1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
|
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq choice.
(******************************************************************************)
(* The Finite interface describes Types with finitely many elements, *)
(* supplying a duplicate-free sequence of all the elements. It is a subclass *)
(* of Countable and thus of Choice and Equality. As with Countable, the *)
(* interface explicitly includes these somewhat redundant superclasses to *)
(* ensure that Canonical instance inference remains consistent. Finiteness *)
(* could be stated more simply by bounding the range of the pickle function *)
(* supplied by the Countable interface, but this would yield a useless *)
(* computational interpretation due to the wasteful Peano integer encodings. *)
(* Because the Countable interface is closely tied to the Finite interface *)
(* and is not much used on its own, the Countable mixin is included inside *)
(* the Finite mixin; this makes it much easier to derive Finite variants of *)
(* interfaces, in this file for subFinType, and in the finalg library. *)
(* We define the following interfaces and structures: *)
(* finType == the packed class type of the Finite interface. *)
(* FinType m == the packed class for the Finite mixin m. *)
(* Finite.axiom e <-> every x : T occurs exactly once in e : seq T. *)
(* FinMixin ax_e == the Finite mixin for T, encapsulating *)
(* ax_e : Finite.axiom e for some e : seq T. *)
(* UniqFinMixin uniq_e total_e == an alternative mixin constructor that uses *)
(* uniq_e : uniq e and total_e : e =i xpredT. *)
(* PcanFinMixin fK == the Finite mixin for T, given f : T -> fT and g with fT *)
(* a finType and fK : pcancel f g. *)
(* CanFinMixin fK == the Finite mixin for T, given f : T -> fT and g with fT *)
(* a finType and fK : cancel f g. *)
(* subFinType == the join interface type for subType and finType. *)
(* [finType of T for fT] == clone for T of the finType fT. *)
(* [finType of T] == clone for T of the finType inferred for T. *)
(* [subFinType of T] == a subFinType structure for T, when T already has both *)
(* finType and subType structures. *)
(* [finMixin of T by <:] == a finType structure for T, when T has a subType *)
(* structure over an existing finType. *)
(* We define or propagate the finType structure appropriately for all basic *)
(* types : unit, bool, option, prod, sum, sig and sigT. We also define a *)
(* generic type constructor for finite subtypes based on an explicit *)
(* enumeration: *)
(* seq_sub s == the subType of all x \in s, where s : seq T for some *)
(* eqType T; seq_sub s has a canonical finType instance *)
(* when T is a choiceType. *)
(* adhoc_seq_sub_choiceType s, adhoc_seq_sub_finType s == *)
(* non-canonical instances for seq_sub s, s : seq T, *)
(* which can be used when T is not a choiceType. *)
(* Bounded integers are supported by the following type and operations: *)
(* 'I_n, ordinal n == the finite subType of integers i < n, whose *)
(* enumeration is {0, ..., n.-1}. 'I_n coerces to nat, *)
(* so all the integer arithmetic functions can be used *)
(* with 'I_n. *)
(* Ordinal lt_i_n == the element of 'I_n with (nat) value i, given *)
(* lt_i_n : i < n. *)
(* nat_of_ord i == the nat value of i : 'I_n (this function is a *)
(* coercion so it is not usually displayed). *)
(* ord_enum n == the explicit increasing sequence of the i : 'I_n. *)
(* cast_ord eq_n_m i == the element j : 'I_m with the same value as i : 'I_n *)
(* given eq_n_m : n = m (indeed, i : nat and j : nat *)
(* are convertible). *)
(* widen_ord le_n_m i == a j : 'I_m with the same value as i : 'I_n, given *)
(* le_n_m : n <= m. *)
(* rev_ord i == the complement to n.-1 of i : 'I_n, such that *)
(* i + rev_ord i = n.-1. *)
(* inord k == the i : 'I_n.+1 with value k (n is inferred from the *)
(* context). *)
(* sub_ord k == the i : 'I_n.+1 with value n - k (n is inferred from *)
(* the context). *)
(* ord0 == the i : 'I_n.+1 with value 0 (n is inferred from the *)
(* context). *)
(* ord_max == the i : 'I_n.+1 with value n (n is inferred from the *)
(* context). *)
(* bump h k == k.+1 if k >= h, else k (this is a nat function). *)
