reals/R_sqr.v b/theories/Reals/R_sqr.v
index 445ffcb21b..a8937e36fd 100644
--- a/theories/Reals/R_sqr.v
+++ b/theories/Reals/R_sqr.v
@@ -296,56 +296,9 @@ Lemma canonical_Rsqr :
a * Rsqr (x + b / (2 * a)) + (4 * a * c - Rsqr b) / (4 * a).
Proof.
intros.
- rewrite Rsqr_plus.
- repeat rewrite Rmult_plus_distr_l.
- repeat rewrite Rplus_assoc.
- apply Rplus_eq_compat_l.
- unfold Rdiv, Rminus.
- replace (2 * 1 + 2 * 1) with 4; [ idtac | ring ].
- rewrite (Rmult_plus_distr_r (4 * a * c) (- Rsqr b) (/ (4 * a))).
- rewrite Rsqr_mult.
- repeat rewrite Rinv_mult_distr.
- repeat rewrite (Rmult_comm a).
- repeat rewrite Rmult_assoc.
- rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r.
- rewrite (Rmult_comm 2).
- repeat rewrite Rmult_assoc.
- rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r.
- rewrite (Rmult_comm (/ 2)).
- rewrite (Rmult_comm 2).
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r.
- rewrite (Rmult_comm a).
- repeat rewrite Rmult_assoc.
- rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r.
- rewrite (Rmult_comm 2).
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r.
- repeat rewrite Rplus_assoc.
- rewrite (Rplus_comm (Rsqr b * (Rsqr (/ a * / 2) * a))).
- repeat rewrite Rplus_assoc.
- rewrite (Rmult_comm x).
- apply Rplus_eq_compat_l.
- rewrite (Rmult_comm (/ a)).
- unfold Rsqr; repeat rewrite Rmult_assoc.
- rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r.
- ring.
- apply (cond_nonzero a).
- discrR.
- apply (cond_nonzero a).
- discrR.
- discrR.
- apply (cond_nonzero a).
- discrR.
- discrR.
- discrR.
- apply (cond_nonzero a).
- discrR.
- apply (cond_nonzero a).
+ unfold Rsqr.
+ field.
+ apply a.
Qed.
Lemma Rsqr_eq : forall x y:R, Rsqr x = Rsqr y -> x = y \/ x = - y.
diff --git a/theories/Reals/R_sqrt.v b/theories/Reals/R_sqrt.v
index a6b1a26e03..0c1e0b7e86 100644
--- a/theories/Reals/R_sqrt.v
+++ b/theories/Reals/R_sqrt.v
@@ -359,107 +359,22 @@ Lemma Rsqr_sol_eq_0_1 :
x = sol_x1 a b c \/ x = sol_x2 a b c -> a * Rsqr x + b * x + c = 0.
Proof.
intros; elim H0; intro.
- unfold sol_x1 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv;
- repeat rewrite Rsqr_mult; rewrite Rsqr_plus; rewrite <- Rsqr_neg;
- rewrite Rsqr_sqrt.
- rewrite Rsqr_inv.
- unfold Rsqr; repeat rewrite Rinv_mult_distr.
- repeat rewrite Rmult_assoc; rewrite (Rmult_comm a).
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; rewrite Rmult_plus_distr_r.
- repeat rewrite Rmult_assoc.
- pattern 2 at 2; rewrite (Rmult_comm 2).
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r.
- rewrite
- (Rmult_plus_distr_r (- b) (sqrt (b * b - 2 * (2 * (a * c)))) (/ 2 * / a))
- .
- rewrite Rmult_plus_distr_l; repeat rewrite Rplus_assoc.
- replace
- (- b * (sqrt (b * b - 2 * (2 * (a * c))) * (/ 2 * / a)) +
- (b * (- b * (/ 2 * / a)) +
- (b * (sqrt (b * b - 2 * (2 * (a * c))) * (/ 2 * / a)) + c))) with
- (b * (- b * (/ 2 * / a)) + c).
- unfold Rminus; repeat rewrite <- Rplus_assoc.
- replace (b * b + b * b) with (2 * (b * b)).
- rewrite Rmult_plus_distr_r; repeat rewrite Rmult_assoc.
- rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc.
- rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r.
- rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc;
- rewrite (Rmult_comm 2).
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; rewrite (Rmult_comm (/ 2)); repeat rewrite Rmult_assoc;
- rewrite (Rmult_comm 2).
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; repeat rewrite Rmult_assoc.
- rewrite (Rmult_comm a); rewrite Rmult_assoc.
- rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; rewrite <- Rmult_opp_opp.
- ring.
- apply (cond_nonzero a).
- discrR.
- discrR.
- discrR.
- ring.
- ring.
- discrR.
- apply (cond_nonzero a).
- discrR.
- apply (cond_nonzero a).
- apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
- apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
- apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
- assumption.
- unfold sol_x2 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv;
- repeat rewrite Rsqr_mult; rewrite Rsqr_minus; rewrite <- Rsqr_neg;
- rewrite Rsqr_sqrt.
- rewrite Rsqr_inv.
- unfold Rsqr; repeat rewrite Rinv_mult_distr;
- repeat rewrite Rmult_assoc.
- rewrite (Rmult_comm a); repeat rewrite Rmult_assoc.
- rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; unfold Rminus; rewrite Rmult_plus_distr_r.
- rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc;
- pattern 2 at 2; rewrite (Rmult_comm 2).
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r;
- rewrite
- (Rmult_plus_distr_r (- b) (- sqrt (b * b + - (2 * (2 * (a * c)))))
- (/ 2 * / a)).
- rewrite Rmult_plus_distr_l; repeat rewrite Rplus_assoc.
- rewrite Ropp_mult_distr_l_reverse; rewrite Ropp_involutive.
- replace
- (b * (sqrt (b * b + - (2 * (2 * (a * c)))) * (/ 2 * / a)) +
- (b * (- b * (/ 2 * / a)) +
- (b * (- sqrt (b * b + - (2 * (2 * (a * c)))) * (/ 2 * / a)) + c))) with
- (b * (- b * (/ 2 * / a)) + c).
- repeat rewrite <- Rplus_assoc; replace (b * b + b * b) with (2 * (b * b)).
- rewrite Rmult_plus_distr_r; repeat rewrite Rmult_assoc;
- rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc;
- rewrite <- Rinv_l_sym.
- rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc.
- rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; rewrite (Rmult_comm (/ 2)); repeat rewrite Rmult_assoc.
- rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; repeat rewrite Rmult_assoc; rewrite (Rmult_comm a);
- rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; rewrite <- Rmult_opp_opp; ring.
- apply (cond_nonzero a).
- discrR.
- discrR.
- discrR.
- ring.
- ring.
- discrR.
- apply (cond_nonzero a).
- discrR.
- discrR.
- apply (cond_nonzero a).
- apply prod_neq_R0; discrR || apply (cond_nonzero a).
- apply prod_neq_R0; discrR || apply (cond_nonzero a).
- apply prod_neq_R0; discrR || apply (cond_nonzero a).
- assumption.
+ rewrite H1.
+ unfold sol_x1, Delta, Rsqr.
+ field_simplify.
+ rewrite <- (Rsqr_pow2 (sqrt _)), Rsqr_sqrt.
+ field.
+ apply a.
+ apply H.
+ apply a.
+ rewrite H1.
+ unfold sol_x2, Delta, Rsqr.
+ field_simplify.
+ rewrite <- (Rsqr_pow2 (sqrt _)), Rsqr_sqrt.
+ field.
+ apply a.
+ apply H.
+ apply a.
Qed.
