aboutsummaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorletouzey2012-07-05 16:56:16 +0000
committerletouzey2012-07-05 16:56:16 +0000
commitfc2613e871dffffa788d90044a81598f671d0a3b (patch)
treef6f308b3d6b02e1235446b2eb4a2d04b135a0462 /doc
parentf93f073df630bb46ddd07802026c0326dc72dafd (diff)
ZArith + other : favor the use of modern names instead of compat notations
- For instance, refl_equal --> eq_refl - Npos, Zpos, Zneg now admit more uniform qualified aliases N.pos, Z.pos, Z.neg. - A new module BinInt.Pos2Z with results about injections from positive to Z - A result about Z.pow pushed in the generic layer - Zmult_le_compat_{r,l} --> Z.mul_le_mono_nonneg_{r,l} - Using tactic Z.le_elim instead of Zle_lt_or_eq - Some cleanup in ring, field, micromega (use of "Equivalence", "Proper" ...) - Some adaptions in QArith (for instance changed Qpower.Qpower_decomp) - In ZMake and ZMake, functor parameters are now named NN and ZZ instead of N and Z for avoiding confusions git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15515 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'doc')
-rw-r--r--doc/RecTutorial/RecTutorial.tex28
-rw-r--r--doc/RecTutorial/RecTutorial.v14
-rw-r--r--doc/faq/FAQ.tex16
-rw-r--r--doc/faq/interval_discr.v14
-rw-r--r--doc/refman/Classes.tex2
-rw-r--r--doc/refman/Natural.tex2
-rw-r--r--doc/refman/Omega.tex2
-rw-r--r--doc/refman/Polynom.tex2
-rw-r--r--doc/refman/Program.tex2
-rw-r--r--doc/refman/RefMan-coi.tex2
-rw-r--r--doc/refman/RefMan-gal.tex14
-rw-r--r--doc/refman/RefMan-lib.tex40
-rw-r--r--doc/refman/RefMan-ltac.tex6
-rw-r--r--doc/refman/RefMan-oth.tex2
-rw-r--r--doc/refman/RefMan-tacex.tex6
-rw-r--r--doc/refman/Setoid.tex6
16 files changed, 79 insertions, 79 deletions
diff --git a/doc/RecTutorial/RecTutorial.tex b/doc/RecTutorial/RecTutorial.tex
index f2cb383e04..857ba84d77 100644
--- a/doc/RecTutorial/RecTutorial.tex
+++ b/doc/RecTutorial/RecTutorial.tex
@@ -560,11 +560,11 @@ as it can be infered from $a$.
\begin{alltt}
Print eq.
\it{} Inductive eq (A : Type) (x : A) : A \arrow{} Prop :=
- refl_equal : x = x
+ eq_refl : x = x
For eq: Argument A is implicit
-For refl_equal: Argument A is implicit
+For eq_refl: Argument A is implicit
For eq: Argument scopes are [type_scope _ _]
-For refl_equal: Argument scopes are [type_scope _]
+For eq_refl: Argument scopes are [type_scope _]
\end{alltt}
Notice also that the first parameter $A$ of \texttt{eq} has type
@@ -581,15 +581,15 @@ Proof.
reflexivity.
Qed.
-Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4).
+Lemma eq_proof_proof : eq_refl (2*6) = eq_refl (3*4).
Proof.
reflexivity.
Qed.
Print eq_proof_proof.
\it eq_proof_proof =
-refl_equal (refl_equal (3 * 4))
- : refl_equal (2 * 6) = refl_equal (3 * 4)
+eq_refl (eq_refl (3 * 4))
+ : eq_refl (2 * 6) = eq_refl (3 * 4)
\tt
Lemma eq_lt_le : ( 2 < 4) = (3 {\coqle} 4).