(* unbump h k == k.-1 if k > h, else k (this is a nat function). *)
(* lift i j == the j' : 'I_n with value bump i j, where i : 'I_n *)
(* and j : 'I_n.-1. *)
(* unlift i j == None if i = j, else Some j', where j' : 'I_n.-1 has *)
(* value unbump i j, given i, j : 'I_n. *)
(* lshift n j == the i : 'I_(m + n) with value j : 'I_m. *)
(* rshift m k == the i : 'I_(m + n) with value m + k, k : 'I_n. *)
(* unsplit u == either lshift n j or rshift m k, depending on *)
(* whether if u : 'I_m + 'I_n is inl j or inr k. *)
(* split i == the u : 'I_m + 'I_n such that i = unsplit u; the *)
(* type 'I_(m + n) of i determines the split. *)
(* Finally, every type T with a finType structure supports the following *)
(* operations: *)
(* enum A == a duplicate-free list of all the x \in A, where A is a *)
(* collective predicate over T. *)
(* #|A| == the cardinal of A, i.e., the number of x \in A. *)
(* enum_val i == the i'th item of enum A, where i : 'I_(#|A|). *)
(* enum_rank x == the i : 'I_(#|T|) such that enum_val i = x. *)
(* enum_rank_in Ax0 x == some i : 'I_(#|A|) such that enum_val i = x if *)
(* x \in A, given Ax0 : x0 \in A. *)
(* A \subset B == all x \in A satisfy x \in B. *)
(* A \proper B == all x \in A satisfy x \in B but not the converse. *)
(* [disjoint A & B] == no x \in A satisfies x \in B. *)
(* image f A == the sequence of f x for all x : T such that x \in A *)
(* (where a is an applicative predicate), of length #|P|. *)
(* The codomain of F can be any type, but image f A can *)
(* only be used as a collective predicate is it is an *)
(* eqType. *)
(* codom f == a sequence spanning the codomain of f (:= image f T). *)
(* [seq F | x : T in A] := image (fun x : T => F) A. *)
(* [seq F | x : T] := [seq F | x <- {: T}]. *)
(* [seq F | x in A], [seq F | x] == variants without casts. *)
(* iinv im_y == some x such that P x holds and f x = y, given *)
(* im_y : y \in image f P. *)
(* invF inj_f y == the x such that f x = y, for inj_j : injective f with *)
(* f : T -> T. *)
(* dinjectiveb A f == the restriction of f : T -> R to A is injective *)
(* (this is a bolean predicate, R must be an eqType). *)
(* injectiveb f == f : T -> R is injective (boolean predicate). *)
(* pred0b A == no x : T satisfies x \in A. *)
(* [forall x, P] == P (in which x can appear) is true for all values of x; *)
(* x must range over a finType. *)
(* [exists x, P] == P is true for some value of x. *)
(* [forall (x | C), P] := [forall x, C ==> P]. *)
(* [forall x in A, P] := [forall (x | x \in A), P]. *)
(* [exists (x | C), P] := [exists x, C && P]. *)
(* [exists x in A, P] := [exists (x | x \in A), P]. *)
(* and typed variants [forall x : T, P], [forall (x : T | C), P], *)
(* [exists x : T, P], [exists x : T in A, P], etc. *)
(* -> The outer brackets can be omitted when nesting finitary quantifiers, *)
(* e.g., [forall i in I, forall j in J, exists a, f i j == a]. *)
(* 'forall_pP == view for [forall x, p _], for pP : reflect .. (p _). *)
(* 'exists_pP == view for [exists x, p _], for pP : reflect .. (p _). *)
(* [pick x | P] == Some x, for an x such that P holds, or None if there *)
(* is no such x. *)
(* [pick x : T] == Some x with x : T, provided T is nonempty, else None. *)
(* [pick x in A] == Some x, with x \in A, or None if A is empty. *)
(* [pick x in A | P] == Some x, with x \in A s.t. P holds, else None. *)
(* [pick x | P & Q] := [pick x | P & Q]. *)
(* [pick x in A | P & Q] := [pick x | P & Q]. *)
(* and (un)typed variants [pick x : T | P], [pick x : T in A], [pick x], etc. *)
(* [arg min_(i < i0 | P) M] == a value of i : T minimizing M : nat, subject *)
(* to the condition P (i may appear in P and M), and *)
(* provided P holds for i0. *)
(* [arg max_(i > i0 | P) M] == a value of i maximizing M subject to P and *)
(* provided P holds for i0. *)
(* [arg min_(i < i0 in A) M] == an i \in A minimizing M if i0 \in A. *)
(* [arg max_(i > i0 in A) M] == an i \in A maximizing M if i0 \in A. *)
(* [arg min_(i < i0) M] == an i : T minimizing M, given i0 : T. *)
(* [arg max_(i > i0) M] == an i : T maximizing M, given i0 : T. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Module Finite.
