diff options
| author | letouzey | 2012-07-05 16:56:16 +0000 |
|---|---|---|
| committer | letouzey | 2012-07-05 16:56:16 +0000 |
| commit | fc2613e871dffffa788d90044a81598f671d0a3b (patch) | |
| tree | f6f308b3d6b02e1235446b2eb4a2d04b135a0462 /doc | |
| parent | f93f073df630bb46ddd07802026c0326dc72dafd (diff) | |
ZArith + other : favor the use of modern names instead of compat notations
- For instance, refl_equal --> eq_refl
- Npos, Zpos, Zneg now admit more uniform qualified aliases
N.pos, Z.pos, Z.neg.
- A new module BinInt.Pos2Z with results about injections from
positive to Z
- A result about Z.pow pushed in the generic layer
- Zmult_le_compat_{r,l} --> Z.mul_le_mono_nonneg_{r,l}
- Using tactic Z.le_elim instead of Zle_lt_or_eq
- Some cleanup in ring, field, micromega
(use of "Equivalence", "Proper" ...)
- Some adaptions in QArith (for instance changed Qpower.Qpower_decomp)
- In ZMake and ZMake, functor parameters are now named NN and ZZ
instead of N and Z for avoiding confusions
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15515 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'doc')
| -rw-r--r-- | doc/RecTutorial/RecTutorial.tex | 28 | ||||
| -rw-r--r-- | doc/RecTutorial/RecTutorial.v | 14 | ||||
| -rw-r--r-- | doc/faq/FAQ.tex | 16 | ||||
| -rw-r--r-- | doc/faq/interval_discr.v | 14 | ||||
| -rw-r--r-- | doc/refman/Classes.tex | 2 | ||||
| -rw-r--r-- | doc/refman/Natural.tex | 2 | ||||
| -rw-r--r-- | doc/refman/Omega.tex | 2 | ||||
| -rw-r--r-- | doc/refman/Polynom.tex | 2 | ||||
| -rw-r--r-- | doc/refman/Program.tex | 2 | ||||
| -rw-r--r-- | doc/refman/RefMan-coi.tex | 2 | ||||
| -rw-r--r-- | doc/refman/RefMan-gal.tex | 14 | ||||
| -rw-r--r-- | doc/refman/RefMan-lib.tex | 40 | ||||
| -rw-r--r-- | doc/refman/RefMan-ltac.tex | 6 | ||||
| -rw-r--r-- | doc/refman/RefMan-oth.tex | 2 | ||||
| -rw-r--r-- | doc/refman/RefMan-tacex.tex | 6 | ||||
| -rw-r--r-- | doc/refman/Setoid.tex | 6 |
16 files changed, 79 insertions, 79 deletions
diff --git a/doc/RecTutorial/RecTutorial.tex b/doc/RecTutorial/RecTutorial.tex index f2cb383e04..857ba84d77 100644 --- a/doc/RecTutorial/RecTutorial.tex +++ b/doc/RecTutorial/RecTutorial.tex @@ -560,11 +560,11 @@ as it can be infered from $a$. \begin{alltt} Print eq. \it{} Inductive eq (A : Type) (x : A) : A \arrow{} Prop := - refl_equal : x = x + eq_refl : x = x For eq: Argument A is implicit -For refl_equal: Argument A is implicit +For eq_refl: Argument A is implicit For eq: Argument scopes are [type_scope _ _] -For refl_equal: Argument scopes are [type_scope _] +For eq_refl: Argument scopes are [type_scope _] \end{alltt} Notice also that the first parameter $A$ of \texttt{eq} has type @@ -581,15 +581,15 @@ Proof. reflexivity. Qed. -Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4). +Lemma eq_proof_proof : eq_refl (2*6) = eq_refl (3*4). Proof. reflexivity. Qed. Print eq_proof_proof. \it eq_proof_proof = -refl_equal (refl_equal (3 * 4)) - : refl_equal (2 * 6) = refl_equal (3 * 4) +eq_refl (eq_refl (3 * 4)) + : eq_refl (2 * 6) = eq_refl (3 * 4) \tt Lemma eq_lt_le : ( 2 < 4) = (3 {\coqle} 4). @@ -942,10 +942,10 @@ predecessor = fun n : nat {\funarrow} \textbf{| O {\funarrow}} exist (fun m : nat {\funarrow} 0 = 0 {\coqand} m = 0 {\coqor} 0 = S m) 0 (or_introl (0 = 1) - (conj (refl_equal 0) (refl_equal 0))) + (conj (eq_refl 0) (eq_refl 0))) \textbf{| S n0 {\funarrow}} exist (fun m : nat {\funarrow} S n0 = 0 {\coqand} m = 0 {\coqor} S n0 = S m) n0 - (or_intror (S n0 = 0 {\coqand} n0 = 0) (refl_equal (S n0))) + (or_intror (S n0 = 0 {\coqand} n0 = 0) (eq_refl (S n0))) \textbf{end} : {\prodsym} n : nat, \textbf{pred_spec n} \end{alltt} @@ -1084,7 +1084,7 @@ The following term is a proof of ``~$Q\;a\, \arrow{}\, Q\;b$~''. \begin{alltt} fun H : Q a {\funarrow} match \(\pi\) in (_ = y) return Q y with - refl_equal {\funarrow} H + eq_refl {\funarrow} H end \end{alltt} Notice the header of the \texttt{match} construct. @@ -1552,13 +1552,13 @@ node, a tree of height 1 and a tree of height 2: \begin{alltt} Definition isingle l := inode l (fun i {\funarrow} ileaf). -Definition t1 := inode 0 (fun n {\funarrow} isingle (Z_of_nat n)). +Definition t1 := inode 0 (fun n {\funarrow} isingle (Z.of_nat n)). Definition t2 := inode 0 (fun n : nat {\funarrow} - inode (Z_of_nat n) - (fun p {\funarrow} isingle (Z_of_nat (n*p)))). + inode (Z.of_nat n) + (fun p {\funarrow} isingle (Z.of_nat (n*p)))). \end{alltt} @@ -1572,7 +1572,7 @@ appear: Inductive itree_le : itree{\arrow} itree {\arrow} Prop := | le_leaf : {\prodsym} t, itree_le ileaf t | le_node : {\prodsym} l l' s s', - Zle l l' {\arrow} + Z.le l l' {\arrow} ({\prodsym} i, {\exsym} j:nat, itree_le (s i) (s' j)){\arrow} itree_le (inode l s) (inode l' s'). @@ -1597,7 +1597,7 @@ the type of \texttt{itree\_le}, does not present this problem: Inductive itree_le' : itree{\arrow} itree {\arrow} Prop := | le_leaf' : {\prodsym} t, itree_le' ileaf t | le_node' : {\prodsym} l l' s s' g, - Zle l l' {\arrow} + Z.le l l' {\arrow} ({\prodsym} i, itree_le' (s i) (s' (g i))) {\arrow} itree_le' (inode l s) (inode l' s'). diff --git a/doc/RecTutorial/RecTutorial.v b/doc/RecTutorial/RecTutorial.v index 28aaf75204..8cfeebc28b 100644 --- a/doc/RecTutorial/RecTutorial.v +++ b/doc/RecTutorial/RecTutorial.v @@ -83,7 +83,7 @@ Proof. Qed. Print eq_3_3. -Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4). +Lemma eq_proof_proof : eq_refl (2*6) = eq_refl (3*4). Proof. reflexivity. Qed. @@ -241,7 +241,7 @@ Section equality_elimination. (Q : A -> Type). Check (fun H : Q a => match p in (eq _ y) return Q y with - refl_equal => H + eq_refl => H end). End equality_elimination. @@ -377,18 +377,18 @@ Inductive itree : Set := Definition isingle l := inode l (fun i => ileaf). -Definition t1 := inode 0 (fun n => isingle (Z_of_nat (2*n))). +Definition t1 := inode 0 (fun n => isingle (Z.of_nat (2*n))). Definition t2 := inode 0 (fun n : nat => - inode (Z_of_nat n) - (fun p => isingle (Z_of_nat (n*p)))). + inode (Z.of_nat n) + (fun p => isingle (Z.of_nat (n*p)))). Inductive itree_le : itree-> itree -> Prop := | le_leaf : forall t, itree_le ileaf t | le_node : forall l l' s s', - Zle l l' -> + Z.le l l' -> (forall i, exists j:nat, itree_le (s i) (s' j)) -> itree_le (inode l s) (inode l' s'). @@ -423,7 +423,7 @@ Qed. Inductive itree_le' : itree-> itree -> Prop := | le_leaf' : forall t, itree_le' ileaf t | le_node' : forall l l' s s' g, - Zle l l' -> + Z.le l l' -> (forall i, itree_le' (s i) (s' (g i))) -> itree_le' (inode l s) (inode l' s'). diff --git a/doc/faq/FAQ.tex b/doc/faq/FAQ.tex index b63f3ee26c..5ce5e0436c 100644 --- a/doc/faq/FAQ.tex +++ b/doc/faq/FAQ.tex @@ -545,7 +545,7 @@ dependent elimination of reflexive equality proofs. \begin{coq_example*} Axiom Streicher_K : forall (A:Type) (x:A) (P: x=x -> Prop), - P (refl_equal x) -> forall p: x=x, P p. + P (eq_refl x) -> forall p: x=x, P p. \end{coq_example*} In the general case, axiom $K$ is an independent statement of the @@ -563,7 +563,7 @@ Axiom UIP : forall (A:Set) (x y:A) (p1 p2: x=y), p1 = p2. Axiom $K$ is also equivalent to {\em Uniqueness of Reflexive Identity Proofs} \cite{HofStr98} \begin{coq_example*} -Axiom UIP_refl : forall (A:Set) (x:A) (p: x=x), p = refl_equal x. +Axiom UIP_refl : forall (A:Set) (x:A) (p: x=x), p = eq_refl x. \end{coq_example*} Axiom $K$ is also equivalent to @@ -2108,7 +2108,7 @@ Yes, because equality is decidable on {\tt nat}. Here is the proof. Require Import Eqdep_dec. Require Import Peano_dec. Theorem K_nat : - forall (x:nat) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p. + forall (x:nat) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p. Proof. intros; apply K_dec_set with (p := p). apply eq_nat_dec. @@ -2139,16 +2139,16 @@ Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q. Proof. induction p using le_ind'; intro q. replace (le_n n) with - (eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)). + (eq_rect _ (fun n0 => n <= n0) (le_n n) _ eq_refl). 2:reflexivity. - generalize (refl_equal n). + generalize (eq_refl n). pattern n at 2 4 6 10, q; case q; [intro | intros m l e]. rewrite <- eq_rect_eq_nat; trivial. contradiction (le_Sn_n m); rewrite <- e; assumption. replace (le_S n m p) with - (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))). + (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ eq_refl). 2:reflexivity. - generalize (refl_equal (S m)). + generalize (eq_refl (S m)). pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS]. contradiction (le_Sn_n m); rewrite Heq; assumption. injection HeqS; intro Heq; generalize l HeqS. @@ -2536,7 +2536,7 @@ existential variables. Lemma example_show_existentials : forall a b c:nat, a=b -> b=c -> a=c. Proof. intros. -eapply trans_equal. +eapply eq_trans. Show Existentials. eassumption. assumption. diff --git a/doc/faq/interval_discr.v b/doc/faq/interval_discr.v index ed2c0e37ee..671dc988a2 100644 --- a/doc/faq/interval_discr.v +++ b/doc/faq/interval_discr.v @@ -32,16 +32,16 @@ Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q. Proof. induction p using le_ind'; intro q. replace (le_n n) with - (eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)). + (eq_rect _ (fun n0 => n <= n0) (le_n n) _ eq_refl). 