Lemma Rsqr_sol_eq_0_0 :
@@ -505,10 +420,10 @@ Proof.
rewrite (Rmult_comm (/ a)).
rewrite Rmult_assoc.
rewrite <- Rinv_mult_distr.
- replace (2 * (2 * a) * a) with (Rsqr (2 * a)).
+ replace (4 * a * a) with (Rsqr (2 * a)).
reflexivity.
ring_Rsqr.
- rewrite <- Rmult_assoc; apply prod_neq_R0;
+ apply prod_neq_R0;
[ discrR | apply (cond_nonzero a) ].
apply (cond_nonzero a).
assumption.
diff --git a/theories/Reals/Ranalysis2.v b/theories/Reals/Ranalysis2.v
index 0254218c44..27cb356a09 100644
--- a/theories/Reals/Ranalysis2.v
+++ b/theories/Reals/Ranalysis2.v
@@ -88,17 +88,11 @@ Proof.
right; unfold Rdiv.
repeat rewrite Rabs_mult.
rewrite Rabs_Rinv; discrR.
- replace (Rabs 8) with 8.
- replace 8 with 8; [ idtac | ring ].
- rewrite Rinv_mult_distr; [ idtac | discrR | discrR ].
- replace (2 * / Rabs (f2 x) * (Rabs eps * Rabs (f2 x) * (/ 2 * / 4))) with
- (Rabs eps * / 4 * (2 * / 2) * (Rabs (f2 x) * / Rabs (f2 x)));
- [ idtac | ring ].
- replace (Rabs eps) with eps.
- repeat rewrite <- Rinv_r_sym; try discrR || (apply Rabs_no_R0; assumption).
- ring.
- symmetry ; apply Rabs_right; left; assumption.
- symmetry ; apply Rabs_right; left; prove_sup.
+ rewrite (Rabs_pos_eq 8) by now apply IZR_le.
+ rewrite (Rabs_pos_eq eps).
+ field.
+ now apply Rabs_no_R0.
+ now apply Rlt_le.
Qed.
Lemma maj_term2 :
diff --git a/theories/Reals/Ranalysis3.v b/theories/Reals/Ranalysis3.v
index 4e88714d61..d4597aebaf 100644
--- a/theories/Reals/Ranalysis3.v
+++ b/theories/Reals/Ranalysis3.v
@@ -201,8 +201,8 @@ Proof.
apply Rabs_pos_lt.
unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc.
repeat apply prod_neq_R0; try assumption.
- red; intro; rewrite H15 in H6; elim (Rlt_irrefl _ H6).
- apply Rinv_neq_0_compat; repeat apply prod_neq_R0; discrR || assumption.
+ now apply Rgt_not_eq.
+ apply Rinv_neq_0_compat; apply prod_neq_R0; [discrR | assumption].
apply H13.
split.
apply D_x_no_cond; assumption.
@@ -213,8 +213,7 @@ Proof.
red; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6).
assumption.
assumption.
- apply Rinv_neq_0_compat; repeat apply prod_neq_R0;
- [ discrR | discrR | discrR | assumption ].
+ apply Rinv_neq_0_compat; apply prod_neq_R0; [discrR | assumption].
(***********************************)
(* Third case *)
(* (f1 x)<>0 l1=0 l2=0 *)
@@ -224,11 +223,11 @@ Proof.
elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x))));
[ idtac
| apply Rabs_pos_lt; unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc;
- repeat apply prod_neq_R0;
+ repeat apply prod_neq_R0 ;
[ assumption
| assumption
- | red; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6)
- | apply Rinv_neq_0_compat; repeat apply prod_neq_R0; discrR || assumption ] ].
+ | now apply Rgt_not_eq
+ | apply Rinv_neq_0_compat; apply prod_neq_R0; discrR || assumption ] ].
intros alp_f2d H12.
cut (0 < Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)).
intro.
@@ -295,8 +294,10 @@ Proof.
elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x))));
[ idtac
| apply Rabs_pos_lt; unfold Rsqr, Rdiv;
- repeat rewrite Rinv_mult_distr; repeat apply prod_neq_R0;
- try assumption || discrR ].
+ repeat apply prod_neq_R0 ;
+ [ assumption..
+ | now apply Rgt_not_eq
+ | apply Rinv_neq_0_compat; apply prod_neq_R0; discrR || assumption ] ].
intros alp_f2d H11.
assert (H12 := derivable_continuous_pt _ _ X).
unfold continuity_pt in H12.
@@ -380,15 +381,9 @@ Proof.
repeat apply prod_neq_R0; try assumption.
red; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6).
apply Rinv_neq_0_compat; discrR.
- apply Rinv_neq_0_compat; discrR.
- apply Rinv_neq_0_compat; discrR.
apply Rinv_neq_0_compat; assumption.
apply Rinv_neq_0_compat; assumption.
discrR.
- discrR.
- discrR.
- discrR.
- discrR.
apply prod_neq_R0; [ discrR | assumption ].
elim H13; intros.
apply H19.
@@ -408,16 +403,9 @@ Proof.
repeat apply prod_neq_R0; try assumption.
red; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6).
apply Rinv_neq_0_compat; discrR.
- apply Rinv_neq_0_compat; discrR.
- apply Rinv_neq_0_compat; discrR.
apply Rinv_neq_0_compat; assumption.
apply Rinv_neq_0_compat; assumption.
apply prod_neq_R0; [ discrR | assumption ].
- red; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6).
- apply Rinv_neq_0_compat; discrR.
- apply Rinv_neq_0_compat; discrR.
- apply Rinv_neq_0_compat; discrR.
- apply Rinv_neq_0_compat; assumption.
(***********************************)
(* Fifth case *)
(* (f1 x)<>0 l1<>0 l2=0 *)
diff --git a/theories/Reals/Ranalysis4.v b/theories/Reals/Ranalysis4.v
index 661bc8c76b..23daedb8ba 100644
--- a/theories/Reals/Ranalysis4.v
+++ b/theories/Reals/Ranalysis4.v
@@ -130,15 +130,8 @@ Proof.
intro; exists (mkposreal (- x) H1); intros.
rewrite (Rabs_left x).
rewrite (Rabs_left (x + h)).
- rewrite Rplus_comm.
- rewrite Ropp_plus_distr.
- unfold Rminus; rewrite Ropp_involutive; rewrite Rplus_assoc;
- rewrite Rplus_opp_l.
- rewrite Rplus_0_r; unfold Rdiv.
- rewrite Ropp_mult_distr_l_reverse.
- rewrite <- Rinv_r_sym.
- rewrite Ropp_involutive; rewrite Rplus_opp_l; rewrite Rabs_R0; apply H0.
- apply H2.
+ replace ((-(x + h) - - x) / h - -1) with 0 by now field.
+ rewrite Rabs_R0; apply H0.
destruct (Rcase_abs h) as [Hlt|Hgt].
apply Ropp_lt_cancel.
rewrite Ropp_0; rewrite Ropp_plus_distr; apply Rplus_lt_0_compat.
diff --git a/theories/Reals/Ranalysis5.v b/theories/Reals/Ranalysis5.v
index d172139f56..f9da88aad4 100644
--- a/theories/Reals/Ranalysis5.v
+++ b/theories/Reals/Ranalysis5.v
@@ -249,8 +249,10 @@ assert (Sublemma : forall x y lb ub, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x+
split.
replace lb with ((lb + lb) * /2) by field.
unfold Rdiv ; apply Rmult_le_compat_r ; intuition.
+ now apply Rlt_le, Rinv_0_lt_compat, IZR_lt.
replace ub with ((ub + ub) * /2) by field.
unfold Rdiv ; apply Rmult_le_compat_r ; intuition.
