aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGuillaume Melquiond2021-02-19 19:10:25 +0100
committerGuillaume Melquiond2021-02-19 19:10:25 +0100
commit88e688182ded232f474102d400e4e4e95861f94d (patch)
tree59fa054515064ef255976f7df34b98621ea936b5
parent19752f81e096daac43119a144f8065dabbdb1e82 (diff)
Terminate intermediate lemmas with Qed.
-rw-r--r--theories/Reals/Alembert.v8
-rw-r--r--theories/Reals/NewtonInt.v2
2 files changed, 5 insertions, 5 deletions
diff --git a/theories/Reals/Alembert.v b/theories/Reals/Alembert.v
index 069a1292cd..9a00408de3 100644
--- a/theories/Reals/Alembert.v
+++ b/theories/Reals/Alembert.v
@@ -112,7 +112,7 @@ Proof.
pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; left; apply H
| apply H1 ].
-Defined.
+Qed.
Lemma Alembert_C2 :
forall An:nat -> R,
@@ -330,7 +330,7 @@ Proof.
rewrite <- Rabs_Ropp; apply RRle_abs.
rewrite double; pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H.
-Defined.
+Qed.
Lemma AlembertC3_step1 :
forall (An:nat -> R) (x:R),
@@ -374,7 +374,7 @@ Proof.
[ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ].
intro; unfold Bn; apply prod_neq_R0;
[ apply H0 | apply pow_nonzero; assumption ].
-Defined.
+Qed.
Lemma AlembertC3_step2 :
forall (An:nat -> R) (x:R), x = 0 -> { l:R | Pser An x l }.
@@ -405,7 +405,7 @@ Proof.
cut (x <> 0).
intro; apply AlembertC3_step1; assumption.
red; intro; rewrite H1 in Hgt; elim (Rlt_irrefl _ Hgt).
-Defined.
+Qed.
Lemma Alembert_C4 :
forall (An:nat -> R) (k:R),
diff --git a/theories/Reals/NewtonInt.v b/theories/Reals/NewtonInt.v
index 6692119738..6107775003 100644
--- a/theories/Reals/NewtonInt.v
+++ b/theories/Reals/NewtonInt.v
@@ -170,7 +170,7 @@ Proof.
reg.
exists H5; symmetry ; reg; rewrite <- H3; rewrite <- H4; reflexivity.
assumption.
-Defined.
+Qed.
(**********)
Lemma antiderivative_P1 :