2:reflexivity. - generalize (refl_equal n). + generalize (eq_refl n). pattern n at 2 4 6 10, q; case q; [intro | intros m l e]. rewrite <- eq_rect_eq_nat; trivial. contradiction (le_Sn_n m); rewrite <- e; assumption. replace (le_S n m p) with - (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))). + (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ eq_refl). 2:reflexivity. - generalize (refl_equal (S m)). + generalize (eq_refl (S m)). pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS]. contradiction (le_Sn_n m); rewrite Heq; assumption. injection HeqS; intro Heq; generalize l HeqS. @@ -216,7 +216,7 @@ Lemma inj_restrict : Proof. intros A f x y z Hfinj Hneqx Hfy Hfx Heq. assert (f z <> f x). - apply sym_not_eq. + apply not_eq_sym. intro Heqf. apply Hneqx. apply Hfinj. @@ -292,7 +292,7 @@ destruct (le_lt_dec (f xSn) (f y)) as [Hlefy|Hgefy]. assert (Heq : x = y). apply Hfinj. assert (f xSn <> f y). - apply sym_not_eq. + apply not_eq_sym. intro Heqf. apply Hneqy. apply Hfinj. @@ -302,7 +302,7 @@ assert (Heq : x = y). apply le_O_n. apply le_neq_lt; assumption. assert (f xSn <> f x). - apply sym_not_eq. + apply not_eq_sym. intro Heqf. apply Hneqx. apply Hfinj. diff --git a/doc/refman/Classes.tex b/doc/refman/Classes.tex index 20ff649aac..f7c4bd5caf 100644 --- a/doc/refman/Classes.tex +++ b/doc/refman/Classes.tex @@ -71,7 +71,7 @@ Leibniz equality on some type. An example implementation is: Instance unit_EqDec : EqDec unit := { eqb x y := true ; eqb_leibniz x y H := - match x, y return x = y with tt, tt => refl_equal tt end }. + match x, y return x = y with tt, tt => eq_refl tt end }. \end{coq_example*} If one does not give all the members in the \texttt{Instance} diff --git a/doc/refman/Natural.tex b/doc/refman/Natural.tex index 9a9abe5dff..f33c0d3563 100644 --- a/doc/refman/Natural.tex +++ b/doc/refman/Natural.tex @@ -158,7 +158,7 @@ Add Natural Implicit constr1. By default, the proposition (or predicate) constructors \verb=conj=, \verb=or_introl=, \verb=or_intror=, \verb=ex_intro=, -\verb=exT_intro=, \verb=refl_equal=, \verb=refl_eqT= and \verb=exist= +\verb=eq_refl= and \verb=exist= \noindent are declared implicit. Note that declaring implicit the constructor of a datatype (i.e. an inductive type of type \verb=Set=) diff --git a/doc/refman/Omega.tex b/doc/refman/Omega.tex index b9e899ce89..213c050615 100644 --- a/doc/refman/Omega.tex +++ b/doc/refman/Omega.tex @@ -51,7 +51,7 @@ on atomic formulas. Atomic formulas are built from the predicates and in expressions of type \verb=Z=, {\tt omega} recognizes \begin{quote} -\verb!+, -, *, Zsucc!, and constants. +\verb!