+ now apply Rlt_le, Rinv_0_lt_compat, IZR_lt.
intros x y P N x_lt_y.
induction N.
simpl ; intuition.
@@ -1030,6 +1032,7 @@ intros x ub lb lb_lt_x x_lt_ub.
assert (T : 0 < ub - lb).
fourier.
unfold Rdiv ; apply Rlt_mult_inv_pos ; intuition.
+now apply IZR_lt.
Qed.
Definition mkposreal_lb_ub (x lb ub:R) (lb_lt_x:lb<x) (x_lt_ub:x<ub) : posreal.
@@ -1102,7 +1105,7 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn
rewrite <- Rmult_1_r ; replace 1 with (derive_pt id c (pr2 c P)) by reg.
replace (- (fn N (x + h) - fn N x)) with (fn N x - fn N (x + h)) by field.
assumption.
- solve[apply Rlt_not_eq ; intuition].
+ now apply Rlt_not_eq, IZR_lt.
rewrite <- Hc'; clear Hc Hc'.
replace (derive_pt (fn N) c (pr1 c P)) with (fn' N c).
replace (h * fn' N c - h * g x) with (h * (fn' N c - g x)) by field.
diff --git a/theories/Reals/Ratan.v b/theories/Reals/Ratan.v
index e13ef1f2ca..e438750df0 100644
--- a/theories/Reals/Ratan.v
+++ b/theories/Reals/Ratan.v
@@ -132,7 +132,7 @@ intros [ | N] Npos n decr to0 cv nN.
unfold Rminus; apply Rplus_le_compat_l, Ropp_le_contravar.
solve[apply Rge_le, (growing_prop _ _ _ (CV_ALT_step0 f decr) dist)].
unfold Rminus; rewrite tech5, Ropp_plus_distr, <- Rplus_assoc.
- unfold tg_alt at 2; rewrite pow_1_odd, Ropp_mult_distr_l_reverse; fourier.
+ unfold tg_alt at 2; rewrite pow_1_odd; fourier.
rewrite Nodd; destruct (alternated_series_ineq _ _ p decr to0 cv) as [B _].
destruct (alternated_series_ineq _ _ (S p) decr to0 cv) as [_ C].
assert (keep : (2 * S p = S (S ( 2 * p)))%nat) by ring.
@@ -161,7 +161,6 @@ clear WLOG; intros Hyp [ | n] decr to0 cv _.
generalize (alternated_series_ineq f l 0 decr to0 cv).
unfold R_dist, tg_alt; simpl; rewrite !Rmult_1_l, !Rmult_1_r.
assert (f 1%nat <= f 0%nat) by apply decr.
- rewrite Ropp_mult_distr_l_reverse.
intros [A B]; rewrite Rabs_pos_eq; fourier.
apply Rle_trans with (f 1%nat).
apply (Hyp 1%nat (le_n 1) (S n) decr to0 cv).
@@ -320,31 +319,12 @@ apply PI2_lower_bound;[split; fourier | ].
destruct (pre_cos_bound (3/2) 1) as [t _]; [fourier | fourier | ].
apply Rlt_le_trans with (2 := t); clear t.
unfold cos_approx; simpl; unfold cos_term.
-simpl mult; replace ((-1)^ 0) with 1 by ring; replace ((-1)^2) with 1 by ring;
- replace ((-1)^4) with 1 by ring; replace ((-1)^1) with (-1) by ring;
- replace ((-1)^3) with (-1) by ring; replace 3 with (IZR 3) by (simpl; ring);
- replace 2 with (IZR 2) by (simpl; ring); simpl Z.of_nat;
- rewrite !INR_IZR_INZ, Ropp_mult_distr_l_reverse, Rmult_1_l.
-match goal with |- _ < ?a =>
-replace a with ((- IZR 3 ^ 6 * IZR (Z.of_nat (fact 0)) * IZR (Z.of_nat (fact 2)) *
- IZR (Z.of_nat (fact 4)) +
- IZR 3 ^ 4 * IZR 2 ^ 2 * IZR (Z.of_nat (fact 0)) * IZR (Z.of_nat (fact 2)) *
- IZR (Z.of_nat (fact 6)) -
- IZR 3 ^ 2 * IZR 2 ^ 4 * IZR (Z.of_nat (fact 0)) * IZR (Z.of_nat (fact 4)) *
- IZR (Z.of_nat (fact 6)) +
- IZR 2 ^ 6 * IZR (Z.of_nat (fact 2)) * IZR (Z.of_nat (fact 4)) *
- IZR (Z.of_nat (fact 6))) /
- (IZR 2 ^ 6 * IZR (Z.of_nat (fact 0)) * IZR (Z.of_nat (fact 2)) *
- IZR (Z.of_nat (fact 4)) * IZR (Z.of_nat (fact 6))));[ | field;
- repeat apply conj;((rewrite <- INR_IZR_INZ; apply INR_fact_neq_0) ||
- (apply Rgt_not_eq; apply (IZR_lt 0); reflexivity)) ]
-end.
-rewrite !fact_simpl, !Nat2Z.inj_mul; simpl Z.of_nat.
-unfold Rdiv; apply Rmult_lt_0_compat.
-unfold Rminus; rewrite !pow_IZR, <- !opp_IZR, <- !mult_IZR, <- !opp_IZR,
- <- !plus_IZR; apply (IZR_lt 0); reflexivity.
-apply Rinv_0_lt_compat; rewrite !pow_IZR, <- !mult_IZR; apply (IZR_lt 0).
-reflexivity.
+rewrite !INR_IZR_INZ.
+simpl.
+field_simplify.
+unfold Rdiv.
+rewrite Rmult_0_l.
+apply Rdiv_lt_0_compat ; now apply IZR_lt.
Qed.
Lemma PI2_1 : 1 < PI/2.
@@ -502,11 +482,11 @@ split.
rewrite (Rmult_comm (-1)); simpl ((/(Rabs y + 1)) ^ 0).
unfold Rdiv; rewrite Rinv_1, !Rmult_assoc, <- !Rmult_plus_distr_l.
apply tmp;[assumption | ].
- rewrite Rplus_assoc, Rmult_1_l; pattern 1 at 3; rewrite <- Rplus_0_r.
+ rewrite Rplus_assoc, Rmult_1_l; pattern 1 at 2; rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l.
rewrite <- Rmult_assoc.
match goal with |- (?a * (-1)) + _ < 0 =>
- rewrite <- (Rplus_opp_l a), Ropp_mult_distr_r_reverse, Rmult_1_r
+ rewrite <- (Rplus_opp_l a); change (-1) with (-(1)); rewrite Ropp_mult_distr_r_reverse, Rmult_1_r
end.
apply Rplus_lt_compat_l.
assert (0 < u ^ 2) by (apply pow_lt; assumption).
@@ -853,6 +833,8 @@ intros x Hx eps Heps.
apply Rlt_trans with (2 := H).
apply Rinv_0_lt_compat.
exact Heps.
+ unfold N.
+ rewrite INR_IZR_INZ, positive_nat_Z.
exact HN.
apply lt_INR.
omega.
@@ -1076,8 +1058,9 @@ apply Rlt_not_eq; apply Rle_lt_trans with 0;[ | apply Rlt_0_1].
assert (t := pow2_ge_0 x); fourier.
replace (1 + x ^ 2) with (1 - - (x ^ 2)) by ring; rewrite <- (tech3 _ n dif).
apply sum_eq; unfold tg_alt, Datan_seq; intros i _.
-rewrite pow_mult, <- Rpow_mult_distr, Ropp_mult_distr_l_reverse, Rmult_1_l.
