diff options
| author | letouzey | 2012-07-05 16:56:37 +0000 |
|---|---|---|
| committer | letouzey | 2012-07-05 16:56:37 +0000 |
| commit | ffb64d16132dd80f72ecb619ef87e3eee1fa8bda (patch) | |
| tree | 5368562b42af1aeef7e19b4bd897c9fc5655769b /plugins/setoid_ring | |
| parent | a46ccd71539257bb55dcddd9ae8510856a5c9a16 (diff) | |
Kills the useless tactic annotations "in |- *"
Most of these heavyweight annotations were introduced a long time ago
by the automatic 7.x -> 8.0 translator
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15518 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'plugins/setoid_ring')
| -rw-r--r-- | plugins/setoid_ring/Field_theory.v | 226 | ||||
| -rw-r--r-- | plugins/setoid_ring/InitialRing.v | 72 | ||||
| -rw-r--r-- | plugins/setoid_ring/RealField.v | 50 | ||||
| -rw-r--r-- | plugins/setoid_ring/Ring.v | 2 |
4 files changed, 175 insertions, 175 deletions
diff --git a/plugins/setoid_ring/Field_theory.v b/plugins/setoid_ring/Field_theory.v index 17595639bb..bd9622e523 100644 --- a/plugins/setoid_ring/Field_theory.v +++ b/plugins/setoid_ring/Field_theory.v @@ -120,12 +120,12 @@ Local Hint Extern 2 (_ == _) => f_equiv. (* additional ring properties *) Lemma rsub_0_l : forall r, 0 - r == - r. -intros; rewrite (ARsub_def ARth) in |- *;ring. +intros; rewrite (ARsub_def ARth);ring. Qed. Lemma rsub_0_r : forall r, r - 0 == r. -intros; rewrite (ARsub_def ARth) in |- *. -rewrite (ARopp_zero Rsth Reqe ARth) in |- *; ring. +intros; rewrite (ARsub_def ARth). +rewrite (ARopp_zero Rsth Reqe ARth); ring. Qed. (*************************************************************************** @@ -137,9 +137,9 @@ Qed. Theorem rdiv_simpl: forall p q, ~ q == 0 -> q * (p / q) == p. Proof. intros p q H. -rewrite rdiv_def in |- *. +rewrite rdiv_def. transitivity (/ q * q * p); [ ring | idtac ]. -rewrite rinv_l in |- *; auto. +rewrite rinv_l; auto. Qed. Hint Resolve rdiv_simpl . @@ -177,15 +177,15 @@ Theorem ropp_neq_0 : forall r, intros. setoid_replace (- r) with (- (1) * r). apply field_is_integral_domain; trivial. - rewrite <- (ARopp_mul_l ARth) in |- *. - rewrite (ARmul_1_l ARth) in |- *. + rewrite <- (ARopp_mul_l ARth). + rewrite (ARmul_1_l ARth). reflexivity. Qed. Theorem rdiv_r_r : forall r, ~ r == 0 -> r / r == 1. intros. -rewrite (AFdiv_def AFth) in |- *. -rewrite (ARmul_comm ARth) in |- *. +rewrite (AFdiv_def AFth). +rewrite (ARmul_comm ARth). apply (AFinv_l AFth). trivial. Qed. @@ -225,8 +225,8 @@ assert (HH3: ~ r4 == 0) by (intros HH; case H0; rewrite HH; ring). assert (HH4: ~ r2 * (r4 * r5) == 0) by complete (repeat apply field_is_integral_domain; trivial). apply rmul_reg_l with (r2 * (r4 * r5)); trivial. -rewrite rdiv_simpl in |- *; trivial. -rewrite (ARdistr_r Rsth Reqe ARth) in |- *. +rewrite rdiv_simpl; trivial. +rewrite (ARdistr_r Rsth Reqe ARth). apply (Radd_ext Reqe). transitivity ((r2 * r5) * (r1 / (r2 * r5)) * r4); [ ring | auto ]. transitivity ((r4 * r5) * (r3 / (r4 * r5)) * r2); [ ring | auto ]. @@ -278,13 +278,13 @@ intros r1 r2 H H0. assert (~ r1 / r2 == 0) as Hk. intros H1; case H. transitivity (r2 * (r1 / r2)); auto. - rewrite H1 in |- *; ring. + rewrite H1; ring. apply rmul_reg_l with (r1 / r2); auto. transitivity (/ (r1 / r2) * (r1 / r2)); auto. transitivity 1; auto. - repeat rewrite rdiv_def in |- *. + repeat rewrite rdiv_def. transitivity (/ r1 * r1 * (/ r2 * r2)); [ idtac | ring ]. - repeat rewrite rinv_l in |- *; auto. + repeat rewrite rinv_l; auto. Qed. Hint Resolve rdiv6 . @@ -297,9 +297,9 @@ Proof. intros r1 r2 r3 r4 H H0. assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial). apply rmul_reg_l with (r2 * r4); trivial. -rewrite rdiv_simpl in |- *; trivial. +rewrite rdiv_simpl; trivial. transitivity (r2 * (r1 / r2) * (r4 * (r3 / r4))); [ ring | idtac ]. -repeat rewrite rdiv_simpl in |- *; trivial. +repeat rewrite rdiv_simpl; trivial. Qed. Theorem rdiv4b: @@ -333,8 +333,8 @@ Theorem rdiv7: (r1 / r2) / (r3 / r4) == (r1 * r4) / (r2 * r3). Proof. intros. -rewrite (rdiv_def (r1 / r2)) in |- *. -rewrite rdiv6 in |- *; trivial. +rewrite (rdiv_def (r1 / r2)). +rewrite rdiv6; trivial. apply rdiv4; trivial. Qed. @@ -372,14 +372,14 @@ Theorem cross_product_eq : forall r1 r2 r3 r4, ~ r2 == 0 -> ~ r4 == 0 -> r1 * r4 == r3 * r2 -> r1 / r2 == r3 / r4. intros. transitivity (r1 / r2 * (r4 / r4)). - rewrite rdiv_r_r in |- *; trivial. - symmetry in |- *. + rewrite rdiv_r_r; trivial. + symmetry . apply (ARmul_1_r Rsth ARth). - rewrite rdiv4 in |- *; trivial. - rewrite H1 in |- *. - rewrite (ARmul_comm ARth r2 r4) in |- *. - rewrite <- rdiv4 in |- *; trivial. - rewrite rdiv_r_r in |- * by trivial. + rewrite rdiv4; trivial. + rewrite H1. + rewrite (ARmul_comm ARth r2 r4). + rewrite <- rdiv4; trivial. + rewrite rdiv_r_r by trivial. apply (ARmul_1_r Rsth ARth). Qed. @@ -451,8 +451,8 @@ Theorem NPEadd_correct: forall l e1 e2, NPEeval l (NPEadd e1 e2) == NPEeval l (PEadd e1 e2). Proof. intros l e1 e2. -destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect; - try (intro eq_c; rewrite eq_c in |- *); simpl in |- *;try apply eq_refl; +destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect; + try (intro eq_c; rewrite eq_c); simpl;try apply eq_refl; try (ring [(morph0 CRmorph)]). apply (morph_add CRmorph). Qed. @@ -503,9 +503,9 @@ Qed. Theorem NPEmul_correct : forall l e1 e2, NPEeval l (NPEmul e1 e2) == NPEeval l (PEmul e1 e2). -induction e1;destruct e2; simpl in |- *;try reflexivity; +induction e1;destruct e2; simpl;try reflexivity; repeat apply ceqb_rect; - try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; try reflexivity; + try (intro eq_c; rewrite eq_c); simpl; try reflexivity; try ring [(morph0 CRmorph) (morph1 CRmorph)]. apply (morph_mul CRmorph). case N.eqb_spec; intros H; try rewrite <- H; clear H. @@ -529,9 +529,9 @@ Definition NPEsub e1 e2 := Theorem NPEsub_correct: forall l e1 e2, NPEeval l (NPEsub e1 e2) == NPEeval l (PEsub e1 e2). intros l e1 e2. -destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect; - try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; - try rewrite (morph0 CRmorph) in |- *; try reflexivity; +destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect; + try (intro eq_c; rewrite eq_c); simpl; + try rewrite (morph0 CRmorph); try reflexivity; try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r). apply (morph_sub CRmorph). Qed. @@ -651,8 +651,8 @@ destruct H; trivial. Qed. Theorem PCond_app_inv_l: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l1. -intros l l1 l2; elim l1; simpl app in |- *. - simpl in |- *; auto. +intros l l1 l2; elim l1; simpl app. + simpl; auto. destruct l0; simpl in *. destruct l2; firstorder. firstorder. @@ -667,8 +667,8 @@ Qed. Definition absurd_PCond := cons (PEc cO) nil. Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond. -unfold absurd_PCond in |- *; simpl in |- *. -red in |- *; intros. +unfold absurd_PCond; simpl. +red; intros. apply H. apply (morph0 CRmorph). Qed. @@ -1012,13 +1012,13 @@ Theorem Pcond_Fnorm: forall l e, PCond l (condition (Fnorm e)) -> ~ NPEeval l (denum (Fnorm e)) == 0. intros l e; elim e. - simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO. - simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO. + simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO. + simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; case Hrec1; auto. apply PCond_app_inv_l with (1 := Hcond). @@ -1029,9 +1029,9 @@ intros l e; elim e. rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; case Hrec1; auto. apply PCond_app_inv_l with (1 := Hcond). @@ -1042,9 +1042,9 @@ intros l e; elim e. rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; apply Hrec1. apply PCond_app_inv_l with (1 := Hcond). @@ -1056,17 +1056,17 @@ intros l e; elim e. rewrite NPEmul_correct; simpl; rewrite HH; ring. intros e1 Hrec1 Hcond. simpl condition in Hcond. - simpl denum in |- *. + simpl denum. auto. intros e1 Hrec1 Hcond. simpl condition in Hcond. - simpl denum in |- *. + simpl denum. apply PCond_cons_inv_l with (1:=Hcond). intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; apply Hrec1. specialize PCond_cons_inv_r with (1:=Hcond); intro Hcond1. @@ -1209,9 +1209,9 @@ Theorem Fnorm_crossproduct: PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. intros l fe1 fe2 nfe1 nfe2 Hcrossprod Hcond; subst nfe1 nfe2. -rewrite Fnorm_FEeval_PEeval in |- * by +rewrite Fnorm_FEeval_PEeval by apply PCond_app_inv_l with (1 := Hcond). - rewrite Fnorm_FEeval_PEeval in |- * by + rewrite Fnorm_FEeval_PEeval by apply PCond_app_inv_r with (1 := Hcond). apply cross_product_eq; trivial. apply Pcond_Fnorm. @@ -1328,13 +1328,13 @@ Proof. intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond; subst nfe1 nfe2 den lmp. apply Fnorm_crossproduct; trivial. -simpl in |- *. -rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite NPEmul_correct in |- *. -rewrite NPEmul_correct in |- *. -simpl in |- *. -repeat rewrite (ARmul_assoc ARth) in |- *. +simpl. +rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite NPEmul_correct. +rewrite NPEmul_correct. +simpl. +repeat rewrite (ARmul_assoc ARth). rewrite <-( let x := PEmul (num (Fnorm fe1)) (rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in @@ -1349,7 +1349,7 @@ rewrite <-( Hlpe Logic.eq_refl x Logic.eq_refl) in Hcrossprod. simpl in Hcrossprod. -rewrite Hcrossprod in |- *. +rewrite Hcrossprod. reflexivity. Qed. @@ -1368,13 +1368,13 @@ Proof. intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond; subst nfe1 nfe2 den lmp. apply Fnorm_crossproduct; trivial. -simpl in |- *. -rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite NPEmul_correct in |- *. -rewrite NPEmul_correct in |- *. -simpl in |- *. -repeat rewrite (ARmul_assoc ARth) in |- *. +simpl. +rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite NPEmul_correct. +rewrite NPEmul_correct. +simpl. +repeat rewrite (ARmul_assoc ARth). rewrite <-( let x := PEmul (num (Fnorm fe1)) (rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in @@ -1389,7 +1389,7 @@ rewrite <-( Hlpe Logic.eq_refl x Logic.eq_refl) in Hcrossprod. simpl in Hcrossprod. -rewrite Hcrossprod in |- *. +rewrite