aboutsummaryrefslogtreecommitdiff
path: root/plugins/ring/Ring_abstract.v
diff options
context:
space:
mode:
authorletouzey2012-07-05 16:56:37 +0000
committerletouzey2012-07-05 16:56:37 +0000
commitffb64d16132dd80f72ecb619ef87e3eee1fa8bda (patch)
tree5368562b42af1aeef7e19b4bd897c9fc5655769b /plugins/ring/Ring_abstract.v
parenta46ccd71539257bb55dcddd9ae8510856a5c9a16 (diff)
Kills the useless tactic annotations "in |- *"
Most of these heavyweight annotations were introduced a long time ago by the automatic 7.x -> 8.0 translator git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15518 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'plugins/ring/Ring_abstract.v')
-rw-r--r--plugins/ring/Ring_abstract.v82
1 files changed, 41 insertions, 41 deletions
diff --git a/plugins/ring/Ring_abstract.v b/plugins/ring/Ring_abstract.v
index 5358941605..7995696ffb 100644
--- a/plugins/ring/Ring_abstract.v
+++ b/plugins/ring/Ring_abstract.v
@@ -143,7 +143,7 @@ Hint Immediate T.
Remark iacs_aux_ok :
forall (x:A) (s:abstract_sum), iacs_aux x s = Aplus x (interp_acs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
trivial.
reflexivity.
Qed.
@@ -158,8 +158,8 @@ Lemma abstract_varlist_insert_ok :
simple induction s.
trivial.
- simpl in |- *; intros.
- elim (varlist_lt l v); simpl in |- *.
+ simpl; intros.
+ elim (varlist_lt l v); simpl.
eauto.
rewrite iacs_aux_ok.
rewrite H; auto.
@@ -177,13 +177,13 @@ Proof.
auto.
- simpl in |- *; elim (varlist_lt v v0); simpl in |- *.
+ simpl; elim (varlist_lt v v0); simpl.
repeat rewrite iacs_aux_ok.
- rewrite H; simpl in |- *; auto.
+ rewrite H; simpl; auto.
simpl in H0.
repeat rewrite iacs_aux_ok.
- rewrite H0. simpl in |- *; auto.
+ rewrite H0. simpl; auto.
Qed.
Lemma abstract_sum_scalar_ok :
@@ -192,9 +192,9 @@ Lemma abstract_sum_scalar_ok :
Amult (interp_vl Amult Aone Azero vm l) (interp_acs s).
Proof.
simple induction s.
- simpl in |- *; eauto.
+ simpl; eauto.
- simpl in |- *; intros.
+ simpl; intros.
rewrite iacs_aux_ok.
rewrite abstract_varlist_insert_ok.
rewrite H.
@@ -208,22 +208,22 @@ Lemma abstract_sum_prod_ok :
Proof.
simple induction x.
- intros; simpl in |- *; eauto.
+ intros; simpl; eauto.
destruct y as [| v0 a0]; intros.
- simpl in |- *; rewrite H; eauto.
+ simpl; rewrite H; eauto.
- unfold abstract_sum_prod in |- *; fold abstract_sum_prod in |- *.
+ unfold abstract_sum_prod; fold abstract_sum_prod.
rewrite abstract_sum_merge_ok.
rewrite abstract_sum_scalar_ok.
- rewrite H; simpl in |- *; auto.
+ rewrite H; simpl; auto.
Qed.
Theorem aspolynomial_normalize_ok :
forall x:aspolynomial, interp_asp x = interp_acs (aspolynomial_normalize x).
Proof.
- simple induction x; simpl in |- *; intros; trivial.
+ simple induction x; simpl; intros; trivial.
rewrite abstract_sum_merge_ok.
rewrite H; rewrite H0; eauto.
rewrite abstract_sum_prod_ok.
@@ -451,7 +451,7 @@ Hint Immediate T.
Lemma isacs_aux_ok :
forall (x:A) (s:signed_sum), isacs_aux x s = Aplus x (interp_sacs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
trivial.
reflexivity.
reflexivity.
@@ -460,15 +460,15 @@ Qed.
Hint Extern 10 (_ = _ :>A) => rewrite isacs_aux_ok: core.
Ltac solve1 v v0 H H0 :=
- simpl in |- *; elim (varlist_lt v v0); simpl in |- *; rewrite isacs_aux_ok;
- [ rewrite H; simpl in |- *; auto | simpl in H0; rewrite H0; auto ].
+ simpl; elim (varlist_lt v v0); simpl; rewrite isacs_aux_ok;
+ [ rewrite H; simpl; auto | simpl in H0; rewrite H0; auto ].
Lemma signed_sum_merge_ok :
forall x y:signed_sum,
interp_sacs (signed_sum_merge x y) = Aplus (interp_sacs x) (interp_sacs y).
simple induction x.