Section RawMixin.
Variable T : eqType.
Definition axiom e := forall x : T, count_mem x e = 1.
Lemma uniq_enumP e : uniq e -> e =i T -> axiom e.
Proof. by move=> Ue sT x; rewrite count_uniq_mem ?sT. Qed.
Record mixin_of := Mixin {
mixin_base : Countable.mixin_of T;
mixin_enum : seq T;
_ : axiom mixin_enum
}.
End RawMixin.
Section Mixins.
Variable T : countType.
Definition EnumMixin :=
let: Countable.Pack _ (Countable.Class _ m) _ as cT := T
return forall e : seq cT, axiom e -> mixin_of cT in
@Mixin (EqType _ _) m.
Definition UniqMixin e Ue eT := @EnumMixin e (uniq_enumP Ue eT).
Variable n : nat.
Definition count_enum := pmap (@pickle_inv T) (iota 0 n).
Hypothesis ubT : forall x : T, pickle x < n.
Lemma count_enumP : axiom count_enum.
Proof.
apply: uniq_enumP (pmap_uniq (@pickle_invK T) (iota_uniq _ _)) _ => x.
by rewrite mem_pmap -pickleK_inv map_f // mem_iota ubT.
Qed.
Definition CountMixin := EnumMixin count_enumP.
End Mixins.
Section ClassDef.
Record class_of T := Class {
base : Choice.class_of T;
mixin : mixin_of (Equality.Pack base T)
}.
Definition base2 T c := Countable.Class (@base T c) (mixin_base (mixin c)).
Local Coercion base : class_of >-> Choice.class_of.
Structure type : Type := Pack {sort; _ : class_of sort; _ : Type}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
Definition clone c of phant_id class c := @Pack T c T.
Let xT := let: Pack T _ _ := cT in T.
Notation xclass := (class : class_of xT).
Definition pack b0 (m0 : mixin_of (EqType T b0)) :=
fun bT b & phant_id (Choice.class bT) b =>
fun m & phant_id m0 m => Pack (@Class T b m) T.
Definition eqType := @Equality.Pack cT xclass xT.
Definition choiceType := @Choice.Pack cT xclass xT.
Definition countType := @Countable.Pack cT (base2 xclass) xT.
End ClassDef.
Module Import Exports.
Coercion mixin_base : mixin_of >-> Countable.mixin_of.
Coercion base : class_of >-> Choice.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion base2 : class_of >-> Countable.class_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion countType : type >-> Countable.type.
Canonical countType.
Notation finType := type.
Notation FinType T m := (@pack T _ m _ _ id _ id).
Notation FinMixin := EnumMixin.
Notation UniqFinMixin := UniqMixin.
Notation "[ 'finType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
(at level 0, format "[ 'finType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'finType' 'of' T ]" := (@clone T _ _ id)
(at level 0, format "[ 'finType' 'of' T ]") : form_scope.
End Exports.
Module Type EnumSig.
Parameter enum : forall cT : type, seq cT.
Axiom enumDef : enum = fun cT => mixin_enum (class cT).
End EnumSig.
Module EnumDef : EnumSig.