Hcrossprod. reflexivity. Qed. @@ -1509,7 +1509,7 @@ Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) := Lemma fcons_correct : forall l l1, PCond l (Fapp l1 nil) -> PCond l l1. -induction l1; simpl in |- *; intros. +induction l1; simpl; intros. trivial. elim PCond_fcons_inv with (1 := H); intros. destruct l1; auto. @@ -1590,7 +1590,7 @@ intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail). simpl in H1. case (H _ H1); intros H2 H3. case (H0 _ H3); intros H4 H5; split; auto. - simpl in |- *. + simpl. apply field_is_integral_domain; trivial. simpl;intros. rewrite pow_th.(rpow_pow_N). destruct (H _ H0);split;auto. @@ -1618,7 +1618,7 @@ generalize (fun h => X (morph_eq CRmorph c1 c2 h)). generalize (@ceqb_complete c1 c2). case (c1 ?=! c2); auto; intros. apply X0. -red in |- *; intro. +red; intro. absurd (false = true); auto; discriminate. Qed. @@ -1634,18 +1634,18 @@ Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := Theorem PFcons1_fcons_inv: forall l a l1, PCond l (Fcons1 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail). - simpl in |- *; intros c l1. + simpl; intros c l1. apply ceqb_rect_complete; intros. elim (@absurd_PCond_bottom l H0). split; trivial. - rewrite <- (morph0 CRmorph) in |- *; trivial. + rewrite <- (morph0 CRmorph); trivial. intros p H p0 H0 l1 H1. simpl in H1. case (H _ H1); intros H2 H3. case (H0 _ H3); intros H4 H5; split; auto. - simpl in |- *. + simpl. apply field_is_integral_domain; trivial. - simpl in |- *; intros p H l1. + simpl; intros p H l1. apply ceqb_rect_complete; intros. elim (@absurd_PCond_bottom l H1). destruct (H _ H1). @@ -1664,7 +1664,7 @@ Definition Fcons2 e l := Fcons1 (PExpr_simp e) l. Theorem PFcons2_fcons_inv: forall l a l1, PCond l (Fcons2 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. -unfold Fcons2 in |- *; intros l a l1 H; split; +unfold Fcons2; intros l a l1 H; split; case (PFcons1_fcons_inv l (PExpr_simp a) l1); auto. intros H1 H2 H3; case H1. transitivity (NPEeval l a); trivial. @@ -1747,15 +1747,15 @@ elim p using Pos.peano_ind; simpl; intros. apply S_inj; trivial. apply H. apply S_inj. - repeat rewrite (ARadd_assoc ARth) in |- *. - rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth) in |- *; trivial. + repeat rewrite (ARadd_assoc ARth). + rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth); trivial. Qed. Lemma gen_phiPOS_inj : forall x y, gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y -> x = y. intros x y. -repeat rewrite <- (same_gen Rsth Reqe ARth) in |- *. +repeat rewrite <- (same_gen Rsth Reqe ARth). case (Pos.compare_spec x y). intros. trivial. @@ -1778,13 +1778,13 @@ Qed. Lemma gen_phiN_inj : forall x y, gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y -> x = y. -destruct x; destruct y; simpl in |- *; intros; trivial. +destruct x; destruct y; simpl; intros; trivial. elim gen_phiPOS_not_0 with p. - symmetry in |- *. - rewrite (same_gen Rsth Reqe ARth) in |- *; trivial. + symmetry . + rewrite (same_gen Rsth Reqe ARth); trivial. elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *; trivial. - rewrite gen_phiPOS_inj with (1 := H) in |- *; trivial. + rewrite (same_gen Rsth Reqe ARth); trivial. + rewrite gen_phiPOS_inj with (1 := H); trivial. Qed. Lemma gen_phiN_complete : forall x y, @@ -1809,17 +1809,17 @@ Section Field. Lemma ring_S_inj : forall x y, 1+x==1+y -> x==y. intros. transitivity (x + (1 + - (1))). - rewrite (Ropp_def Rth) in |- *. - symmetry in |- *. + rewrite (Ropp_def Rth). + symmetry . apply (ARadd_0_r Rsth ARth). transitivity (y + (1 + - (1))). - repeat rewrite <- (ARplus_assoc ARth) in |- *. - repeat rewrite (ARadd_assoc ARth) in |- *. + repeat rewrite <- (ARplus_assoc ARth). + repeat rewrite (ARadd_assoc ARth). apply (Radd_ext Reqe). - repeat rewrite <- (ARadd_comm ARth 1) in |- *. + repeat rewrite <- (ARadd_comm ARth 1). trivial. reflexivity. - rewrite (Ropp_def Rth) in |- *. + rewrite (Ropp_def Rth). apply (ARadd_0_r Rsth ARth). Qed. @@ -1831,14 +1831,14 @@ Let gen_phiPOS_inject := Lemma gen_phiPOS_discr_sgn : forall x y, ~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y. -red in |- *; intros. +red; intros. apply gen_phiPOS_not_0 with (y + x)%positive. -rewrite (ARgen_phiPOS_add Rsth Reqe ARth) in |- *. +rewrite (ARgen_phiPOS_add Rsth Reqe ARth). transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y). apply (Radd_ext Reqe); trivial. reflexivity. - rewrite (same_gen Rsth Reqe ARth) in |- *. - rewrite (same_gen Rsth Reqe ARth) in |- *. + rewrite (same_gen Rsth Reqe ARth). + rewrite (same_gen Rsth Reqe ARth). trivial. apply (Ropp_def Rth). Qed. @@ -1846,33 +1846,33 @@ Qed. Lemma gen_phiZ_inj : forall x y, gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y -> x = y. -destruct x; destruct y; simpl in |- *; intros. +destruct x; destruct y; simpl; intros. trivial. elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. - symmetry in |- *; trivial. + rewrite (same_gen Rsth Reqe ARth). + symmetry ; trivial. elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. - rewrite <- H in |- *. + rewrite (same_gen Rsth Reqe ARth). + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). + rewrite <- H. apply (ARopp_zero Rsth Reqe ARth). elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. + rewrite (same_gen Rsth Reqe ARth). trivial. - rewrite gen_phiPOS_inject with (1 := H) in |- *; trivial. + rewrite gen_phiPOS_inject with (1 := H); trivial. elim gen_phiPOS_discr_sgn with (1 := H). elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. - rewrite H in |- *. + rewrite (same_gen Rsth Reqe ARth). + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). + rewrite H. apply (ARopp_zero Rsth Reqe ARth). elim gen_phiPOS_discr_sgn with p0 p. - symmetry in |- *; trivial. + symmetry ; trivial. replace p0 with p; trivial. apply gen_phiPOS_inject. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)) in |- *. - rewrite H in |- *; trivial. + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)). + rewrite H; trivial. reflexivity. Qed. @@ -1881,8 +1881,8 @@ Lemma gen_phiZ_complete : forall x y, Zeq_bool x y = true. intros. replace y with x. - unfold Zeq_bool in |- *. - rewrite Z.compare_refl in |- *; trivial. + unfold Zeq_bool. + rewrite Z.compare_refl; trivial. apply gen_phiZ_inj; trivial. Qed. diff --git a/plugins/setoid_ring/InitialRing.v b/plugins/setoid_ring/InitialRing.v index bc0f888ce8..adde4415cf 100644 --- a/plugins/setoid_ring/InitialRing.v +++ b/plugins/setoid_ring/InitialRing.v @@ -396,14 +396,14 @@ Section NWORDMORPHISM. Lemma gen_phiNword0_ok : forall w, Nw_is0 w = true -> gen_phiNword w == 0. Proof. -induction w; simpl in |- *; intros; auto. +induction w; simpl; intros; auto. reflexivity. destruct a. destruct w. reflexivity. - rewrite IHw in |- *; trivial. + rewrite IHw; trivial. apply (ARopp_zero Rsth Reqe ARth). discriminate. @@ -412,7 +412,7 @@ Qed. Lemma gen_phiNword_cons : forall w n, gen_phiNword (n::w) == gen_phiN rO rI radd rmul n - gen_phiNword w. induction w. - destruct n; simpl in |- *; norm. + destruct n; simpl; norm. intros. destruct n; norm. @@ -423,27 +423,27 @@ Qed. destruct w; intros. destruct n; norm. - unfold Nwcons in |- *. - rewrite gen_phiNword_cons in |- *. + unfold Nwcons. + rewrite gen_phiNword_cons. reflexivity. Qed. Lemma gen_phiNword_ok : forall w1 w2, Nweq_bool w1 w2 = true -> gen_phiNword w1 == gen_phiNword w2. induction w1; intros. - simpl in |- *. - rewrite (gen_phiNword0_ok _ H) in |- *. + simpl. + rewrite (gen_phiNword0_ok _ H). reflexivity. - rewrite gen_phiNword_cons in |- *. + rewrite gen_phiNword_cons. destruct w2. simpl in H. destruct a; try discriminate. - rewrite (gen_phiNword0_ok _ H) in |- *. + rewrite (gen_phiNword0_ok _ H). norm. simpl in H. - rewrite gen_phiNword_cons in |- *. + rewrite gen_phiNword_cons. case_eq (N.eqb a n); intros H0. rewrite H0 in H. apply N.eqb_eq in H0. rewrite <- H0. @@ -457,27 +457,27 @@ Qed. Lemma Nwadd_ok : forall x y, gen_phiNword (Nwadd x y) == gen_phiNword x + gen_phiNword y. induction x; intros. - simpl in |- *. + simpl. norm. destruct y. simpl Nwadd; norm. - simpl Nwadd in |- *. - repeat rewrite gen_phiNword_cons in |- *. - rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) in |- * by + simpl Nwadd. + repeat rewrite gen_phiNword_cons. + rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) by (destruct Reqe; constructor; trivial). - rewrite IHx in |- *. + rewrite IHx. norm. add_push (- gen_phiNword x); reflexivity. Qed. Lemma Nwopp_ok : forall x, gen_phiNword (Nwopp x) == - gen_phiNword x. -simpl in |- *. -unfold Nwopp in |- *; simpl in |- *. +simpl. +unfold Nwopp; simpl. intros. -rewrite gen_phiNword_Nwcons in |- *; norm. +rewrite gen_phiNword_Nwcons; norm. Qed. Lemma Nwscal_ok : forall n x, @@ -485,12 +485,12 @@ Lemma Nwscal_ok : forall n x, induction x; intros. norm. - simpl Nwscal in |- *. - repeat rewrite gen_phiNword_cons in |- *. - rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth)) in |- * + simpl Nwscal. + repeat rewrite gen_phiNword_cons. + rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth)) by (destruct Reqe; constructor; trivial). - rewrite IHx in |- *. + rewrite IHx. norm. Qed. @@ -500,19 +500,19 @@ induction x; intros. norm. destruct a. - simpl Nwmul in |- *. - rewrite Nwopp_ok in |- *. - rewrite IHx in |- *. - rewrite gen_phiNword_cons in |- *. + simpl Nwmul. + rewrite Nwopp_ok. + rewrite IHx. + rewrite gen_phiNword_cons. norm. - simpl Nwmul in |- *. - unfold Nwsub in |- *. - rewrite Nwadd_ok in |- *. - rewrite Nwscal_ok in |- *. - rewrite Nwopp_ok in |- *. - rewrite IHx in |- *. - rewrite gen_phiNword_cons in |- *. + simpl Nwmul. + unfold Nwsub. + rewrite Nwadd_ok. + rewrite Nwscal_ok. + rewrite Nwopp_ok. + rewrite IHx. + rewrite gen_phiNword_cons. norm. Qed. @@ -528,9 +528,9 @@ constructor. exact Nwadd_ok. intros. - unfold Nwsub in |- *. - rewrite Nwadd_ok in |- *. - rewrite Nwopp_ok in |- *. + unfold Nwsub. + rewrite Nwadd_ok. + rewrite Nwopp_ok. norm. exact Nwmul_ok. diff --git a/plugins/setoid_ring/RealField.v b/plugins/setoid_ring/RealField.v index 1cbddc27de..293722125b 100644 --- a/plugins/setoid_ring/RealField.v +++ b/plugins/setoid_ring/RealField.v @@ -12,14 +12,14 @@ Proof. constructor. intro; apply Rplus_0_l. exact Rplus_comm. - symmetry in |- *; apply Rplus_assoc. + symmetry ; apply Rplus_assoc. intro; apply Rmult_1_l. exact Rmult_comm. - symmetry in |- *; apply Rmult_assoc. + symmetry ; apply Rmult_assoc. intros m n p. - rewrite Rmult_comm in |- *. - rewrite (Rmult_comm n p) in |- *. - rewrite (Rmult_comm m p) in |- *. + rewrite Rmult_comm. + rewrite (Rmult_comm n p). + rewrite (Rmult_comm m p). apply Rmult_plus_distr_l. reflexivity. exact Rplus_opp_r. @@ -42,17 +42,17 @@ destruct H0. apply Rlt_trans with (IZR (up x)); trivial. replace (IZR (up x)) with (x + (IZR (up x) - x))%R. apply Rplus_lt_compat_l; trivial. - unfold Rminus in |- *. - rewrite (Rplus_comm (IZR (up x)) (- x)) in |- *. - rewrite <- Rplus_assoc in |- *. - rewrite Rplus_opp_r in |- *. + unfold Rminus. + rewrite (Rplus_comm (IZR (up x)) (- x)). + rewrite <- Rplus_assoc. + rewrite Rplus_opp_r. apply Rplus_0_l. elim H0. - unfold Rminus in |- *. - rewrite (Rplus_comm (IZR (up x)) (- x)) in |- *. - rewrite <- Rplus_assoc in |- *. - rewrite Rplus_opp_r in |- *. - rewrite Rplus_0_l in |- *; trivial. + unfold Rminus. + rewrite (Rplus_comm (IZR (up x)) (- x)). + rewrite <- Rplus_assoc. + rewrite Rplus_opp_r. + rewrite Rplus_0_l; trivial. Qed. Notation Rset := (Eqsth R). @@ -61,7 +61,7 @@ Notation Rext := (Eq_ext Rplus Rmult Ropp). Lemma Rlt_0_2 : 0 < 2. apply Rlt_trans with (0 + 1). apply Rlt_n_Sn. - rewrite Rplus_comm in |- *. + rewrite Rplus_comm. apply Rplus_lt_compat_l. replace 1 with (0 + 1). apply Rlt_n_Sn. @@ -69,19 +69,19 @@ apply Rlt_trans with (0 + 1). Qed. Lemma Rgen_phiPOS : forall x, InitialRing.gen_phiPOS1 1 Rplus Rmult x > 0. -unfold Rgt in |- *. -induction x; simpl in |- *; intros. +unfold Rgt. +induction x; simpl; intros. apply Rlt_trans with (1 + 0). - rewrite Rplus_comm in |- *. + rewrite Rplus_comm. apply Rlt_n_Sn. apply Rplus_lt_compat_l. - rewrite <- (Rmul_0_l Rset Rext RTheory 2) in |- *. - rewrite Rmult_comm in |- *. + rewrite <- (Rmul_0_l Rset Rext RTheory 2). + rewrite Rmult_comm. apply Rmult_lt_compat_l. apply Rlt_0_2. trivial. - rewrite <- (Rmul_0_l Rset Rext RTheory 2) in |- *. - rewrite Rmult_comm in |- *. + rewrite <- (Rmul_0_l Rset Rext RTheory 2). + rewrite Rmult_comm. apply Rmult_lt_compat_l. apply Rlt_0_2. trivial. @@ -93,9 +93,9 @@ Qed. Lemma Rgen_phiPOS_not_0 : forall x, InitialRing.gen_phiPOS1 1 Rplus Rmult x <> 0. -red in |- *; intros. +red; intros. specialize (Rgen_phiPOS x). -rewrite H in |- *; intro. +rewrite H; intro. apply (Rlt_asym 0 0); trivial. Qed. @@ -107,7 +107,7 @@ Proof gen_phiZ_complete Rset Rext Rfield Rgen_phiPOS_not_0. Lemma Rdef_pow_add : forall (x:R) (n m:nat), pow x (n + m) = pow x n * pow x m. Proof. - intros x n; elim n; simpl in |- *; auto with real. + intros x n; elim n; simpl; auto with real. intros n0 H' m; rewrite H'; auto with real. Qed. diff --git a/plugins/setoid_ring/Ring.v b/plugins/setoid_ring/Ring.v index c44c2edfca..7e53c23de0 100644 --- a/plugins/setoid_ring/Ring.v +++ b/plugins/setoid_ring/Ring.v @@ -14,7 +14,7 @@ Require Export Ring_tac. Lemma BoolTheory : ring_theory false true xorb andb xorb (fun b:bool => b) (eq(A:=bool)). -split; simpl in |- *. +split; simpl. destruct x; reflexivity. destruct x; destruct y; reflexivity. destruct x; destruct y; destruct z; reflexivity. |
