diff options
Diffstat (limited to 'doc/RecTutorial/RecTutorial.v')
| -rw-r--r-- | doc/RecTutorial/RecTutorial.v | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/doc/RecTutorial/RecTutorial.v b/doc/RecTutorial/RecTutorial.v index 28aaf75204..8cfeebc28b 100644 --- a/doc/RecTutorial/RecTutorial.v +++ b/doc/RecTutorial/RecTutorial.v @@ -83,7 +83,7 @@ Proof. Qed. Print eq_3_3. -Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4). +Lemma eq_proof_proof : eq_refl (2*6) = eq_refl (3*4). Proof. reflexivity. Qed. @@ -241,7 +241,7 @@ Section equality_elimination. (Q : A -> Type). Check (fun H : Q a => match p in (eq _ y) return Q y with - refl_equal => H + eq_refl => H end). End equality_elimination. @@ -377,18 +377,18 @@ Inductive itree : Set := Definition isingle l := inode l (fun i => ileaf). -Definition t1 := inode 0 (fun n => isingle (Z_of_nat (2*n))). +Definition t1 := inode 0 (fun n => isingle (Z.of_nat (2*n))). Definition t2 := inode 0 (fun n : nat => - inode (Z_of_nat n) - (fun p => isingle (Z_of_nat (n*p)))). + inode (Z.of_nat n) + (fun p => isingle (Z.of_nat (n*p)))). Inductive itree_le : itree-> itree -> Prop := | le_leaf : forall t, itree_le ileaf t | le_node : forall l l' s s', - Zle l l' -> + Z.le l l' -> (forall i, exists j:nat, itree_le (s i) (s' j)) -> itree_le (inode l s) (inode l' s'). @@ -423,7 +423,7 @@ Qed. Inductive itree_le' : itree-> itree -> Prop := | le_leaf' : forall t, itree_le' ileaf t | le_node' : forall l l' s s' g, - Zle l l' -> + Z.le l l' -> (forall i, itree_le' (s i) (s' (g i))) -> itree_le' (inode l s) (inode l' s'). |