@@ -942,10 +942,10 @@ predecessor = fun n : nat {\funarrow}
\textbf{| O {\funarrow}}
exist (fun m : nat {\funarrow} 0 = 0 {\coqand} m = 0 {\coqor} 0 = S m) 0
(or_introl (0 = 1)
- (conj (refl_equal 0) (refl_equal 0)))
+ (conj (eq_refl 0) (eq_refl 0)))
\textbf{| S n0 {\funarrow}}
exist (fun m : nat {\funarrow} S n0 = 0 {\coqand} m = 0 {\coqor} S n0 = S m) n0
- (or_intror (S n0 = 0 {\coqand} n0 = 0) (refl_equal (S n0)))
+ (or_intror (S n0 = 0 {\coqand} n0 = 0) (eq_refl (S n0)))
\textbf{end} : {\prodsym} n : nat, \textbf{pred_spec n}
\end{alltt}
@@ -1084,7 +1084,7 @@ The following term is a proof of ``~$Q\;a\, \arrow{}\, Q\;b$~''.
\begin{alltt}
fun H : Q a {\funarrow}
match \(\pi\) in (_ = y) return Q y with
- refl_equal {\funarrow} H
+ eq_refl {\funarrow} H
end
\end{alltt}
Notice the header of the \texttt{match} construct.
@@ -1552,13 +1552,13 @@ node, a tree of height 1 and a tree of height 2:
\begin{alltt}
Definition isingle l := inode l (fun i {\funarrow} ileaf).
-Definition t1 := inode 0 (fun n {\funarrow} isingle (Z_of_nat n)).
+Definition t1 := inode 0 (fun n {\funarrow} isingle (Z.of_nat n)).
Definition t2 :=
inode 0
(fun n : nat {\funarrow}
- inode (Z_of_nat n)
- (fun p {\funarrow} isingle (Z_of_nat (n*p)))).
+ inode (Z.of_nat n)
+ (fun p {\funarrow} isingle (Z.of_nat (n*p)))).
\end{alltt}
@@ -1572,7 +1572,7 @@ appear:
Inductive itree_le : itree{\arrow} itree {\arrow} Prop :=
| le_leaf : {\prodsym} t, itree_le ileaf t
| le_node : {\prodsym} l l' s s',
- Zle l l' {\arrow}
+ Z.le l l' {\arrow}
({\prodsym} i, {\exsym} j:nat, itree_le (s i) (s' j)){\arrow}
itree_le (inode l s) (inode l' s').
@@ -1597,7 +1597,7 @@ the type of \texttt{itree\_le}, does not present this problem:
Inductive itree_le' : itree{\arrow} itree {\arrow} Prop :=
| le_leaf' : {\prodsym} t, itree_le' ileaf t
| le_node' : {\prodsym} l l' s s' g,
- Zle l l' {\arrow}
+ Z.le l l' {\arrow}
({\prodsym} i, itree_le' (s i) (s' (g i))) {\arrow}
itree_le' (inode l s) (inode l' s').
diff --git a/doc/RecTutorial/RecTutorial.v b/doc/RecTutorial/RecTutorial.v
index 28aaf75204..8cfeebc28b 100644
--- a/doc/RecTutorial/RecTutorial.v
+++ b/doc/RecTutorial/RecTutorial.v
@@ -83,7 +83,7 @@ Proof.
Qed.
Print eq_3_3.
-Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4).
+Lemma eq_proof_proof : eq_refl (2*6) = eq_refl (3*4).
Proof.
reflexivity.
Qed.
@@ -241,7 +241,7 @@ Section equality_elimination.
(Q : A -> Type).
Check (fun H : Q a =>
match p in (eq _ y) return Q y with
- refl_equal => H
+ eq_refl => H
end).
End equality_elimination.
@@ -377,18 +377,18 @@ Inductive itree : Set :=
Definition isingle l := inode l (fun i => ileaf).
-Definition t1 := inode 0 (fun n => isingle (Z_of_nat (2*n))).
+Definition t1 := inode 0 (fun n => isingle (Z.of_nat (2*n))).
Definition t2 := inode 0
(fun n : nat =>
- inode (Z_of_nat n)
- (fun p => isingle (Z_of_nat (n*p)))).
+ inode (Z.of_nat n)
+ (fun p => isingle (Z.of_nat (n*p)))).
