diff options
| author | Emilio Jesus Gallego Arias | 2020-05-25 14:09:30 +0200 |
|---|---|---|
| committer | Emilio Jesus Gallego Arias | 2020-06-26 14:38:09 +0200 |
| commit | 43d381ab20035f64ce2edea8639fcd9e1d0453bc (patch) | |
| tree | c15fe4f2e490cab93392f77a9597dd7c22f379a0 /plugins/funind | |
| parent | f77743c50a29a8d59954881525e00cc28b5b56e8 (diff) | |
[declare] Move proof information to declare.
At this point the record in lemmas was just a stub; next commit will
stop exposing the internals of mutual information, and pave the way
for the refactoring of `Info.t` handling in the Declare interface.
Diffstat (limited to 'plugins/funind')
| -rw-r--r-- | plugins/funind/functional_principles_proofs.ml | 5 | ||||
| -rw-r--r-- | plugins/funind/gen_principle.ml | 12 | ||||
| -rw-r--r-- | plugins/funind/gen_principle.mli | 2 | ||||
| -rw-r--r-- | plugins/funind/recdef.ml | 32 | ||||
| -rw-r--r-- | plugins/funind/recdef.mli | 2 |
5 files changed, 27 insertions, 26 deletions
diff --git a/plugins/funind/functional_principles_proofs.ml b/plugins/funind/functional_principles_proofs.ml index b864b18887..652f942cb9 100644 --- a/plugins/funind/functional_principles_proofs.ml +++ b/plugins/funind/functional_principles_proofs.ml @@ -856,9 +856,10 @@ let generate_equation_lemma evd fnames f fun_num nb_params nb_args rec_args_num let lemma = Lemmas.start_lemma ~name:(mk_equation_id f_id) ~poly:false evd lemma_type in - let lemma, _ = Lemmas.by (Proofview.V82.tactic prove_replacement) lemma in + let lemma, _ = Declare.by (Proofview.V82.tactic prove_replacement) lemma in let () = - Lemmas.save_lemma_proved ~lemma ~opaque:Declare.Transparent ~idopt:None + Declare.save_lemma_proved ~proof:lemma ~opaque:Declare.Transparent + ~idopt:None in evd diff --git a/plugins/funind/gen_principle.ml b/plugins/funind/gen_principle.ml index 608155eb71..2336689a66 100644 --- a/plugins/funind/gen_principle.ml +++ b/plugins/funind/gen_principle.ml @@ -1520,10 +1520,10 @@ let derive_correctness (funs : Constr.pconstant list) (graphs : inductive list) let typ, _ = lemmas_types_infos.(i) in let lemma = Lemmas.start_lemma ~name:lem_id ~poly:false !evd typ in let lemma = - fst @@ Lemmas.by (Proofview.V82.tactic (proving_tac i)) lemma + fst @@ Declare.by (Proofview.V82.tactic (proving_tac i)) lemma in let () = - Lemmas.save_lemma_proved ~lemma ~opaque:Declare.Transparent + Declare.save_lemma_proved ~proof:lemma ~opaque:Declare.Transparent ~idopt:None in let finfo = @@ -1586,7 +1586,7 @@ let derive_correctness (funs : Constr.pconstant list) (graphs : inductive list) in let lemma = fst - (Lemmas.by + (Declare.by (Proofview.V82.tactic (observe_tac ("prove completeness (" ^ Id.to_string f_id ^ ")") @@ -1594,7 +1594,7 @@ let derive_correctness (funs : Constr.pconstant list) (graphs : inductive list) lemma) in let () = - Lemmas.save_lemma_proved ~lemma ~opaque:Declare.Transparent + Declare.save_lemma_proved ~proof:lemma ~opaque:Declare.Transparent ~idopt:None in let finfo = @@ -1769,7 +1769,7 @@ let register_mes interactive_proof fname rec_impls wf_mes_expr wf_rel_expr_opt using_lemmas args ret_type body let do_generate_principle_aux pconstants on_error register_built - interactive_proof fixpoint_exprl : Lemmas.t option = + interactive_proof fixpoint_exprl : Declare.Proof.t option = List.iter (fun {Vernacexpr.notations} -> if not (List.is_empty notations) then @@ -2155,7 +2155,7 @@ let make_graph (f_ref : GlobRef.t) = (* *************** statically typed entrypoints ************************* *) -let do_generate_principle_interactive fixl : Lemmas.t = +let do_generate_principle_interactive fixl : Declare.Proof.t = match do_generate_principle_aux [] warning_error true true fixl with | Some lemma -> lemma | None -> diff --git a/plugins/funind/gen_principle.mli b/plugins/funind/gen_principle.mli index 3c04d6cb7d..28751c4501 100644 --- a/plugins/funind/gen_principle.mli +++ b/plugins/funind/gen_principle.mli @@ -12,7 +12,7 @@ val warn_cannot_define_graph : ?loc:Loc.t -> Pp.t * Pp.t -> unit val warn_cannot_define_principle : ?loc:Loc.t -> Pp.t * Pp.t -> unit val do_generate_principle_interactive : - Vernacexpr.fixpoint_expr list -> Lemmas.t + Vernacexpr.fixpoint_expr list -> Declare.Proof.t val do_generate_principle : Vernacexpr.fixpoint_expr list -> unit val make_graph : Names.GlobRef.t -> unit diff --git a/plugins/funind/recdef.ml b/plugins/funind/recdef.ml index 9b2d9c4815..f92d4c6a72 100644 --- a/plugins/funind/recdef.ml +++ b/plugins/funind/recdef.ml @@ -58,7 +58,7 @@ let declare_fun name kind ?univs value = (Declare.declare_constant ~name ~kind (Declare.DefinitionEntry ce)) let defined lemma = - Lemmas.save_lemma_proved ~lemma ~opaque:Declare.Transparent ~idopt:None + Declare.save_lemma_proved ~proof:lemma ~opaque:Declare.Transparent ~idopt:None let def_of_const t = match Constr.kind t with @@ -1343,7 +1343,7 @@ let whole_start concl_tac nb_args is_mes func input_type relation rec_arg_num : g let get_current_subgoals_types pstate = - let p = Declare.Proof.get_proof pstate in + let p = Declare.Proof.get pstate in let Proof.