Definition enum cT := mixin_enum (class cT).
Definition enumDef := erefl enum.
End EnumDef.
Notation enum := EnumDef.enum.
End Finite.
Export Finite.Exports.
Canonical finEnum_unlock := Unlockable Finite.EnumDef.enumDef.
(* Workaround for the silly syntactic uniformity restriction on coercions; *)
(* this avoids a cross-dependency between finset.v and prime.v for the *)
(* definition of the \pi(A) notation. *)
Definition fin_pred_sort (T : finType) (pT : predType T) := pred_sort pT.
Identity Coercion pred_sort_of_fin : fin_pred_sort >-> pred_sort.
Definition enum_mem T (mA : mem_pred _) := filter mA (Finite.enum T).
Notation enum A := (enum_mem (mem A)).
Definition pick (T : finType) (P : pred T) := ohead (enum P).
Notation "[ 'pick' x | P ]" := (pick (fun x => P%B))
(at level 0, x ident, format "[ 'pick' x | P ]") : form_scope.
Notation "[ 'pick' x : T | P ]" := (pick (fun x : T => P%B))
(at level 0, x ident, only parsing) : form_scope.
Definition pick_true T (x : T) := true.
Notation "[ 'pick' x : T ]" := [pick x : T | pick_true x]
(at level 0, x ident, only parsing).
Notation "[ 'pick' x ]" := [pick x : _]
(at level 0, x ident, only parsing) : form_scope.
Notation "[ 'pic' 'k' x : T ]" := [pick x : T | pick_true _]
(at level 0, x ident, format "[ 'pic' 'k' x : T ]") : form_scope.
Notation "[ 'pick' x | P & Q ]" := [pick x | P && Q ]
(at level 0, x ident,
format "[ '[hv ' 'pick' x | P '/ ' & Q ] ']'") : form_scope.
Notation "[ 'pick' x : T | P & Q ]" := [pick x : T | P && Q ]
(at level 0, x ident, only parsing) : form_scope.
Notation "[ 'pick' x 'in' A ]" := [pick x | x \in A]
(at level 0, x ident, format "[ 'pick' x 'in' A ]") : form_scope.
Notation "[ 'pick' x : T 'in' A ]" := [pick x : T | x \in A]
(at level 0, x ident, only parsing) : form_scope.
Notation "[ 'pick' x 'in' A | P ]" := [pick x | x \in A & P ]
(at level 0, x ident,
format "[ '[hv ' 'pick' x 'in' A '/ ' | P ] ']'") : form_scope.
Notation "[ 'pick' x : T 'in' A | P ]" := [pick x : T | x \in A & P ]
(at level 0, x ident, only parsing) : form_scope.
Notation "[ 'pick' x 'in' A | P & Q ]" := [pick x in A | P && Q]
(at level 0, x ident, format
"[ '[hv ' 'pick' x 'in' A '/ ' | P '/ ' & Q ] ']'") : form_scope.
Notation "[ 'pick' x : T 'in' A | P & Q ]" := [pick x : T in A | P && Q]
(at level 0, x ident, only parsing) : form_scope.
(* We lock the definitions of card and subset to mitigate divergence of the *)
(* Coq term comparison algorithm. *)
Local Notation card_type := (forall T : finType, mem_pred T -> nat).
Local Notation card_def := (fun T mA => size (enum_mem mA)).
Module Type CardDefSig.
Parameter card : card_type. Axiom cardEdef : card = card_def.
End CardDefSig.
Module CardDef : CardDefSig.
Definition card : card_type := card_def. Definition cardEdef := erefl card.
End CardDef.
(* Should be Include, but for a silly restriction: can't Include at toplevel! *)
Export CardDef.
Canonical card_unlock := Unlockable cardEdef.
(* A is at level 99 to allow the notation #|G : H| in groups. *)
Notation "#| A |" := (card (mem A))
(at level 0, A at level 99, format "#| A |") : nat_scope.
Definition pred0b (T : finType) (P : pred T) := #|P| == 0.
Prenex Implicits pred0b.
Module FiniteQuant.
CoInductive quantified := Quantified of bool.