Inductive itree_le : itree-> itree -> Prop :=
| le_leaf : forall t, itree_le ileaf t
| le_node : forall l l' s s',
- Zle l l' ->
+ Z.le l l' ->
(forall i, exists j:nat, itree_le (s i) (s' j)) ->
itree_le (inode l s) (inode l' s').
@@ -423,7 +423,7 @@ Qed.
Inductive itree_le' : itree-> itree -> Prop :=
| le_leaf' : forall t, itree_le' ileaf t
| le_node' : forall l l' s s' g,
- Zle l l' ->
+ Z.le l l' ->
(forall i, itree_le' (s i) (s' (g i))) ->
itree_le' (inode l s) (inode l' s').
diff --git a/doc/faq/FAQ.tex b/doc/faq/FAQ.tex
index b63f3ee26c..5ce5e0436c 100644
--- a/doc/faq/FAQ.tex
+++ b/doc/faq/FAQ.tex
@@ -545,7 +545,7 @@ dependent elimination of reflexive equality proofs.
\begin{coq_example*}
Axiom Streicher_K :
forall (A:Type) (x:A) (P: x=x -> Prop),
- P (refl_equal x) -> forall p: x=x, P p.
+ P (eq_refl x) -> forall p: x=x, P p.
\end{coq_example*}
In the general case, axiom $K$ is an independent statement of the
@@ -563,7 +563,7 @@ Axiom UIP : forall (A:Set) (x y:A) (p1 p2: x=y), p1 = p2.
Axiom $K$ is also equivalent to {\em Uniqueness of Reflexive Identity Proofs} \cite{HofStr98}
\begin{coq_example*}
-Axiom UIP_refl : forall (A:Set) (x:A) (p: x=x), p = refl_equal x.
+Axiom UIP_refl : forall (A:Set) (x:A) (p: x=x), p = eq_refl x.
\end{coq_example*}
Axiom $K$ is also equivalent to
@@ -2108,7 +2108,7 @@ Yes, because equality is decidable on {\tt nat}. Here is the proof.
Require Import Eqdep_dec.
Require Import Peano_dec.
Theorem K_nat :
- forall (x:nat) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:nat) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof.
intros; apply K_dec_set with (p := p).
apply eq_nat_dec.
@@ -2139,16 +2139,16 @@ Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
Proof.
induction p using le_ind'; intro q.
replace (le_n n) with
- (eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)).
+ (eq_rect _ (fun n0 => n <= n0) (le_n n) _ eq_refl).
2:reflexivity.
- generalize (refl_equal n).
+ generalize (eq_refl n).
pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
rewrite <- eq_rect_eq_nat; trivial.
contradiction (le_Sn_n m); rewrite <- e; assumption.
replace (le_S n m p) with
- (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))).
+ (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ eq_refl).
2:reflexivity.
- generalize (refl_equal (S m)).
+ generalize (eq_refl (S m)).
pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
contradiction (le_Sn_n m); rewrite Heq; assumption.
injection HeqS; intro Heq; generalize l HeqS.
@@ -2536,7 +2536,7 @@ existential variables.
Lemma example_show_existentials : forall a b c:nat, a=b -> b=c -> a=c.
Proof.
intros.
-eapply trans_equal.
+eapply eq_trans.
Show Existentials.
eassumption.
assumption.
diff --git a/doc/faq/interval_discr.v b/doc/faq/interval_discr.v
index ed2c0e37ee..671dc988a2 100644
--- a/doc/faq/interval_discr.v
+++ b/doc/faq/interval_discr.v
@@ -32,16 +32,16 @@ Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
Proof.
induction p using le_ind'; intro q.
replace (le_n n) with
- (eq_rect _ (fun n0 => n <= n0) (le_n n) _ (refl_equal n)).
+ (eq_rect _ (fun n0 => n <= n0) (le_n n) _ eq_refl).
2:reflexivity.
- generalize (refl_equal n).
+ generalize (eq_refl n).
pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
rewrite <- eq_rect_eq_nat; trivial.
contradiction (le_Sn_n m); rewrite <- e; assumption.
replace (le_S n m p) with
- (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ (refl_equal (S m))).
+ (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ eq_refl).