- intro; simpl in |- *; auto.
+ intro; simpl; auto.
simple induction y; intros.
@@ -476,8 +476,8 @@ Lemma signed_sum_merge_ok :
solve1 v v0 H H0.
- simpl in |- *; generalize (varlist_eq_prop v v0).
- elim (varlist_eq v v0); simpl in |- *.
+ simpl; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl.
intro Heq; rewrite (Heq I).
rewrite H.
@@ -497,8 +497,8 @@ Lemma signed_sum_merge_ok :
auto.
- simpl in |- *; generalize (varlist_eq_prop v v0).
- elim (varlist_eq v v0); simpl in |- *.
+ simpl; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl.
intro Heq; rewrite (Heq I).
rewrite H.
@@ -516,7 +516,7 @@ Lemma signed_sum_merge_ok :
Qed.
Ltac solve2 l v H :=
- elim (varlist_lt l v); simpl in |- *; rewrite isacs_aux_ok;
+ elim (varlist_lt l v); simpl; rewrite isacs_aux_ok;
[ auto | rewrite H; auto ].
Lemma plus_varlist_insert_ok :
@@ -528,12 +528,12 @@ Proof.
simple induction s.
trivial.
- simpl in |- *; intros.
+ simpl; intros.
solve2 l v H.
- simpl in |- *; intros.
+ simpl; intros.
generalize (varlist_eq_prop l v).
- elim (varlist_eq l v); simpl in |- *.
+ elim (varlist_eq l v); simpl.
intro Heq; rewrite (Heq I).
repeat rewrite isacs_aux_ok.
@@ -555,9 +555,9 @@ Proof.
simple induction s.
trivial.
- simpl in |- *; intros.
+ simpl; intros.
generalize (varlist_eq_prop l v).
- elim (varlist_eq l v); simpl in |- *.
+ elim (varlist_eq l v); simpl.
intro Heq; rewrite (Heq I).
repeat rewrite isacs_aux_ok.
@@ -568,10 +568,10 @@ Proof.
rewrite (Th_opp_def T).
auto.
- simpl in |- *; intros.
+ simpl; intros.
solve2 l v H.
- simpl in |- *; intros; solve2 l v H.
+ simpl; intros; solve2 l v H.
Qed.
@@ -579,9 +579,9 @@ Lemma signed_sum_opp_ok :
forall s:signed_sum, interp_sacs (signed_sum_opp s) = Aopp (interp_sacs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
- symmetry in |- *; apply (Th_opp_zero T).
+ symmetry ; apply (Th_opp_zero T).
repeat rewrite isacs_aux_ok.
rewrite H.
@@ -605,14 +605,14 @@ Proof.
simple induction s.
trivial.
- simpl in |- *; intros.
+ simpl; intros.
rewrite plus_varlist_insert_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
repeat rewrite isacs_aux_ok.
rewrite H.
auto.
- simpl in |- *; intros.
+ simpl; intros.
rewrite minus_varlist_insert_ok.
repeat rewrite isacs_aux_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
@@ -629,11 +629,11 @@ Lemma minus_sum_scalar_ok :
Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
- rewrite (Th_mult_zero_right T); symmetry in |- *; apply (Th_opp_zero T).
+ rewrite (Th_mult_zero_right T); symmetry ; apply (Th_opp_zero T).
- simpl in |- *; intros.
+ simpl; intros.
rewrite minus_varlist_insert_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
repeat rewrite isacs_aux_ok.
@@ -642,7 +642,7 @@ Proof.
rewrite (Th_plus_opp_opp T).
reflexivity.
- simpl in |- *; intros.
+ simpl; intros.
rewrite plus_varlist_insert_ok.
repeat rewrite isacs_aux_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
@@ -662,16 +662,16 @@ Proof.
simple induction x.
- simpl in |- *; eauto 1.
+ simpl; eauto 1.
- intros; simpl in |- *.
+ intros; simpl.
rewrite signed_sum_merge_ok.
rewrite plus_sum_scalar_ok.
repeat rewrite isacs_aux_ok.
rewrite H.
auto.
- intros; simpl in |- *.
+ intros; simpl.
repeat rewrite isacs_aux_ok.
rewrite signed_sum_merge_ok.
rewrite minus_sum_scalar_ok.
@@ -685,7 +685,7 @@ Qed.
Theorem apolynomial_normalize_ok :
forall p:apolynomial, interp_sacs (apolynomial_normalize p) = interp_ap p.
Proof.
- simple induction p; simpl in |- *; auto 1.
+ simple induction p; simpl; auto 1.
intros.
rewrite signed_sum_merge_ok.
rewrite H; rewrite H0; reflexivity.