aboutsummaryrefslogtreecommitdiff
path: root/doc/RecTutorial/RecTutorial.tex
diff options
context:
space:
mode:
authorletouzey2012-07-05 16:56:16 +0000
committerletouzey2012-07-05 16:56:16 +0000
commitfc2613e871dffffa788d90044a81598f671d0a3b (patch)
treef6f308b3d6b02e1235446b2eb4a2d04b135a0462 /doc/RecTutorial/RecTutorial.tex
parentf93f073df630bb46ddd07802026c0326dc72dafd (diff)
ZArith + other : favor the use of modern names instead of compat notations
- For instance, refl_equal --> eq_refl - Npos, Zpos, Zneg now admit more uniform qualified aliases N.pos, Z.pos, Z.neg. - A new module BinInt.Pos2Z with results about injections from positive to Z - A result about Z.pow pushed in the generic layer - Zmult_le_compat_{r,l} --> Z.mul_le_mono_nonneg_{r,l} - Using tactic Z.le_elim instead of Zle_lt_or_eq - Some cleanup in ring, field, micromega (use of "Equivalence", "Proper" ...) - Some adaptions in QArith (for instance changed Qpower.Qpower_decomp) - In ZMake and ZMake, functor parameters are now named NN and ZZ instead of N and Z for avoiding confusions git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15515 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'doc/RecTutorial/RecTutorial.tex')
-rw-r--r--doc/RecTutorial/RecTutorial.tex28
1 files changed, 14 insertions, 14 deletions
diff --git a/doc/RecTutorial/RecTutorial.tex b/doc/RecTutorial/RecTutorial.tex
index f2cb383e04..857ba84d77 100644
--- a/doc/RecTutorial/RecTutorial.tex
+++ b/doc/RecTutorial/RecTutorial.tex
@@ -560,11 +560,11 @@ as it can be infered from $a$.
\begin{alltt}
Print eq.
\it{} Inductive eq (A : Type) (x : A) : A \arrow{} Prop :=
- refl_equal : x = x
+ eq_refl : x = x
For eq: Argument A is implicit
-For refl_equal: Argument A is implicit
+For eq_refl: Argument A is implicit
For eq: Argument scopes are [type_scope _ _]
-For refl_equal: Argument scopes are [type_scope _]
+For eq_refl: Argument scopes are [type_scope _]
\end{alltt}
Notice also that the first parameter $A$ of \texttt{eq} has type
@@ -581,15 +581,15 @@ Proof.
reflexivity.
Qed.
-Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4).
+Lemma eq_proof_proof : eq_refl (2*6) = eq_refl (3*4).
Proof.
reflexivity.
Qed.
Print eq_proof_proof.
\it eq_proof_proof =
-refl_equal (refl_equal (3 * 4))
- : refl_equal (2 * 6) = refl_equal (3 * 4)
+eq_refl (eq_refl (3 * 4))
+ : eq_refl (2 * 6) = eq_refl (3 * 4)
\tt
Lemma eq_lt_le : ( 2 < 4) = (3 {\coqle} 4).
@@ -942,10 +942,10 @@ predecessor = fun n : nat {\funarrow}
\textbf{| O {\funarrow}}
exist (fun m : nat {\funarrow} 0 = 0 {\coqand} m = 0 {\coqor} 0 = S m) 0
(or_introl (0 = 1)
- (conj (refl_equal 0) (refl_equal 0)))
+ (conj (eq_refl 0) (eq_refl 0)))
\textbf{| S n0 {\funarrow}}
exist (fun m : nat {\funarrow} S n0 = 0 {\coqand} m = 0 {\coqor} S n0 = S m) n0
- (or_intror (S n0 = 0 {\coqand} n0 = 0) (refl_equal (S n0)))
+ (or_intror (S n0 = 0 {\coqand} n0 = 0) (eq_refl (S n0)))
\textbf{end} : {\prodsym} n : nat, \textbf{pred_spec n}
\end{alltt}
@@ -1084,7 +1084,7 @@ The following term is a proof of ``~$Q\;a\, \arrow{}\, Q\;b$~''.
\begin{alltt}
fun H : Q a {\funarrow}
match \(\pi\) in (_ = y) return Q y with
- refl_equal {\funarrow} H
+ eq_refl {\funarrow} H
end
\end{alltt}
Notice the header of the \texttt{match} construct.
@@ -1552,13 +1552,13 @@ node, a tree of height 1 and a tree of height 2:
\begin{alltt}
Definition isingle l := inode l (fun i {\funarrow} ileaf).
-Definition t1 := inode 0 (fun n {\funarrow} isingle (Z_of_nat n)).
+Definition t1 := inode 0 (fun n {\funarrow} isingle (Z.of_nat n)).
Definition t2 :=
inode 0
(fun n : nat {\funarrow}
- inode (Z_of_nat n)
- (fun p {\funarrow} isingle (Z_of_nat (n*p)))).
+ inode (Z.of_nat n)
+ (fun p {\funarrow} isingle (Z.of_nat (n*p)))).
\end{alltt}
@@ -1572,7 +1572,7 @@ appear:
Inductive itree_le : itree{\arrow} itree {\arrow} Prop :=
| le_leaf : {\prodsym} t, itree_le ileaf t
| le_node : {\prodsym} l l' s s',
- Zle l l' {\arrow}
+ Z.le l l' {\arrow}
({\prodsym} i, {\exsym} j:nat, itree_le (s i) (s' j)){\arrow}
itree_le (inode l s) (inode l' s').
@@ -1597,7 +1597,7 @@ the type of \texttt{itree\_le}, does not present this problem:
Inductive itree_le' : itree{\arrow} itree {\arrow} Prop :=
| le_leaf' : {\prodsym} t, itree_le' ileaf t
| le_node' : {\prodsym} l l' s s' g,
- Zle l l' {\arrow}
+ Z.le l l' {\arrow}
({\prodsym} i, itree_le' (s i) (s' (g i))) {\arrow}
itree_le' (inode l s) (inode l' s').