2:reflexivity.
- generalize (refl_equal (S m)).
+ generalize (eq_refl (S m)).
pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
contradiction (le_Sn_n m); rewrite Heq; assumption.
injection HeqS; intro Heq; generalize l HeqS.
@@ -216,7 +216,7 @@ Lemma inj_restrict :
Proof.
intros A f x y z Hfinj Hneqx Hfy Hfx Heq.
assert (f z <> f x).
- apply sym_not_eq.
+ apply not_eq_sym.
intro Heqf.
apply Hneqx.
apply Hfinj.
@@ -292,7 +292,7 @@ destruct (le_lt_dec (f xSn) (f y)) as [Hlefy|Hgefy].
assert (Heq : x = y).
apply Hfinj.
assert (f xSn <> f y).
- apply sym_not_eq.
+ apply not_eq_sym.
intro Heqf.
apply Hneqy.
apply Hfinj.
@@ -302,7 +302,7 @@ assert (Heq : x = y).
apply le_O_n.
apply le_neq_lt; assumption.
assert (f xSn <> f x).
- apply sym_not_eq.
+ apply not_eq_sym.
intro Heqf.
apply Hneqx.
apply Hfinj.
diff --git a/doc/refman/Classes.tex b/doc/refman/Classes.tex
index 20ff649aac..f7c4bd5caf 100644
--- a/doc/refman/Classes.tex
+++ b/doc/refman/Classes.tex
@@ -71,7 +71,7 @@ Leibniz equality on some type. An example implementation is:
Instance unit_EqDec : EqDec unit :=
{ eqb x y := true ;
eqb_leibniz x y H :=
- match x, y return x = y with tt, tt => refl_equal tt end }.
+ match x, y return x = y with tt, tt => eq_refl tt end }.
\end{coq_example*}
If one does not give all the members in the \texttt{Instance}
diff --git a/doc/refman/Natural.tex b/doc/refman/Natural.tex
index 9a9abe5dff..f33c0d3563 100644
--- a/doc/refman/Natural.tex
+++ b/doc/refman/Natural.tex
@@ -158,7 +158,7 @@ Add Natural Implicit constr1.
By default, the proposition (or predicate) constructors
\verb=conj=, \verb=or_introl=, \verb=or_intror=, \verb=ex_intro=,
-\verb=exT_intro=, \verb=refl_equal=, \verb=refl_eqT= and \verb=exist=
+\verb=eq_refl= and \verb=exist=
\noindent are declared implicit. Note that declaring implicit the
constructor of a datatype (i.e. an inductive type of type \verb=Set=)
diff --git a/doc/refman/Omega.tex b/doc/refman/Omega.tex
index b9e899ce89..213c050615 100644
--- a/doc/refman/Omega.tex
+++ b/doc/refman/Omega.tex
@@ -51,7 +51,7 @@ on atomic formulas. Atomic formulas are built from the predicates
and in expressions of type \verb=Z=, {\tt omega} recognizes
\begin{quote}
-\verb!+, -, *, Zsucc!, and constants.
+\verb!+, -, *, Z.succ!, and constants.
\end{quote}
All expressions of type \verb=nat= or \verb=Z= not built on these
diff --git a/doc/refman/Polynom.tex b/doc/refman/Polynom.tex
index 3898bf4c4b..664c0d3ff2 100644
--- a/doc/refman/Polynom.tex
+++ b/doc/refman/Polynom.tex
@@ -927,7 +927,7 @@ Open Scope Z_scope.
Goal forall x y z:Z, x + 3 + y + y * z = x + 3 + y + z * y.
\end{coq_example}
\begin{coq_example*}
-intros; rewrite (Zmult_comm y z); reflexivity.
+intros; rewrite (Z.mul_comm y z); reflexivity.
Save toto.
\end{coq_example*}
\begin{coq_example}
diff --git a/doc/refman/Program.tex b/doc/refman/Program.tex
index 96073d71a6..fee070fd65 100644
--- a/doc/refman/Program.tex
+++ b/doc/refman/Program.tex
@@ -53,7 +53,7 @@ will be first rewrote to:
(match x as y return (x = y -> _) with
| 0 => fun H : x = 0 -> t
| S n => fun H : x = S n -> u
- end) (refl_equal n).