-reflexivity.
+rewrite pow_mult, <- Rpow_mult_distr.
+f_equal.
+ring.
Qed.
Lemma Datan_seq_increasing : forall x y n, (n > 0)%nat -> 0 <= x < y -> Datan_seq x n < Datan_seq y n.
@@ -1165,6 +1148,7 @@ assert (tool : forall a b, a / b - /b = (-1 + a) /b).
reflexivity.
set (u := 1 + x ^ 2); rewrite tool; unfold Rminus; rewrite <- Rplus_assoc.
unfold Rdiv, u.
+change (-1) with (-(1)).
rewrite Rplus_opp_l, Rplus_0_l, Ropp_mult_distr_l_reverse, Rabs_Ropp.
rewrite Rabs_mult; clear tool u.
assert (tool : forall k, Rabs ((-x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)).
diff --git a/theories/Reals/Raxioms.v b/theories/Reals/Raxioms.v
index 9fbda92a2f..7f9db3b18f 100644
--- a/theories/Reals/Raxioms.v
+++ b/theories/Reals/Raxioms.v
@@ -115,19 +115,6 @@ Arguments INR n%nat.
(**********************************************************)
-(** * Injection from [Z] to [R] *)
-(**********************************************************)
-
-(**********)
-Definition IZR (z:Z) : R :=
- match z with
- | Z0 => 0
- | Zpos n => INR (Pos.to_nat n)
- | Zneg n => - INR (Pos.to_nat n)
- end.
-Arguments IZR z%Z.
-
-(**********************************************************)
(** * [R] Archimedean *)
(**********************************************************)
diff --git a/theories/Reals/Rbasic_fun.v b/theories/Reals/Rbasic_fun.v
index c889d73473..df16624976 100644
--- a/theories/Reals/Rbasic_fun.v
+++ b/theories/Reals/Rbasic_fun.v
@@ -451,20 +451,16 @@ Qed.
Lemma Rabs_Ropp : forall x:R, Rabs (- x) = Rabs x.
Proof.
- intro; cut (- x = -1 * x).
- intros; rewrite H.
+ intro; replace (-x) with (-1 * x) by ring.
rewrite Rabs_mult.
- cut (Rabs (-1) = 1).
- intros; rewrite H0.
- ring.
+ replace (Rabs (-1)) with 1.
+ apply Rmult_1_l.
unfold Rabs; case (Rcase_abs (-1)).
intro; ring.
- intro H0; generalize (Rge_le (-1) 0 H0); intros.
- generalize (Ropp_le_ge_contravar 0 (-1) H1).
- rewrite Ropp_involutive; rewrite Ropp_0.
- intro; generalize (Rgt_not_le 1 0 Rlt_0_1); intro; generalize (Rge_le 0 1 H2);
- intro; exfalso; auto.
- ring.
+ rewrite <- Ropp_0.
+ intro H0; apply Ropp_ge_cancel in H0.
+ elim (Rge_not_lt _ _ H0).
+ apply Rlt_0_1.
Qed.
(*********)
@@ -613,11 +609,12 @@ Qed.
Lemma Rabs_Zabs : forall z:Z, Rabs (IZR z) = IZR (Z.abs z).
Proof.
- intros z; case z; simpl; auto with real.
- apply Rabs_right; auto with real.
- intros p0; apply Rabs_right; auto with real zarith.
+ intros z; case z; unfold Zabs.
+ apply Rabs_R0.
+ now intros p0; apply Rabs_pos_eq, (IZR_le 0).
+ unfold IZR at 1.
intros p0; rewrite Rabs_Ropp.
- apply Rabs_right; auto with real zarith.
+ now apply Rabs_pos_eq, (IZR_le 0).
Qed.
Lemma abs_IZR : forall z, IZR (Z.abs z) = Rabs (IZR z).
diff --git a/theories/Reals/Rdefinitions.v b/theories/Reals/Rdefinitions.v
index f3f8f74098..cb5dea93ad 100644
--- a/theories/Reals/Rdefinitions.v
+++ b/theories/Reals/Rdefinitions.v
@@ -69,3 +69,32 @@ Notation "x <= y <= z" := (x <= y /\ y <= z) : R_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : R_scope.
Notation "x < y < z" := (x < y /\ y < z) : R_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : R_scope.
+
+(**********************************************************)
+(** * Injection from [Z] to [R] *)
+(**********************************************************)
+
+(* compact representation for 2*p *)
+Fixpoint IPR_2 (p:positive) : R :=
+ match p with
+ | xH => R1 + R1
+ | xO p => (R1 + R1) * IPR_2 p
+ | xI p => (R1 + R1) * (R1 + IPR_2 p)
+ end.
+
+Definition IPR (p:positive) : R :=
+ match p with
+ | xH => R1
+ | xO p => IPR_2 p
+ | xI p => R1 + IPR_2 p
+ end.
+Arguments IPR p%positive : simpl never.
+
+(**********)
+Definition IZR (z:Z) : R :=
+ match z with
+ | Z0 => R0
+ | Zpos n => IPR n
+ | Zneg n => - IPR n
+ end.
+Arguments IZR z%Z : simpl never.
diff --git a/theories/Reals/Rderiv.v b/theories/Reals/Rderiv.v
index bd330ac9b9..5fb6bd2b71 100644
--- a/theories/Reals/Rderiv.v
+++ b/theories/Reals/Rderiv.v
@@ -296,14 +296,10 @@ Proof.
intros; generalize (H0 eps H1); clear H0; intro; elim H0;
clear H0; intros; elim H0; clear H0; simpl;
intros; split with x; split; auto.
- intros; generalize (H2 x1 H3); clear H2; intro;
- rewrite Ropp_mult_distr_l_reverse in H2;
- rewrite Ropp_mult_distr_l_reverse in H2;
- rewrite Ropp_mult_distr_l_reverse in H2;
- rewrite (let (H1, H2) := Rmult_ne (f x1) in H2) in H2;
- rewrite (let (H1, H2) := Rmult_ne (f x0) in H2) in H2;
- rewrite (let (H1, H2) := Rmult_ne (df x0) in H2) in H2;
- assumption.
+ intros; generalize (H2 x1 H3); clear H2; intro.
+ replace (- f x1 - - f x0) with (-1 * f x1 - -1 * f x0) by ring.
+ replace (- df x0) with (-1 * df x0) by ring.
+ exact H2.
Qed.
(*********)
diff --git a/theories/Reals/Rfunctions.v b/theories/Reals/Rfunctions.v
index 0a49d49831..99acdd0a1c 100644
--- a/theories/Reals/Rfunctions.v
+++ b/theories/Reals/Rfunctions.v
@@ -416,8 +416,9 @@ Proof.
simpl; apply Rabs_R1.
replace (S n) with (n + 1)%nat; [ rewrite pow_add | ring ].
rewrite Rabs_mult.
- rewrite Hrecn; rewrite Rmult_1_l; simpl; rewrite Rmult_1_r;
- rewrite Rabs_Ropp; apply Rabs_R1.
+ rewrite Hrecn; rewrite Rmult_1_l; simpl; rewrite Rmult_1_r.
+ change (-1) with (-(1)).
+ rewrite Rabs_Ropp; apply Rabs_R1.
Qed.
