aboutsummaryrefslogtreecommitdiff
path: root/doc/RecTutorial/RecTutorial.v
diff options
context:
space:
mode:
Diffstat (limited to 'doc/RecTutorial/RecTutorial.v')
-rw-r--r--doc/RecTutorial/RecTutorial.v14
1 files changed, 7 insertions, 7 deletions
diff --git a/doc/RecTutorial/RecTutorial.v b/doc/RecTutorial/RecTutorial.v
index 28aaf75204..8cfeebc28b 100644
--- a/doc/RecTutorial/RecTutorial.v
+++ b/doc/RecTutorial/RecTutorial.v
@@ -83,7 +83,7 @@ Proof.
Qed.
Print eq_3_3.
-Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4).
+Lemma eq_proof_proof : eq_refl (2*6) = eq_refl (3*4).
Proof.
reflexivity.
Qed.
@@ -241,7 +241,7 @@ Section equality_elimination.
(Q : A -> Type).
Check (fun H : Q a =>
match p in (eq _ y) return Q y with
- refl_equal => H
+ eq_refl => H
end).
End equality_elimination.
@@ -377,18 +377,18 @@ Inductive itree : Set :=
Definition isingle l := inode l (fun i => ileaf).
-Definition t1 := inode 0 (fun n => isingle (Z_of_nat (2*n))).
+Definition t1 := inode 0 (fun n => isingle (Z.of_nat (2*n))).
Definition t2 := inode 0
(fun n : nat =>
- inode (Z_of_nat n)
- (fun p => isingle (Z_of_nat (n*p)))).
+ inode (Z.of_nat n)
+ (fun p => isingle (Z.of_nat (n*p)))).
Inductive itree_le : itree-> itree -> Prop :=
| le_leaf : forall t, itree_le ileaf t
| le_node : forall l l' s s',
- Zle l l' ->
+ Z.le l l' ->
(forall i, exists j:nat, itree_le (s i) (s' j)) ->
itree_le (inode l s) (inode l' s').
@@ -423,7 +423,7 @@ Qed.
Inductive itree_le' : itree-> itree -> Prop :=
| le_leaf' : forall t, itree_le' ileaf t
| le_node' : forall l l' s s' g,
- Zle l l' ->
+ Z.le l l' ->
(forall i, itree_le' (s i) (s' (g i))) ->
itree_le' (inode l s) (inode l' s').