+ end) (eq_refl n).
\end{coq_example*}
This permits to get the proper equalities in the context of proof
diff --git a/doc/refman/RefMan-coi.tex b/doc/refman/RefMan-coi.tex
index e609fce825..d75b9eb93c 100644
--- a/doc/refman/RefMan-coi.tex
+++ b/doc/refman/RefMan-coi.tex
@@ -277,7 +277,7 @@ an infinite object of type
definition.
\begin{coq_example}
CoFixpoint eqproof (s1 s2:Stream A) : EqSt s1 (conc s1 s2) :=
- eqst s1 (conc s1 s2) (refl_equal (hd A (conc s1 s2)))
+ eqst s1 (conc s1 s2) (eq_refl (hd A (conc s1 s2)))
(eqproof (tl A s1) s2).
\end{coq_example}
\begin{coq_eval}
diff --git a/doc/refman/RefMan-gal.tex b/doc/refman/RefMan-gal.tex
index a9feb34c5a..6fa7596dbc 100644
--- a/doc/refman/RefMan-gal.tex
+++ b/doc/refman/RefMan-gal.tex
@@ -566,16 +566,16 @@ clause where {\ident} is dependent in the return type.
For instance, in the following example:
\begin{coq_example*}
Inductive bool : Type := true : bool | false : bool.
-Inductive eq (A:Type) (x:A) : A -> Prop := refl_equal : eq A x x.
+Inductive eq (A:Type) (x:A) : A -> Prop := eq_refl : eq A x x.
Inductive or (A:Prop) (B:Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.
Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
:= match b as x return or (eq bool x true) (eq bool x false) with
| true => or_introl (eq bool true true) (eq bool true false)
- (refl_equal bool true)
+ (eq_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false)
- (refl_equal bool false)
+ (eq_refl bool false)
end.
\end{coq_example*}
the branches have respective types {\tt or (eq bool true true) (eq
@@ -591,9 +591,9 @@ same meaning as the previous one.
Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
:= match b return or (eq bool b true) (eq bool b false) with
| true => or_introl (eq bool true true) (eq bool true false)
- (refl_equal bool true)
+ (eq_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false)
- (refl_equal bool false)
+ (eq_refl bool false)
end.
\end{coq_example*}
@@ -621,9 +621,9 @@ the return type is not dependent on them.
For instance, in the following example:
\begin{coq_example*}
-Definition sym_equal (A:Type) (x y:A) (H:eq A x y) : eq A y x :=
+Definition eq_sym (A:Type) (x y:A) (H:eq A x y) : eq A y x :=
match H in eq _ _ z return eq A z x with
- | refl_equal => refl_equal A x
+ | eq_refl => eq_refl A x
end.
\end{coq_example*}
the type of the branch has type {\tt eq~A~x~x} because the third
diff --git a/doc/refman/RefMan-lib.tex b/doc/refman/RefMan-lib.tex
index 31c6fef4a1..26c564e52f 100644
--- a/doc/refman/RefMan-lib.tex
+++ b/doc/refman/RefMan-lib.tex
@@ -220,11 +220,11 @@ define \verb:eq: as the smallest reflexive relation, and it is also
equivalent to Leibniz' equality.
\ttindex{eq}
-\ttindex{refl\_equal}
+\ttindex{eq\_refl}
\begin{coq_example*}
Inductive eq (A:Type) (x:A) : A -> Prop :=
- refl_equal : eq A x x.
+ eq_refl : eq A x x.
\end{coq_example*}
\subsubsection[Lemmas]{Lemmas\label{PreludeLemmas}}
@@ -239,8 +239,8 @@ Theorem absurd : forall A C:Prop, A -> ~ A -> C.
\begin{coq_eval}
Abort.
\end{coq_eval}
-\ttindex{sym\_eq}
-\ttindex{trans\_eq}
+\ttindex{eq\_sym}
+\ttindex{eq\_trans}
\ttindex{f\_equal}
\ttindex{sym\_not\_eq}
\begin{coq_example*}
@@ -248,10 +248,10 @@ Section equality.