Lemma pow_mult : forall (x:R) (n1 n2:nat), x ^ (n1 * n2) = (x ^ n1) ^ n2.
diff --git a/theories/Reals/Rlimit.v b/theories/Reals/Rlimit.v
index e424a732ac..f071407521 100644
--- a/theories/Reals/Rlimit.v
+++ b/theories/Reals/Rlimit.v
@@ -407,8 +407,7 @@ Proof.
generalize
(Rplus_lt_compat (R_dist (f x2) l) eps (R_dist (f x2) l') eps H H0);
unfold R_dist; intros; rewrite (Rabs_minus_sym (f x2) l) in H1;
- rewrite (Rmult_comm 2 eps); rewrite (Rmult_plus_distr_l eps 1 1);
- elim (Rmult_ne eps); intros a b; rewrite a; clear a b;
+ rewrite (Rmult_comm 2 eps); replace (eps *2) with (eps + eps) by ring;
generalize (R_dist_tri l l' (f x2)); unfold R_dist;
intros;
apply
diff --git a/theories/Reals/Rpow_def.v b/theories/Reals/Rpow_def.v
index 791718a450..f331bb2039 100644
--- a/theories/Reals/Rpow_def.v
+++ b/theories/Reals/Rpow_def.v
@@ -10,6 +10,6 @@ Require Import Rdefinitions.
Fixpoint pow (r:R) (n:nat) : R :=
match n with
- | O => R1
+ | O => 1
| S n => Rmult r (pow r n)
end.
diff --git a/theories/Reals/Rpower.v b/theories/Reals/Rpower.v
index b3ce6fa338..f62ed2a6c1 100644
--- a/theories/Reals/Rpower.v
+++ b/theories/Reals/Rpower.v
@@ -55,25 +55,8 @@ Proof.
simpl in H0.
replace (/ 3) with
(1 * / 1 + -1 * 1 * / 1 + -1 * (-1 * 1) * / 2 +
- -1 * (-1 * (-1 * 1)) * / (2 + 1 + 1 + 1 + 1)).
+ -1 * (-1 * (-1 * 1)) * / (2 + 1 + 1 + 1 + 1)) by field.
apply H0.
- repeat rewrite Rinv_1; repeat rewrite Rmult_1_r;
- rewrite Ropp_mult_distr_l_reverse; rewrite Rmult_1_l;
- rewrite Ropp_involutive; rewrite Rplus_opp_r; rewrite Rmult_1_r;
- rewrite Rplus_0_l; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 6.
- rewrite Rmult_plus_distr_l; replace (2 + 1 + 1 + 1 + 1) with 6.
- rewrite <- (Rmult_comm (/ 6)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
- rewrite Rmult_1_l; replace 6 with 6.
- do 2 rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
- rewrite Rmult_1_r; rewrite (Rmult_comm 3); rewrite <- Rmult_assoc;
- rewrite <- Rinv_r_sym.
- ring.
- discrR.
- discrR.
- ring.
- discrR.
- ring.
- discrR.
apply H.
unfold Un_decreasing; intros;
apply Rmult_le_reg_l with (INR (fact n)).
@@ -505,12 +488,9 @@ Proof.
rewrite Rinv_r.
apply exp_lt_inv.
apply Rle_lt_trans with (1 := exp_le_3).
- change (3 < 2 ^R 2).
+ change (3 < 2 ^R (1 + 1)).
repeat rewrite Rpower_plus; repeat rewrite Rpower_1.
- repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l;
- repeat rewrite Rmult_1_l.
- pattern 3 at 1; rewrite <- Rplus_0_r; replace (2 + 2) with (3 + 1);
- [ apply Rplus_lt_compat_l; apply Rlt_0_1 | ring ].
+ now apply (IZR_lt 3 4).
prove_sup0.
discrR.
Qed.
@@ -732,7 +712,7 @@ Definition arcsinh x := ln (x + sqrt (x ^ 2 + 1)).
Lemma arcsinh_sinh : forall x, arcsinh (sinh x) = x.
intros x; unfold sinh, arcsinh.
assert (Rminus_eq_0 : forall r, r - r = 0) by (intros; ring).
-pattern 1 at 5; rewrite <- exp_0, <- (Rminus_eq_0 x); unfold Rminus.
+rewrite <- exp_0, <- (Rminus_eq_0 x); unfold Rminus.
rewrite exp_plus.
match goal with |- context[sqrt ?a] =>
replace a with (((exp x + exp(-x))/2)^2) by field
diff --git a/theories/Reals/Rseries.v b/theories/Reals/Rseries.v
index 744fd66416..c6b0c3f37a 100644
--- a/theories/Reals/Rseries.v
+++ b/theories/Reals/Rseries.v
@@ -207,7 +207,7 @@ Section sequence.
assert (Rabs (/2) < 1).
rewrite Rabs_pos_eq.
- rewrite <- Rinv_1 at 3.
+ rewrite <- Rinv_1.
apply Rinv_lt_contravar.
rewrite Rmult_1_l.
now apply (IZR_lt 0 2).
diff --git a/theories/Reals/Rtrigo1.v b/theories/Reals/Rtrigo1.v
index 4d24186396..17b9677eff 100644
--- a/theories/Reals/Rtrigo1.v
+++ b/theories/Reals/Rtrigo1.v
@@ -182,13 +182,10 @@ destruct (pre_cos_bound _ 0 lo up) as [_ upper].
apply Rle_lt_trans with (1 := upper).
apply Rlt_le_trans with (2 := lower).
unfold cos_approx, sin_approx.
-simpl sum_f_R0; replace 7 with (IZR 7) by (simpl; field).
-replace 8 with (IZR 8) by (simpl; field).
+simpl sum_f_R0.
unfold cos_term, sin_term; simpl fact; rewrite !INR_IZR_INZ.
-simpl plus; simpl mult.
-field_simplify;
- try (repeat apply conj; apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity).
-unfold Rminus; rewrite !pow_IZR, <- !mult_IZR, <- !opp_IZR, <- ?plus_IZR.
+simpl plus; simpl mult; simpl Z_of_nat.
+field_simplify.
match goal with
|- IZR ?a / ?b < ?c / ?d =>
apply Rmult_lt_reg_r with d;[apply (IZR_lt 0); reflexivity |
@@ -198,7 +195,7 @@ match goal with
end.
unfold Rdiv; rewrite !Rmult_assoc, Rinv_l, Rmult_1_r;
[ | apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity].
-repeat (rewrite <- !plus_IZR || rewrite <- !mult_IZR).
+rewrite <- !mult_IZR.
apply IZR_lt; reflexivity.
Qed.
@@ -323,6 +320,7 @@ Lemma sin_PI : sin PI = 0.
Proof.
assert (H := sin2_cos2 PI).
rewrite cos_PI in H.
+ change (-1) with (-(1)) in H.
rewrite <- Rsqr_neg in H.
rewrite Rsqr_1 in H.
cut (Rsqr (sin PI) = 0).
@@ -533,9 +531,8 @@ Qed.
Lemma sin_PI_x : forall x:R, sin (PI - x) = sin x.
Proof.
- intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI; rewrite Rmult_0_l;
- unfold Rminus in |- *; rewrite Rplus_0_l; rewrite Ropp_mult_distr_l_reverse;
- rewrite Ropp_involutive; apply Rmult_1_l.
+ intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI.
+ ring.
Qed.
Lemma sin_period : forall (x:R) (k:nat), sin (x + 2 * INR k * PI) = sin x.
