aboutsummaryrefslogtreecommitdiff
path: root/plugins/funind/recdef.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/funind/recdef.ml')
-rw-r--r--plugins/funind/recdef.ml32
1 files changed, 16 insertions, 16 deletions
diff --git a/plugins/funind/recdef.ml b/plugins/funind/recdef.ml
index 9b2d9c4815..f92d4c6a72 100644
--- a/plugins/funind/recdef.ml
+++ b/plugins/funind/recdef.ml
@@ -58,7 +58,7 @@ let declare_fun name kind ?univs value =
(Declare.declare_constant ~name ~kind (Declare.DefinitionEntry ce))
let defined lemma =
- Lemmas.save_lemma_proved ~lemma ~opaque:Declare.Transparent ~idopt:None
+ Declare.save_lemma_proved ~proof:lemma ~opaque:Declare.Transparent ~idopt:None
let def_of_const t =
match Constr.kind t with
@@ -1343,7 +1343,7 @@ let whole_start concl_tac nb_args is_mes func input_type relation rec_arg_num :
g
let get_current_subgoals_types pstate =
- let p = Declare.Proof.get_proof pstate in
+ let p = Declare.Proof.get pstate in
let Proof.{goals = sgs; sigma; _} = Proof.data p in
(sigma, List.map (Goal.V82.abstract_type sigma) sgs)
@@ -1405,7 +1405,7 @@ let clear_goals sigma =
List.map clear_goal
let build_new_goal_type lemma =
- let sigma, sub_gls_types = Lemmas.pf_fold get_current_subgoals_types lemma in
+ let sigma, sub_gls_types = get_current_subgoals_types lemma in
(* Pp.msgnl (str "sub_gls_types1 := " ++ Util.prlist_with_sep (fun () -> Pp.fnl () ++ Pp.fnl ()) Printer.pr_lconstr sub_gls_types); *)
let sub_gls_types = clear_goals sigma sub_gls_types in
(* Pp.msgnl (str "sub_gls_types2 := " ++ Pp.prlist_with_sep (fun () -> Pp.fnl () ++ Pp.fnl ()) Printer.pr_lconstr sub_gls_types); *)
@@ -1423,7 +1423,7 @@ let is_opaque_constant c =
let open_new_goal ~lemma build_proof sigma using_lemmas ref_ goal_name
(gls_type, decompose_and_tac, nb_goal) =
(* Pp.msgnl (str "gls_type := " ++ Printer.pr_lconstr gls_type); *)
- let current_proof_name = Lemmas.pf_fold Declare.Proof.get_proof_name lemma in
+ let current_proof_name = Declare.Proof.get_name lemma in
let name =
match goal_name with
| Some s -> s
@@ -1488,18 +1488,18 @@ let open_new_goal ~lemma build_proof sigma using_lemmas ref_ goal_name
[Hints.Hint_db.empty TransparentState.empty false] ]))
in
let lemma = build_proof env (Evd.from_env env) start_tac end_tac in
- Lemmas.save_lemma_proved ~lemma ~opaque:opacity ~idopt:None
+ Declare.save_lemma_proved ~proof:lemma ~opaque:opacity ~idopt:None
in
- let info = Lemmas.Info.make ~hook:(Declare.Hook.make hook) () in
+ let info = Declare.Info.make ~hook:(Declare.Hook.make hook) () in
let lemma =
Lemmas.start_lemma ~name:na ~poly:false (* FIXME *) ~info sigma gls_type
in
let lemma =
if Indfun_common.is_strict_tcc () then
- fst @@ Lemmas.by (Proofview.V82.tactic tclIDTAC) lemma
+ fst @@ Declare.by (Proofview.V82.tactic tclIDTAC) lemma
else
fst
- @@ Lemmas.by
+ @@ Declare.by
(Proofview.V82.tactic (fun g ->
tclTHEN decompose_and_tac
(tclORELSE
@@ -1521,27 +1521,26 @@ let open_new_goal ~lemma build_proof sigma using_lemmas ref_ goal_name
g))
lemma
in
- if Lemmas.(pf_fold Declare.Proof.get_open_goals) lemma = 0 then (
- defined lemma; None )
+ if Declare.Proof.get_open_goals lemma = 0 then (defined lemma; None)
else Some lemma
let com_terminate interactive_proof tcc_lemma_name tcc_lemma_ref is_mes
fonctional_ref input_type relation rec_arg_num thm_name using_lemmas nb_args
ctx hook =
let start_proof env ctx tac_start tac_end =
- let info = Lemmas.Info.make ~hook () in
+ let info = Declare.Info.make ~hook () in
let lemma =
Lemmas.start_lemma ~name:thm_name ~poly:false (*FIXME*) ~info ctx
(EConstr.of_constr (compute_terminate_type nb_args fonctional_ref))
in
let lemma =
fst
- @@ Lemmas.by
+ @@ Declare.by
(New.observe_tac (fun _ _ -> str "starting_tac") tac_start)
lemma
in
fst
- @@ Lemmas.by
+ @@ Declare.by
(Proofview.V82.tactic
(observe_tac
(fun _ _ -> str "whole_start")
@@ -1608,7 +1607,7 @@ let com_eqn uctx nb_arg eq_name functional_ref f_ref terminate_ref
in
let lemma =
fst
- @@ Lemmas.by
+ @@ Declare.by
(Proofview.V82.tactic
(start_equation f_ref terminate_ref (fun x ->
prove_eq
@@ -1642,7 +1641,8 @@ let com_eqn uctx nb_arg eq_name functional_ref f_ref terminate_ref
in
let _ =
Flags.silently
- (fun () -> Lemmas.save_lemma_proved ~lemma ~opaque:opacity ~idopt:None)
+ (fun () ->
+ Declare.save_lemma_proved ~proof:lemma ~opaque:opacity ~idopt:None)
()
in
()
@@ -1651,7 +1651,7 @@ let com_eqn uctx nb_arg eq_name functional_ref f_ref terminate_ref
let recursive_definition ~interactive_proof ~is_mes function_name rec_impls
type_of_f r rec_arg_num eq generate_induction_principle using_lemmas :
- Lemmas.t option =
+ Declare.Proof.t option =
let open Term in
let open Constr in
let open CVars in