Variables A B : Type.
Variable f : A -> B.
Variables x y z : A.
-Theorem sym_eq : x = y -> y = x.
-Theorem trans_eq : x = y -> y = z -> x = z.
+Theorem eq_sym : x = y -> y = x.
+Theorem eq_trans : x = y -> y = z -> x = z.
Theorem f_equal : x = y -> f x = f y.
-Theorem sym_not_eq : x <> y -> y <> x.
+Theorem not_eq_sym : x <> y -> y <> x.
\end{coq_example*}
\begin{coq_eval}
Abort.
@@ -280,7 +280,7 @@ Abort.
\end{coq_eval}
%Abort (for now predefined eq_rect)
\begin{coq_example*}
-Hint Immediate sym_eq sym_not_eq : core.
+Hint Immediate eq_sym not_eq_sym : core.
\end{coq_example*}
\ttindex{f\_equal$i$}
@@ -864,22 +864,22 @@ module {\tt ZArith} and opening scope {\tt Z\_scope}.
\begin{tabular}{l|l|l|l}
Notation & Interpretation & Precedence & Associativity\\
\hline
-\verb!_ < _! & {\tt Zlt} &&\\
-\verb!x <= y! & {\tt Zle} &&\\
-\verb!_ > _! & {\tt Zgt} &&\\
-\verb!x >= y! & {\tt Zge} &&\\
+\verb!_ < _! & {\tt Z.lt} &&\\
+\verb!x <= y! & {\tt Z.le} &&\\
+\verb!_ > _! & {\tt Z.gt} &&\\
+\verb!x >= y! & {\tt Z.ge} &&\\
\verb!x < y < z! & {\tt x < y \verb!/\! y < z} &&\\
\verb!x < y <= z! & {\tt x < y \verb!/\! y <= z} &&\\
\verb!x <= y < z! & {\tt x <= y \verb!/\! y < z} &&\\
\verb!x <= y <= z! & {\tt x <= y \verb!/\! y <= z} &&\\
-\verb!_ ?= _! & {\tt Zcompare} & 70 & no\\
-\verb!_ + _! & {\tt Zplus} &&\\
-\verb!_ - _! & {\tt Zminus} &&\\
-\verb!_ * _! & {\tt Zmult} &&\\
-\verb!_ / _! & {\tt Zdiv} &&\\
-\verb!_ mod _! & {\tt Zmod} & 40 & no \\
-\verb!- _! & {\tt Zopp} &&\\
-\verb!_ ^ _! & {\tt Zpower} &&\\
+\verb!_ ?= _! & {\tt Z.compare} & 70 & no\\
+\verb!_ + _! & {\tt Z.add} &&\\
+\verb!_ - _! & {\tt Z.sub} &&\\
+\verb!_ * _! & {\tt Z.mul} &&\\
+\verb!_ / _! & {\tt Z.div} &&\\
+\verb!_ mod _! & {\tt Z.modulo} & 40 & no \\
+\verb!- _! & {\tt Z.opp} &&\\
+\verb!_ ^ _! & {\tt Z.pow} &&\\
\end{tabular}
\end{center}
\caption{Definition of the scope for integer arithmetics ({\tt Z\_scope})}
diff --git a/doc/refman/RefMan-ltac.tex b/doc/refman/RefMan-ltac.tex
index d7f00584e0..f10b9c3ee5 100644
--- a/doc/refman/RefMan-ltac.tex
+++ b/doc/refman/RefMan-ltac.tex
@@ -607,7 +607,7 @@ Ltac f x :=
match x with
context f [S ?X] =>
idtac X; (* To display the evaluation order *)
- assert (p := refl_equal 1 : X=1); (* To filter the case X=1 *)
+ assert (p := eq_refl 1 : X=1); (* To filter the case X=1 *)
let x:= context f[O] in assert (x=O) (* To observe the context *)
end.
Goal True.
@@ -1205,7 +1205,7 @@ Axiom AR_unit : (A -> unit) = unit.