@@ -593,9 +590,9 @@ Proof.
generalize
(Rsqr_incrst_1 1 (sin x) H (Rlt_le 0 1 Rlt_0_1)
(Rlt_le 0 (sin x) (Rlt_trans 0 1 (sin x) Rlt_0_1 H)));
- rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0;
+ rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0.
generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
- repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l;
+ repeat rewrite <- Rplus_assoc; change (-1) with (-(1)); rewrite Rplus_opp_l;
rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
@@ -603,6 +600,7 @@ Proof.
auto with real.
cut (sin x < -1).
intro; generalize (Ropp_lt_gt_contravar (sin x) (-1) H);
+ change (-1) with (-(1));
rewrite Ropp_involutive; clear H; intro;
generalize
(Rsqr_incrst_1 1 (- sin x) H (Rlt_le 0 1 Rlt_0_1)
@@ -610,7 +608,7 @@ Proof.
rewrite Rsqr_1; intro; rewrite <- Rsqr_neg in H0;
rewrite sin2 in H0; unfold Rminus in H0;
generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0);
- repeat rewrite <- Rplus_assoc; repeat rewrite Rplus_opp_l;
+ rewrite <- Rplus_assoc; change (-1) with (-(1)); rewrite Rplus_opp_l;
rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1;
generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1);
repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x));
@@ -712,17 +710,16 @@ Proof.
do 2 rewrite fact_simpl; do 2 rewrite mult_INR.
repeat rewrite <- Rmult_assoc.
rewrite <- (Rmult_comm (INR (fact (2 * n + 1)))).
- rewrite Rmult_assoc.
apply Rmult_lt_compat_l.
apply lt_INR_0; apply neq_O_lt.
assert (H2 := fact_neq_0 (2 * n + 1)).
red in |- *; intro; elim H2; symmetry in |- *; assumption.
do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; set (x := INR n);
unfold INR in |- *.
- replace ((2 * x + 1 + 1 + 1) * (2 * x + 1 + 1)) with (4 * x * x + 10 * x + 6);
+ replace (((1 + 1) * x + 1 + 1 + 1) * ((1 + 1) * x + 1 + 1)) with (4 * x * x + 10 * x + 6);
[ idtac | ring ].
- apply Rplus_lt_reg_l with (-4); rewrite Rplus_opp_l;
- replace (-4 + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2);
+ apply Rplus_lt_reg_l with (-(4)); rewrite Rplus_opp_l;
+ replace (-(4) + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2);
[ idtac | ring ].
apply Rplus_le_lt_0_compat.
cut (0 <= x).
@@ -767,7 +764,7 @@ Proof.
unfold Rdiv in |- *; pattern PI at 2 in |- *; rewrite <- Rmult_1_r.
apply Rmult_lt_compat_l.
apply PI_RGT_0.
- pattern 1 at 3 in |- *; rewrite <- Rinv_1; apply Rinv_lt_contravar.
+ rewrite <- Rinv_1; apply Rinv_lt_contravar.
rewrite Rmult_1_l; prove_sup0.
pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
apply Rlt_0_1.
@@ -1260,44 +1257,22 @@ Proof.
intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y);
rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1);
unfold INR in |- *;
- replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))).
- replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))).
+ replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))) by field.
+ replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))) by field.
repeat rewrite cos_shift; intro H5;
generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1);
generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2);
generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3);
generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4).
- replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)).
- replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)).
- replace (-3 * (PI / 2) + 2 * PI) with (PI / 2).
- replace (-3 * (PI / 2) + PI) with (- (PI / 2)).
+ replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring.
+ replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring.
+ replace (-3 * (PI / 2) + 2 * PI) with (PI / 2) by field.
+ replace (-3 * (PI / 2) + PI) with (- (PI / 2)) by field.
clear H1 H2 H3 H4; intros H1 H2 H3 H4;
apply Rplus_lt_reg_l with (-3 * (PI / 2));
- replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)).
- replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)).
+ replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring.
+ replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring.
apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5).
- unfold Rminus in |- *.
- rewrite Ropp_mult_distr_l_reverse.
- apply Rplus_comm.
- unfold Rminus in |- *.
- rewrite Ropp_mult_distr_l_reverse.
- apply Rplus_comm.
- pattern PI at 3 in |- *; rewrite double_var.
- ring.
- rewrite double; pattern PI at 3 4 in |- *; rewrite double_var.
- ring.
- unfold Rminus in |- *.
- rewrite Ropp_mult_distr_l_reverse.
- apply Rplus_comm.
- unfold Rminus in |- *.
- rewrite Ropp_mult_distr_l_reverse.
- apply Rplus_comm.
- rewrite Rmult_1_r.
- rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
- ring.
- rewrite Rmult_1_r.
- rewrite (double PI); pattern PI at 3 4 in |- *; rewrite double_var.
- ring.
Qed.
Lemma cos_increasing_1 :
@@ -1737,7 +1712,7 @@ Proof.
rewrite H5.
rewrite mult_INR.
simpl in |- *.
- rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
+ rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
rewrite sin_period.
apply sin_0.
rewrite H5.
@@ -1747,7 +1722,7 @@ Proof.
rewrite Rmult_1_l; rewrite sin_plus.
rewrite sin_PI.
rewrite Rmult_0_r.
- rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
+ rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
rewrite sin_period.
rewrite sin_0; ring.
apply le_IZR.
@@ -1769,7 +1744,7 @@ Proof.
rewrite H5.
rewrite mult_INR.
simpl in |- *.
- rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
+ rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
rewrite sin_period.
rewrite sin_0; ring.
rewrite H5.
@@ -1779,7 +1754,7 @@ Proof.
rewrite Rmult_1_l; rewrite sin_plus.
rewrite sin_PI.
rewrite Rmult_0_r.
- rewrite <- (Rplus_0_l (2 * INR x2 * PI)).
+ rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)).
rewrite sin_period.
rewrite sin_0; ring.
apply le_IZR.
@@ -1858,7 +1833,7 @@ Proof.
- right; left; auto.
- left.
clear Hi. subst.
- replace 0 with (IZR 0 * PI) by (simpl; ring). f_equal. f_equal.
+ replace 0 with (IZR 0 * PI) by apply Rmult_0_l. f_equal. f_equal.
apply one_IZR_lt1.
split.
+ apply Rlt_le_trans with 0;
diff --git a/theories/Reals/Rtrigo_alt.v b/theories/Reals/Rtrigo_alt.v
index a5092d22dc..092bc30d07 100644
--- a/theories/Reals/Rtrigo_alt.v
+++ b/theories/Reals/Rtrigo_alt.v
@@ -320,7 +320,7 @@ Proof.
(1 - sum_f_R0 (fun i:nat => cos_n i * Rsqr a0 ^ i) (S n1)).
unfold Rminus; rewrite Ropp_plus_distr; rewrite Ropp_involutive;
repeat rewrite Rplus_assoc; rewrite (Rplus_comm 1);
- rewrite (Rplus_comm (-1)); repeat rewrite Rplus_assoc;
+ rewrite (Rplus_comm (-(1))); repeat rewrite Rplus_assoc;
rewrite Rplus_opp_l; rewrite Rplus_0_r; rewrite <- Rabs_Ropp;
rewrite Ropp_plus_distr; rewrite Ropp_involutive;
unfold Rminus in H6; apply H6.
@@ -367,10 +367,10 @@ Proof.
reflexivity.
ring.
intro; elim H2; intros; split.
- apply Rplus_le_reg_l with (-1).
+ apply Rplus_le_reg_l with (-(1)).
rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
rewrite (Rplus_comm (-1)); apply H3.
- apply Rplus_le_reg_l with (-1).
+ apply Rplus_le_reg_l with (-(1)).
rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
rewrite (Rplus_comm (-1)); apply H4.
unfold cos_term; simpl; unfold Rdiv; rewrite Rinv_1;
diff --git a/theories/Reals/Rtrigo_calc.v b/theories/Reals/Rtrigo_calc.v
index 9ba14ee734..53056cabdf 100644
--- a/theories/Reals/Rtrigo_calc.v
+++ b/theories/Reals/Rtrigo_calc.v
@@ -32,48 +32,22 @@ Proof.