{goals = sgs; sigma; _} = Proof.data p in (sigma, List.map (Goal.V82.abstract_type sigma) sgs) @@ -1405,7 +1405,7 @@ let clear_goals sigma = List.map clear_goal let build_new_goal_type lemma = - let sigma, sub_gls_types = Lemmas.pf_fold get_current_subgoals_types lemma in + let sigma, sub_gls_types = get_current_subgoals_types lemma in (* Pp.msgnl (str "sub_gls_types1 := " ++ Util.prlist_with_sep (fun () -> Pp.fnl () ++ Pp.fnl ()) Printer.pr_lconstr sub_gls_types); *) let sub_gls_types = clear_goals sigma sub_gls_types in (* Pp.msgnl (str "sub_gls_types2 := " ++ Pp.prlist_with_sep (fun () -> Pp.fnl () ++ Pp.fnl ()) Printer.pr_lconstr sub_gls_types); *) @@ -1423,7 +1423,7 @@ let is_opaque_constant c = let open_new_goal ~lemma build_proof sigma using_lemmas ref_ goal_name (gls_type, decompose_and_tac, nb_goal) = (* Pp.msgnl (str "gls_type := " ++ Printer.pr_lconstr gls_type); *) - let current_proof_name = Lemmas.pf_fold Declare.Proof.get_proof_name lemma in + let current_proof_name = Declare.Proof.get_name lemma in let name = match goal_name with | Some s -> s @@ -1488,18 +1488,18 @@ let open_new_goal ~lemma build_proof sigma using_lemmas ref_ goal_name [Hints.Hint_db.empty TransparentState.empty false] ])) in let lemma = build_proof env (Evd.from_env env) start_tac end_tac in - Lemmas.save_lemma_proved ~lemma ~opaque:opacity ~idopt:None + Declare.save_lemma_proved ~proof:lemma ~opaque:opacity ~idopt:None in - let info = Lemmas.Info.make ~hook:(Declare.Hook.make hook) () in + let info = Declare.Info.make ~hook:(Declare.Hook.make hook) () in let lemma = Lemmas.start_lemma ~name:na ~poly:false (* FIXME *) ~info sigma gls_type in let lemma = if Indfun_common.is_strict_tcc () then - fst @@ Lemmas.by (Proofview.V82.tactic tclIDTAC) lemma + fst @@ Declare.by (Proofview.V82.tactic tclIDTAC) lemma else fst - @@ Lemmas.by + @@ Declare.by (Proofview.V82.tactic (fun g -> tclTHEN decompose_and_tac (tclORELSE @@ -1521,27 +1521,26 @@ let open_new_goal ~lemma build_proof sigma using_lemmas ref_ goal_name g)) lemma in - if Lemmas.(pf_fold Declare.Proof.get_open_goals) lemma = 0 then ( - defined lemma; None ) + if Declare.Proof.get_open_goals lemma = 0 then (defined lemma; None) else Some lemma let com_terminate interactive_proof tcc_lemma_name tcc_lemma_ref is_mes fonctional_ref input_type relation rec_arg_num thm_name using_lemmas nb_args ctx hook = let start_proof env ctx tac_start tac_end = - let info = Lemmas.Info.make ~hook () in + let info = Declare.Info.make ~hook () in let lemma = Lemmas.start_lemma ~name:thm_name ~poly:false (*FIXME*) ~info ctx (EConstr.of_constr (compute_terminate_type nb_args fonctional_ref)) in let lemma = fst - @@ Lemmas.by + @@ Declare.by (New.observe_tac (fun _ _ -> str "starting_tac") tac_start) lemma in fst - @@ Lemmas.by + @@ Declare.by (Proofview.V82.tactic (observe_tac (fun _ _ -> str "whole_start") @@ -1608,7 +1607,7 @@ let com_eqn uctx nb_arg eq_name functional_ref f_ref terminate_ref in let lemma = fst - @@ Lemmas.by + @@ Declare.by (Proofview.V82.tactic (start_equation f_ref terminate_ref (fun x -> prove_eq @@ -1642,7 +1641,8 @@ let com_eqn uctx nb_arg eq_name functional_ref f_ref terminate_ref in let _ = Flags.silently - (fun () -> Lemmas.save_lemma_proved ~lemma ~opaque:opacity ~idopt:None) + (fun () -> + Declare.save_lemma_proved ~proof:lemma ~opaque:opacity ~idopt:None) () in () @@ -1651,7 +1651,7 @@ let com_eqn uctx nb_arg eq_name functional_ref f_ref terminate_ref let recursive_definition ~interactive_proof ~is_mes function_name rec_impls type_of_f r rec_arg_num eq generate_induction_principle using_lemmas : - Lemmas.t option = + Declare.Proof.t option = let open Term in let open Constr in let open CVars in diff --git a/plugins/funind/recdef.mli b/plugins/funind/recdef.mli index 4e5146e37c..2612f2b63e 100644 --- a/plugins/funind/recdef.mli +++ b/plugins/funind/recdef.mli @@ -25,4 +25,4 @@ val recursive_definition : -> EConstr.constr -> unit) -> Constrexpr.constr_expr list - -> Lemmas.t option + -> Declare.Proof.t option |