Axiom AL_unit : (unit -> A) = A.
Lemma Cons : B = C -> A * B = A * C.
Proof.
-intro Heq; rewrite Heq; apply refl_equal.
+intro Heq; rewrite Heq; reflexivity.
Qed.
End Iso_axioms.
\end{coq_example*}
@@ -1272,7 +1272,7 @@ Ltac assoc := repeat rewrite <- Ass.
\begin{coq_example}
Ltac DoCompare n :=
match goal with
- | [ |- (?A = ?A) ] => apply refl_equal
+ | [ |- (?A = ?A) ] => reflexivity
| [ |- (?A * ?B = ?A * ?C) ] =>
apply Cons; let newn := Length B in DoCompare newn
| [ |- (?A * ?B = ?C) ] =>
diff --git a/doc/refman/RefMan-oth.tex b/doc/refman/RefMan-oth.tex
index f81811430d..4208787fcc 100644
--- a/doc/refman/RefMan-oth.tex
+++ b/doc/refman/RefMan-oth.tex
@@ -266,7 +266,7 @@ may be enclosed by optional {\tt [ ]} delimiters.
Require Import ZArith.
\end{coq_example*}
\begin{coq_example}
-SearchAbout Zmult Zplus "distr".
+SearchAbout Z.mul Z.add "distr".
SearchAbout "+"%Z "*"%Z "distr" -positive -Prop.
SearchAbout (?x * _ + ?x * _)%Z outside OmegaLemmas.
\end{coq_example}
diff --git a/doc/refman/RefMan-tacex.tex b/doc/refman/RefMan-tacex.tex
index 8330a434bd..91ff3d5ece 100644
--- a/doc/refman/RefMan-tacex.tex
+++ b/doc/refman/RefMan-tacex.tex
@@ -1129,7 +1129,7 @@ red; intros (x, (y, Hy)).
elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;
match goal with
| [_:(?a = ?b),_:(?a = ?c) |- _ ] =>
- cut (b = c); [ discriminate | apply trans_equal with a; auto ]
+ cut (b = c); [ discriminate | transitivity a; auto ]
end.
Qed.
\end{coq_example*}
@@ -1379,7 +1379,7 @@ Axiom AR_unit : (A -> unit) = unit.
Axiom AL_unit : (unit -> A) = A.
Lemma Cons : B = C -> A * B = A * C.
Proof.
-intro Heq; rewrite Heq; apply refl_equal.
+intro Heq; rewrite Heq; reflexivity.
Qed.
End Iso_axioms.
\end{coq_example*}
@@ -1439,7 +1439,7 @@ Ltac assoc := repeat rewrite <- Ass.
\begin{coq_example}
Ltac DoCompare n :=
match goal with
- | [ |- (?A = ?A) ] => apply refl_equal
+ | [ |- (?A = ?A) ] => reflexivity
| [ |- (?A * ?B = ?A * ?C) ] =>
apply Cons; let newn := Length B in
DoCompare newn
diff --git a/doc/refman/Setoid.tex b/doc/refman/Setoid.tex
index 8e1bb10c9b..c0913135c9 100644
--- a/doc/refman/Setoid.tex
+++ b/doc/refman/Setoid.tex
@@ -371,9 +371,9 @@ the replaced term occurs in a covariant position.
\begin{cscexample}[Covariance and contravariance]
Suppose that division over real numbers has been defined as a
-morphism of signature \texttt{Zdiv: Zlt ++> Zlt -{}-> Zlt} (i.e.
-\texttt{Zdiv} is increasing in its first argument, but decreasing on the
-second one). Let \texttt{<} denotes \texttt{Zlt}.
+morphism of signature \texttt{Z.div: Z.lt ++> Z.lt -{}-> Z.lt} (i.e.
+\texttt{Z.div} is increasing in its first argument, but decreasing on the
+second one). Let \texttt{<} denotes \texttt{Z.lt}.
Under the hypothesis \texttt{H: x < y} we have
\texttt{k < x / y -> k < x / x}, but not
\texttt{k < y / x -> k < x / x}.