+, -, *, Z.succ!, and constants. \end{quote} All expressions of type \verb=nat= or \verb=Z= not built on these diff --git a/doc/refman/Polynom.tex b/doc/refman/Polynom.tex index 3898bf4c4b..664c0d3ff2 100644 --- a/doc/refman/Polynom.tex +++ b/doc/refman/Polynom.tex @@ -927,7 +927,7 @@ Open Scope Z_scope. Goal forall x y z:Z, x + 3 + y + y * z = x + 3 + y + z * y. \end{coq_example} \begin{coq_example*} -intros; rewrite (Zmult_comm y z); reflexivity. +intros; rewrite (Z.mul_comm y z); reflexivity. Save toto. \end{coq_example*} \begin{coq_example} diff --git a/doc/refman/Program.tex b/doc/refman/Program.tex index 96073d71a6..fee070fd65 100644 --- a/doc/refman/Program.tex +++ b/doc/refman/Program.tex @@ -53,7 +53,7 @@ will be first rewrote to: (match x as y return (x = y -> _) with | 0 => fun H : x = 0 -> t | S n => fun H : x = S n -> u - end) (refl_equal n). + end) (eq_refl n). \end{coq_example*} This permits to get the proper equalities in the context of proof diff --git a/doc/refman/RefMan-coi.tex b/doc/refman/RefMan-coi.tex index e609fce825..d75b9eb93c 100644 --- a/doc/refman/RefMan-coi.tex +++ b/doc/refman/RefMan-coi.tex @@ -277,7 +277,7 @@ an infinite object of type definition. \begin{coq_example} CoFixpoint eqproof (s1 s2:Stream A) : EqSt s1 (conc s1 s2) := - eqst s1 (conc s1 s2) (refl_equal (hd A (conc s1 s2))) + eqst s1 (conc s1 s2) (eq_refl (hd A (conc s1 s2))) (eqproof (tl A s1) s2). \end{coq_example} \begin{coq_eval} diff --git a/doc/refman/RefMan-gal.tex b/doc/refman/RefMan-gal.tex index a9feb34c5a..6fa7596dbc 100644 --- a/doc/refman/RefMan-gal.tex +++ b/doc/refman/RefMan-gal.tex @@ -566,16 +566,16 @@ clause where {\ident} is dependent in the return type. For instance, in the following example: \begin{coq_example*} Inductive bool : Type := true : bool | false : bool. -Inductive eq (A:Type) (x:A) : A -> Prop := refl_equal : eq A x x. +Inductive eq (A:Type) (x:A) : A -> Prop := eq_refl : eq A x x. Inductive or (A:Prop) (B:Prop) : Prop := | or_introl : A -> or A B | or_intror : B -> or A B. Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) := match b as x return or (eq bool x true) (eq bool x false) with | true => or_introl (eq bool true true) (eq bool true false) - (refl_equal bool true) + (eq_refl bool true) | false => or_intror (eq bool false true) (eq bool false false) - (refl_equal bool false) + (eq_refl bool false) end. \end{coq_example*} the branches have respective types {\tt or (eq bool true true) (eq @@ -591,9 +591,9 @@ same meaning as the previous one. Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) := match b return or (eq bool b true) (eq bool b false) with | true => or_introl (eq bool true true) (eq bool true false) - (refl_equal bool true) + (eq_refl bool true) | false => or_intror (eq bool false true) (eq bool false false) - (refl_equal bool false) + (eq_refl bool false) end. \end{coq_example*} @@ -621,9 +621,9 @@ the return type is not dependent on them. For instance, in the following example: \begin{coq_example*} -Definition sym_equal (A:Type) (x y:A) (H:eq A x y) : eq A y x := +Definition eq_sym (A:Type) (x y:A) (H:eq A x y) : eq A y x := match H in eq _ _ z return eq A z x with - | refl_equal => refl_equal A x + | eq_refl => eq_refl A x end. \end{coq_example*} the type of the branch has type {\tt eq~A~x~x} because the third diff --git a/doc/refman/RefMan-lib.tex