Delimit Scope fin_quant_scope with Q. (* Bogus, only used to declare scope. *)
Bind Scope fin_quant_scope with quantified.
Notation "F ^*" := (Quantified F) (at level 2).
Notation "F ^~" := (~~ F) (at level 2).
Section Definitions.
Variable T : finType.
Implicit Types (B : quantified) (x y : T).
Definition quant0b Bp := pred0b [pred x : T | let: F^* := Bp x x in F].
(* The first redundant argument protects the notation from Coq's K-term *)
(* display kludge; the second protects it from simpl and /=. *)
Definition ex B x y := B.
(* Binding the predicate value rather than projecting it prevents spurious *)
(* unfolding of the boolean connectives by unification. *)
Definition all B x y := let: F^* := B in F^~^*.
Definition all_in C B x y := let: F^* := B in (C ==> F)^~^*.
Definition ex_in C B x y := let: F^* := B in (C && F)^*.
End Definitions.
Notation "[ x | B ]" := (quant0b (fun x => B x)) (at level 0, x ident).
Notation "[ x : T | B ]" := (quant0b (fun x : T => B x)) (at level 0, x ident).
Module Exports.
Notation ", F" := F^* (at level 200, format ", '/ ' F") : fin_quant_scope.
Notation "[ 'forall' x B ]" := [x | all B]
(at level 0, x at level 99, B at level 200,
format "[ '[hv' 'forall' x B ] ']'") : bool_scope.
Notation "[ 'forall' x : T B ]" := [x : T | all B]
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation "[ 'forall' ( x | C ) B ]" := [x | all_in C B]
(at level 0, x at level 99, B at level 200,
format "[ '[hv' '[' 'forall' ( x '/ ' | C ) ']' B ] ']'") : bool_scope.
Notation "[ 'forall' ( x : T | C ) B ]" := [x : T | all_in C B]
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation "[ 'forall' x 'in' A B ]" := [x | all_in (x \in A) B]
(at level 0, x at level 99, B at level 200,
format "[ '[hv' '[' 'forall' x '/ ' 'in' A ']' B ] ']'") : bool_scope.
Notation "[ 'forall' x : T 'in' A B ]" := [x : T | all_in (x \in A) B]
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation ", 'forall' x B" := [x | all B]^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' 'forall' x B") : fin_quant_scope.
Notation ", 'forall' x : T B" := [x : T | all B]^*
(at level 200, x at level 99, B at level 200, only parsing) : fin_quant_scope.
Notation ", 'forall' ( x | C ) B" := [x | all_in C B]^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' '[' 'forall' ( x '/ ' | C ) ']' B") : fin_quant_scope.
Notation ", 'forall' ( x : T | C ) B" := [x : T | all_in C B]^*
(at level 200, x at level 99, B at level 200, only parsing) : fin_quant_scope.
Notation ", 'forall' x 'in' A B" := [x | all_in (x \in A) B]^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' '[' 'forall' x '/ ' 'in' A ']' B") : bool_scope.
Notation ", 'forall' x : T 'in' A B" := [x : T | all_in (x \in A) B]^*
(at level 200, x at level 99, B at level 200, only parsing) : bool_scope.
Notation "[ 'exists' x B ]" := [x | ex B]^~
(at level 0, x at level 99, B at level 200,
format "[ '[hv' 'exists' x B ] ']'") : bool_scope.
Notation "[ 'exists' x : T B ]" := [x : T | ex B]^~
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation "[ 'exists' ( x | C ) B ]" := [x | ex_in C B]^~
(at level 0, x at level 99, B at level 200,
format "[ '[hv' '[' 'exists' ( x '/ ' | C ) ']' B ] ']'") : bool_scope.
Notation "[ 'exists' ( x : T | C ) B ]" := [x : T | ex_in C B]^~
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation "[ 'exists' x 'in' A B ]" := [x | ex_in (x \in A) B]^~
(at level 0, x at level 99, B at level 200,
format "[ '[hv' '[' 'exists' x '/ ' 'in' A ']' B ] ']'") : bool_scope.