Qed.
Lemma sin_cos_PI4 : sin (PI / 4) = cos (PI / 4).
-Proof with trivial.
- rewrite cos_sin...
- replace (PI / 2 + PI / 4) with (- (PI / 4) + PI)...
- rewrite neg_sin; rewrite sin_neg; ring...
- cut (PI = PI / 2 + PI / 2); [ intro | apply double_var ]...
- pattern PI at 2 3; rewrite H; pattern PI at 2 3; rewrite H...
- assert (H0 : 2 <> 0);
- [ discrR | unfold Rdiv; rewrite Rinv_mult_distr; try ring ]...
+Proof.
+ rewrite cos_sin.
+ replace (PI / 2 + PI / 4) with (- (PI / 4) + PI) by field.
+ rewrite neg_sin, sin_neg; ring.
Qed.
Lemma sin_PI3_cos_PI6 : sin (PI / 3) = cos (PI / 6).
-Proof with trivial.
- replace (PI / 6) with (PI / 2 - PI / 3)...
- rewrite cos_shift...
- assert (H0 : 6 <> 0); [ discrR | idtac ]...
- assert (H1 : 3 <> 0); [ discrR | idtac ]...
- assert (H2 : 2 <> 0); [ discrR | idtac ]...
- apply Rmult_eq_reg_l with 6...
- rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)...
- unfold Rdiv; repeat rewrite Rmult_assoc...
- rewrite <- Rinv_l_sym...
- rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym...
- rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r;
- repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym...
- ring...
+Proof.
+ replace (PI / 6) with (PI / 2 - PI / 3) by field.
+ now rewrite cos_shift.
Qed.
Lemma sin_PI6_cos_PI3 : cos (PI / 3) = sin (PI / 6).
-Proof with trivial.
- replace (PI / 6) with (PI / 2 - PI / 3)...
- rewrite sin_shift...
- assert (H0 : 6 <> 0); [ discrR | idtac ]...
- assert (H1 : 3 <> 0); [ discrR | idtac ]...
- assert (H2 : 2 <> 0); [ discrR | idtac ]...
- apply Rmult_eq_reg_l with 6...
- rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)...
- unfold Rdiv; repeat rewrite Rmult_assoc...
- rewrite <- Rinv_l_sym...
- rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym...
- rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r;
- repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym...
- ring...
+Proof.
+ replace (PI / 6) with (PI / 2 - PI / 3) by field.
+ now rewrite sin_shift.
Qed.
Lemma PI6_RGT_0 : 0 < PI / 6.
@@ -90,29 +64,20 @@ Proof.
Qed.
Lemma sin_PI6 : sin (PI / 6) = 1 / 2.
-Proof with trivial.
- assert (H : 2 <> 0); [ discrR | idtac ]...
- apply Rmult_eq_reg_l with (2 * cos (PI / 6))...
+Proof.
+ apply Rmult_eq_reg_l with (2 * cos (PI / 6)).
replace (2 * cos (PI / 6) * sin (PI / 6)) with
- (2 * sin (PI / 6) * cos (PI / 6))...
- rewrite <- sin_2a; replace (2 * (PI / 6)) with (PI / 3)...
- rewrite sin_PI3_cos_PI6...
- unfold Rdiv; rewrite Rmult_1_l; rewrite Rmult_assoc;
- pattern 2 at 2; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
- rewrite <- Rinv_l_sym...
- rewrite Rmult_1_r...
- unfold Rdiv; rewrite Rinv_mult_distr...
- rewrite (Rmult_comm (/ 2)); rewrite (Rmult_comm 2);
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
- rewrite Rmult_1_r...
- discrR...
- ring...
- apply prod_neq_R0...
+ (2 * sin (PI / 6) * cos (PI / 6)) by ring.
+ rewrite <- sin_2a; replace (2 * (PI / 6)) with (PI / 3) by field.
+ rewrite sin_PI3_cos_PI6.
+ field.
+ apply prod_neq_R0.
+ discrR.
cut (0 < cos (PI / 6));
[ intro H1; auto with real
| apply cos_gt_0;
[ apply (Rlt_trans (- (PI / 2)) 0 (PI / 6) _PI2_RLT_0 PI6_RGT_0)
- | apply PI6_RLT_PI2 ] ]...
+ | apply PI6_RLT_PI2 ] ].
Qed.
Lemma sqrt2_neq_0 : sqrt 2 <> 0.
@@ -188,20 +153,13 @@ Proof with trivial.
apply Rinv_0_lt_compat; apply Rlt_sqrt2_0...
rewrite Rsqr_div...
rewrite Rsqr_1; rewrite Rsqr_sqrt...
- assert (H : 2 <> 0); [ discrR | idtac ]...
unfold Rsqr; pattern (cos (PI / 4)) at 1;
rewrite <- sin_cos_PI4;
replace (sin (PI / 4) * cos (PI / 4)) with
- (1 / 2 * (2 * sin (PI / 4) * cos (PI / 4)))...
- rewrite <- sin_2a; replace (2 * (PI / 4)) with (PI / 2)...
+ (1 / 2 * (2 * sin (PI / 4) * cos (PI / 4))) by field.
+ rewrite <- sin_2a; replace (2 * (PI / 4)) with (PI / 2) by field.
rewrite sin_PI2...
- apply Rmult_1_r...
- unfold Rdiv; rewrite (Rmult_comm 2); rewrite Rinv_mult_distr...
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
- rewrite Rmult_1_r...
- unfold Rdiv; rewrite Rmult_1_l; repeat rewrite <- Rmult_assoc...
- rewrite <- Rinv_l_sym...
- rewrite Rmult_1_l...
+ field.
left; prove_sup...
apply sqrt2_neq_0...
Qed.
@@ -219,24 +177,17 @@ Proof.
Qed.
Lemma cos3PI4 : cos (3 * (PI / 4)) = -1 / sqrt 2.
-Proof with trivial.
- replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))...
- rewrite cos_shift; rewrite sin_neg; rewrite sin_PI4...
- unfold Rdiv; rewrite Ropp_mult_distr_l_reverse...
- unfold Rminus; rewrite Ropp_involutive; pattern PI at 1;
- rewrite double_var; unfold Rdiv; rewrite Rmult_plus_distr_r;
- repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr;
- [ ring | discrR | discrR ]...
+Proof.
+ replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4)) by field.
+ rewrite cos_shift; rewrite sin_neg; rewrite sin_PI4.
+ unfold Rdiv.
+ ring.
Qed.
Lemma sin3PI4 : sin (3 * (PI / 4)) = 1 / sqrt 2.
-Proof with trivial.
- replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))...
- rewrite sin_shift; rewrite cos_neg; rewrite cos_PI4...
- unfold Rminus; rewrite Ropp_involutive; pattern PI at 1;
- rewrite double_var; unfold Rdiv; rewrite Rmult_plus_distr_r;
- repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr;
- [ ring | discrR | discrR ]...
+Proof.
+ replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4)) by field.
+ now rewrite sin_shift, cos_neg, cos_PI4.
Qed.
Lemma cos_PI6 : cos (PI / 6) = sqrt 3 / 2.
@@ -248,19 +199,11 @@ Proof with trivial.
left; apply (Rmult_lt_0_compat (sqrt 3) (/ 2))...
apply Rlt_sqrt3_0...
apply Rinv_0_lt_compat; prove_sup0...
- assert (H : 2 <> 0); [ discrR | idtac ]...