b/doc/refman/RefMan-lib.tex index 31c6fef4a1..26c564e52f 100644 --- a/doc/refman/RefMan-lib.tex +++ b/doc/refman/RefMan-lib.tex @@ -220,11 +220,11 @@ define \verb:eq: as the smallest reflexive relation, and it is also equivalent to Leibniz' equality. \ttindex{eq} -\ttindex{refl\_equal} +\ttindex{eq\_refl} \begin{coq_example*} Inductive eq (A:Type) (x:A) : A -> Prop := - refl_equal : eq A x x. + eq_refl : eq A x x. \end{coq_example*} \subsubsection[Lemmas]{Lemmas\label{PreludeLemmas}} @@ -239,8 +239,8 @@ Theorem absurd : forall A C:Prop, A -> ~ A -> C. \begin{coq_eval} Abort. \end{coq_eval} -\ttindex{sym\_eq} -\ttindex{trans\_eq} +\ttindex{eq\_sym} +\ttindex{eq\_trans} \ttindex{f\_equal} \ttindex{sym\_not\_eq} \begin{coq_example*} @@ -248,10 +248,10 @@ Section equality. Variables A B : Type. Variable f : A -> B. Variables x y z : A. -Theorem sym_eq : x = y -> y = x. -Theorem trans_eq : x = y -> y = z -> x = z. +Theorem eq_sym : x = y -> y = x. +Theorem eq_trans : x = y -> y = z -> x = z. Theorem f_equal : x = y -> f x = f y. -Theorem sym_not_eq : x <> y -> y <> x. +Theorem not_eq_sym : x <> y -> y <> x. \end{coq_example*} \begin{coq_eval} Abort. @@ -280,7 +280,7 @@ Abort. \end{coq_eval} %Abort (for now predefined eq_rect) \begin{coq_example*} -Hint Immediate sym_eq sym_not_eq : core. +Hint Immediate eq_sym not_eq_sym : core. \end{coq_example*} \ttindex{f\_equal$i$} @@ -864,22 +864,22 @@ module {\tt ZArith} and opening scope {\tt Z\_scope}. \begin{tabular}{l|l|l|l} Notation & Interpretation & Precedence & Associativity\\ \hline -\verb!_ < _! & {\tt Zlt} &&\\ -\verb!x <= y! & {\tt Zle} &&\\ -\verb!_ > _! & {\tt Zgt} &&\\ -\verb!x >= y! & {\tt Zge} &&\\ +\verb!_ < _! & {\tt Z.lt} &&\\ +\verb!x <= y! & {\tt Z.le} &&\\ +\verb!_ > _! & {\tt Z.gt} &&\\ +\verb!x >= y! & {\tt Z.ge} &&\\ \verb!x < y < z! & {\tt x < y \verb!/\! y < z} &&\\ \verb!x < y <= z! & {\tt x < y \verb!/\! y <= z} &&\\ \verb!x <= y < z! & {\tt x <= y \verb!/\! y < z} &&\\ \verb!x <= y <= z! & {\tt x <= y \verb!/\! y <= z} &&\\ -\verb!_ ?= _! & {\tt Zcompare} & 70 & no\\ -\verb!_ + _! & {\tt Zplus} &&\\ -\verb!_ - _! & {\tt Zminus} &&\\ -\verb!_ * _! & {\tt Zmult} &&\\ -\verb!_ / _! & {\tt Zdiv} &&\\ -\verb!_ mod _! & {\tt Zmod} & 40 & no \\ -\verb!- _! & {\tt Zopp} &&\\ -\verb!_ ^ _! & {\tt Zpower} &&\\ +\verb!_ ?= _! & {\tt Z.compare} & 70 & no\\ +\verb!_ + _! & {\tt Z.add} &&\\ +\verb!_ - _! & {\tt Z.sub} &&\\ +\verb!_ * _! & {\tt Z.mul} &&\\ +\verb!_ / _! & {\tt Z.div} &&\\ +\verb!_ mod _! & {\tt Z.modulo} & 40 & no \\ +\verb!- _! & {\tt Z.opp} &&\\ +\verb!_ ^ _! & {\tt Z.pow} &&\\ \end{tabular} \end{center} \caption{Definition of the scope for integer arithmetics ({\tt Z\_scope})} diff --git a/doc/refman/RefMan-ltac.tex b/doc/refman/RefMan-ltac.tex index d7f00584e0..f10b9c3ee5 100644 --- a/doc/refman/RefMan-ltac.tex +++ b/doc/refman/RefMan-ltac.tex @@ -607,7 +607,7 @@ Ltac f x := match x with context f [S ?X] => idtac X; (* To display the evaluation order *) - assert (p := refl_equal 1 : X=1); (* To filter the case X=1 *) + assert (p := eq_refl 1 : X=1); (* To filter the case X=1 *) let x:= context f[O] in assert (x=O) (* To observe the context *) end. Goal True. @@ -1205,7 +1205,7 @@ Axiom AR_unit : (A -> unit) = unit. Axiom AL_unit : (unit -> A) = A. Lemma Cons : B = C -> A * B = A * C. Proof. -intro Heq; rewrite Heq; apply refl_equal. +intro Heq; rewrite Heq; reflexivity. Qed. End Iso_axioms. \end{coq_example*} @@ -1272,7 +1272,7 @@ Ltac assoc := repeat rewrite <- Ass. \begin{coq_example} Ltac DoCompare n := match goal with - | [ |- (?A = ?A) ] => apply refl_equal + | [ |- (?A = ?A) ] => reflexivity | [ |- (?A * ?B = ?A * ?C) ] => apply Cons; let newn := Length B in DoCompare newn | [ |- (?A * ?B = ?C) ] => diff --git a/doc/refman/RefMan-oth.tex b/doc/refman/RefMan-oth.tex index f81811430d..4208787fcc 100644 --- a/doc/refman/RefMan-oth.tex +++ b/doc/refman/RefMan-oth.tex @@ -266,7 +266,7 @@ may be enclosed by optional {\tt [ ]} delimiters. Require Import ZArith. \end{coq_example*} \begin{coq_example} -SearchAbout Zmult Zplus "distr". +SearchAbout Z.mul Z.add "distr". SearchAbout "+"%Z "*"%Z "distr" -positive -Prop. SearchAbout (?x * _ + ?x * _)%Z outside OmegaLemmas. \end{coq_example} diff --git a/doc/refman/RefMan-tacex.tex b/doc/refman/RefMan-tacex.tex index 8330a434bd..91ff3d5ece 100644 --- a/doc/refman/RefMan-tacex.tex +++ b/doc/refman/RefMan-tacex.tex @@ -1129,7 +1129,7 @@ red; intros (x, (y, Hy)). elim (Hy 0); elim (Hy 1); elim (Hy 2); intros; match goal with | [_:(?a = ?b),_:(?a = ?c) |- _ ] => - cut (b = c); [ discriminate | apply trans_equal with a; auto ] + cut (b = c); [ discriminate | transitivity a; auto ] end. Qed. \end{coq_example*} @@ -1379,7 +1379,7 @@ Axiom AR_unit : (A -> unit) = unit. Axiom AL_unit : (unit -> A) = A. Lemma Cons : B = C -> A * B = A * C. Proof. -intro Heq; rewrite Heq; apply refl_equal. +intro Heq; rewrite Heq; reflexivity. Qed. End Iso_axioms. \end{coq_example*} @@ -1439,7 +1439,7 @@ Ltac assoc := repeat rewrite <- Ass. \begin{coq_example} Ltac DoCompare n := match goal with - | [ |- (?A = ?A) ] => apply refl_equal + | [ |- (?A = ?A) ] => reflexivity | [ |- (?A * ?B = ?A * ?C) ] => apply Cons; let newn := Length B in DoCompare newn diff --git a/doc/refman/Setoid.tex b/doc/refman/Setoid.tex index 8e1bb10c9b..c0913135c9 100644 --- a/doc/refman/Setoid.tex +++ b/doc/refman/Setoid.tex @@ -371,9 +371,9 @@ the replaced term occurs in a covariant position. \begin{cscexample}[Covariance and contravariance] Suppose that division over real numbers has been defined as a -morphism of signature \texttt{Zdiv: Zlt ++> Zlt -{}-> Zlt} (i.e. -\texttt{Zdiv} is increasing in its first argument, but decreasing on the -second one). Let \texttt{<} denotes \texttt{Zlt}. +morphism of signature \texttt{Z.div: Z.lt ++> Z.lt -{}-> Z.lt} (i.e. +\texttt{Z.div} is increasing in its first argument, but decreasing on the +second one). Let \texttt{<} denotes \texttt{Z.lt}. Under the hypothesis \texttt{H: x < y} we have \texttt{k < x / y -> k < x / x}, but not \texttt{k < y / x -> k < x / x}. |