Notation "[ 'exists' x : T 'in' A B ]" := [x : T | ex_in (x \in A) B]^~
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation ", 'exists' x B" := [x | ex B]^~^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' 'exists' x B") : fin_quant_scope.
Notation ", 'exists' x : T B" := [x : T | ex B]^~^*
(at level 200, x at level 99, B at level 200, only parsing) : fin_quant_scope.
Notation ", 'exists' ( x | C ) B" := [x | ex_in C B]^~^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' '[' 'exists' ( x '/ ' | C ) ']' B") : fin_quant_scope.
Notation ", 'exists' ( x : T | C ) B" := [x : T | ex_in C B]^~^*
(at level 200, x at level 99, B at level 200, only parsing) : fin_quant_scope.
Notation ", 'exists' x 'in' A B" := [x | ex_in (x \in A) B]^~^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' '[' 'exists' x '/ ' 'in' A ']' B") : bool_scope.
Notation ", 'exists' x : T 'in' A B" := [x : T | ex_in (x \in A) B]^~^*
(at level 200, x at level 99, B at level 200, only parsing) : bool_scope.
End Exports.
End FiniteQuant.
Export FiniteQuant.Exports.
Definition disjoint T (A B : mem_pred _) := @pred0b T (predI A B).
Notation "[ 'disjoint' A & B ]" := (disjoint (mem A) (mem B))
(at level 0,
format "'[hv' [ 'disjoint' '/ ' A '/' & B ] ']'") : bool_scope.
Local Notation subset_type := (forall (T : finType) (A B : mem_pred T), bool).
Local Notation subset_def := (fun T A B => pred0b (predD A B)).
Module Type SubsetDefSig.
Parameter subset : subset_type. Axiom subsetEdef : subset = subset_def.
End SubsetDefSig.
Module Export SubsetDef : SubsetDefSig.
Definition subset : subset_type := subset_def.
Definition subsetEdef := erefl subset.
End SubsetDef.
Canonical subset_unlock := Unlockable subsetEdef.
Notation "A \subset B" := (subset (mem A) (mem B))
(at level 70, no associativity) : bool_scope.
Definition proper T A B := @subset T A B && ~~ subset B A.
Notation "A \proper B" := (proper (mem A) (mem B))
(at level 70, no associativity) : bool_scope.
(* image, xinv, inv, and ordinal operations will be defined later. *)
Section OpsTheory.
Variable T : finType.
Implicit Types A B C P Q : pred T.
Implicit Types x y : T.
Implicit Type s : seq T.
Lemma enumP : Finite.axiom (Finite.enum T).
Proof. by rewrite unlock; case T => ? [? []]. Qed.
Section EnumPick.
Variable P : pred T.
Lemma enumT : enum T = Finite.enum T.
Proof. exact: filter_predT. Qed.
Lemma mem_enum A : enum A =i A.
Proof. by move=> x; rewrite mem_filter andbC -has_pred1 has_count enumP. Qed.
Lemma enum_uniq : uniq (enum P).
Proof.
by apply/filter_uniq/count_mem_uniq => x; rewrite enumP -enumT mem_enum.
Qed.
Lemma enum0 : enum pred0 = Nil T. Proof. exact: filter_pred0. Qed.
Lemma enum1 x : enum (pred1 x) = [:: x].
Proof.
rewrite [enum _](all_pred1P x _ _); first by rewrite size_filter enumP.
by apply/allP=> y; rewrite mem_enum.
Qed.
CoInductive pick_spec : option T -> Type :=
| Pick x of P x : pick_spec (Some x)
| Nopick of P =1 xpred0 : pick_spec None.
Lemma pickP : pick_spec (pick P).
Proof.
rewrite /pick; case: (enum _) (mem_enum P) => [|x s] Pxs /=.
by right; apply: fsym.
by left; rewrite -[P _]Pxs mem_head.
Qed.
End EnumPick.
Lemma eq_enum P Q : P =i Q -> enum P = enum Q.
Proof. by move=> eqPQ; apply: eq_filter. Qed.
Lemma eq_pick P Q : P =1 Q -> pick P = pick Q.