- assert (H1 : 4 <> 0); [ apply prod_neq_R0 | idtac ]...
rewrite Rsqr_div...
rewrite cos2; unfold Rsqr; rewrite sin_PI6; rewrite sqrt_def...
- unfold Rdiv; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4...
- rewrite Rmult_minus_distr_l; rewrite (Rmult_comm 3);
- repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym...
- rewrite Rmult_1_l; rewrite Rmult_1_r...
- rewrite <- (Rmult_comm (/ 2)); repeat rewrite <- Rmult_assoc...
- rewrite <- Rinv_l_sym...
- rewrite Rmult_1_l; rewrite <- Rinv_r_sym...
- ring...
- left; prove_sup0...
+ field.
+ left ; prove_sup0.
+ discrR.
Qed.
Lemma tan_PI6 : tan (PI / 6) = 1 / sqrt 3.
@@ -306,56 +249,32 @@ Proof.
Qed.
Lemma cos_2PI3 : cos (2 * (PI / 3)) = -1 / 2.
-Proof with trivial.
- assert (H : 2 <> 0); [ discrR | idtac ]...
- assert (H0 : 4 <> 0); [ apply prod_neq_R0 | idtac ]...
- rewrite double; rewrite cos_plus; rewrite sin_PI3; rewrite cos_PI3;
- unfold Rdiv; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4...
- rewrite Rmult_minus_distr_l; repeat rewrite Rmult_assoc;
- rewrite (Rmult_comm 2)...
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
- rewrite Rmult_1_r; rewrite <- Rinv_r_sym...
- pattern 2 at 4; rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc;
- rewrite <- Rinv_l_sym...
- rewrite Rmult_1_r; rewrite Ropp_mult_distr_r_reverse; rewrite Rmult_1_r...
- rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
- rewrite Rmult_1_r; rewrite (Rmult_comm 2); rewrite (Rmult_comm (/ 2))...
- repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
- rewrite Rmult_1_r; rewrite sqrt_def...
- ring...
- left; prove_sup...
+Proof.
+ rewrite cos_2a, sin_PI3, cos_PI3.
+ replace (sqrt 3 / 2 * (sqrt 3 / 2)) with ((sqrt 3 * sqrt 3) / 4) by field.
+ rewrite sqrt_sqrt.
+ field.
+ left ; prove_sup0.
Qed.
Lemma tan_2PI3 : tan (2 * (PI / 3)) = - sqrt 3.
-Proof with trivial.
- assert (H : 2 <> 0); [ discrR | idtac ]...
- unfold tan; rewrite sin_2PI3; rewrite cos_2PI3; unfold Rdiv;
- rewrite Ropp_mult_distr_l_reverse; rewrite Rmult_1_l;
- rewrite <- Ropp_inv_permute...
- rewrite Rinv_involutive...
- rewrite Rmult_assoc; rewrite Ropp_mult_distr_r_reverse; rewrite <- Rinv_l_sym...
- ring...
- apply Rinv_neq_0_compat...
+Proof.
+ unfold tan; rewrite sin_2PI3, cos_2PI3.
+ field.
Qed.
Lemma cos_5PI4 : cos (5 * (PI / 4)) = -1 / sqrt 2.
-Proof with trivial.
- replace (5 * (PI / 4)) with (PI / 4 + PI)...
- rewrite neg_cos; rewrite cos_PI4; unfold Rdiv;
- rewrite Ropp_mult_distr_l_reverse...
- pattern PI at 2; rewrite double_var; pattern PI at 2 3;
- rewrite double_var; assert (H : 2 <> 0);
- [ discrR | unfold Rdiv; repeat rewrite Rinv_mult_distr; try ring ]...
+Proof.
+ replace (5 * (PI / 4)) with (PI / 4 + PI) by field.
+ rewrite neg_cos; rewrite cos_PI4; unfold Rdiv.
+ ring.
Qed.
Lemma sin_5PI4 : sin (5 * (PI / 4)) = -1 / sqrt 2.
-Proof with trivial.
- replace (5 * (PI / 4)) with (PI / 4 + PI)...
- rewrite neg_sin; rewrite sin_PI4; unfold Rdiv;
- rewrite Ropp_mult_distr_l_reverse...
- pattern PI at 2; rewrite double_var; pattern PI at 2 3;
- rewrite double_var; assert (H : 2 <> 0);
- [ discrR | unfold Rdiv; repeat rewrite Rinv_mult_distr; try ring ]...
+Proof.
+ replace (5 * (PI / 4)) with (PI / 4 + PI) by field.
+ rewrite neg_sin; rewrite sin_PI4; unfold Rdiv.
+ ring.
Qed.
Lemma sin_cos5PI4 : cos (5 * (PI / 4)) = sin (5 * (PI / 4)).
diff --git a/theories/Reals/Rtrigo_reg.v b/theories/Reals/Rtrigo_reg.v
index eed612d94b..d9c18d3587 100644
--- a/theories/Reals/Rtrigo_reg.v
+++ b/theories/Reals/Rtrigo_reg.v
@@ -251,6 +251,7 @@ Proof.
exists delta; intros.
rewrite Rplus_0_l; replace (cos h - cos 0) with (-2 * Rsqr (sin (h / 2))).
unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
+ change (-2) with (-(2)).
unfold Rdiv; do 2 rewrite Ropp_mult_distr_l_reverse.
rewrite Rabs_Ropp.
replace (2 * Rsqr (sin (h * / 2)) * / h) with
@@ -266,7 +267,7 @@ Proof.
apply Rabs_pos.
assert (H9 := SIN_bound (h / 2)).
unfold Rabs; case (Rcase_abs (sin (h / 2))); intro.
- pattern 1 at 3; rewrite <- (Ropp_involutive 1).
+ rewrite <- (Ropp_involutive 1).
apply Ropp_le_contravar.
elim H9; intros; assumption.
elim H9; intros; assumption.
@@ -395,15 +396,8 @@ Proof.
apply Rlt_le_trans with alp.
apply H7.
unfold alp; apply Rmin_l.
- rewrite sin_plus; unfold Rminus, Rdiv;
- repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l;
- repeat rewrite Rmult_assoc; repeat rewrite Rplus_assoc;
- apply Rplus_eq_compat_l.
- rewrite (Rplus_comm (sin x * (-1 * / h))); repeat rewrite Rplus_assoc;
- apply Rplus_eq_compat_l.
- rewrite Ropp_mult_distr_r_reverse; rewrite Ropp_mult_distr_l_reverse;
- rewrite Rmult_1_r; rewrite Rmult_1_l; rewrite Ropp_mult_distr_r_reverse;
- rewrite <- Ropp_mult_distr_l_reverse; apply Rplus_comm.
+ rewrite sin_plus.
+ now field.
unfold alp; unfold Rmin; case (Rle_dec alp1 alp2); intro.
apply (cond_pos alp1).
apply (cond_pos alp2).
diff --git a/theories/Reals/Sqrt_reg.v b/theories/Reals/Sqrt_reg.v
index d43baee8cd..12d5cbbf0f 100644
--- a/theories/Reals/Sqrt_reg.v
+++ b/theories/Reals/Sqrt_reg.v
@@ -21,6 +21,7 @@ Proof.
destruct (total_order_T h 0) as [[Hlt|Heq]|Hgt].
repeat rewrite Rabs_left.
unfold Rminus; do 2 rewrite <- (Rplus_comm (-1)).
+ change (-1) with (-(1)).
do 2 rewrite Ropp_plus_distr; rewrite Ropp_involutive;
apply Rplus_le_compat_l.
apply Ropp_le_contravar; apply sqrt_le_1.