Proof. by move=> eqPQ; rewrite /pick (eq_enum eqPQ). Qed.
Lemma cardE A : #|A| = size (enum A).
Proof. by rewrite unlock. Qed.
Lemma eq_card A B : A =i B -> #|A| = #|B|.
Proof. by move=> eqAB; rewrite !cardE (eq_enum eqAB). Qed.
Lemma eq_card_trans A B n : #|A| = n -> B =i A -> #|B| = n.
Proof. by move <-; apply: eq_card. Qed.
Lemma card0 : #|@pred0 T| = 0. Proof. by rewrite cardE enum0. Qed.
Lemma cardT : #|T| = size (enum T). Proof. by rewrite cardE. Qed.
Lemma card1 x : #|pred1 x| = 1.
Proof. by rewrite cardE enum1. Qed.
Lemma eq_card0 A : A =i pred0 -> #|A| = 0.
Proof. exact: eq_card_trans card0. Qed.
Lemma eq_cardT A : A =i predT -> #|A| = size (enum T).
Proof. exact: eq_card_trans cardT. Qed.
Lemma eq_card1 x A : A =i pred1 x -> #|A| = 1.
Proof. exact: eq_card_trans (card1 x). Qed.
Lemma cardUI A B : #|[predU A & B]| + #|[predI A & B]| = #|A| + #|B|.
Proof. by rewrite !cardE !size_filter count_predUI. Qed.
Lemma cardID B A : #|[predI A & B]| + #|[predD A & B]| = #|A|.
Proof.
rewrite -cardUI addnC [#|predI _ _|]eq_card0 => [|x] /=.
by apply: eq_card => x; rewrite !inE andbC -andb_orl orbN.
by rewrite !inE -!andbA andbC andbA andbN.
Qed.
Lemma cardC A : #|A| + #|[predC A]| = #|T|.
Proof. by rewrite !cardE !size_filter count_predC. Qed.
Lemma cardU1 x A : #|[predU1 x & A]| = (x \notin A) + #|A|.
Proof.
case Ax: (x \in A).
by apply: eq_card => y; rewrite inE /=; case: eqP => // ->.
rewrite /= -(card1 x) -cardUI addnC.
rewrite [#|predI _ _|]eq_card0 => [|y /=]; first exact: eq_card.
by rewrite !inE; case: eqP => // ->.
Qed.
Lemma card2 x y : #|pred2 x y| = (x != y).+1.
Proof. by rewrite cardU1 card1 addn1. Qed.
Lemma cardC1 x : #|predC1 x| = #|T|.-1.
Proof. by rewrite -(cardC (pred1 x)) card1. Qed.
Lemma cardD1 x A : #|A| = (x \in A) + #|[predD1 A & x]|.
Proof.
case Ax: (x \in A); last first.
by apply: eq_card => y; rewrite !inE /=; case: eqP => // ->.
rewrite /= -(card1 x) -cardUI addnC /=.
rewrite [#|predI _ _|]eq_card0 => [|y]; last by rewrite !inE; case: eqP.
by apply: eq_card => y; rewrite !inE; case: eqP => // ->.
Qed.
Lemma max_card A : #|A| <= #|T|.
Proof. by rewrite -(cardC A) leq_addr. Qed.
Lemma card_size s : #|s| <= size s.
Proof.
elim: s => [|x s IHs] /=; first by rewrite card0.
by rewrite cardU1 /=; case: (~~ _) => //; apply: leqW.
Qed.
Lemma card_uniqP s : reflect (#|s| = size s) (uniq s).
Proof.
elim: s => [|x s IHs]; first by left; apply: card0.
rewrite cardU1 /= /addn; case: {+}(x \in s) => /=.
by right=> card_Ssz; have:= card_size s; rewrite card_Ssz ltnn.
by apply: (iffP IHs) => [<-| [<-]].
Qed.
Lemma card0_eq A : #|A| = 0 -> A =i pred0.
Proof. by move=> A0 x; apply/idP => Ax; rewrite (cardD1 x) Ax in A0. Qed.
Lemma pred0P P : reflect (P =1 pred0) (pred0b P).
Proof. by apply: (iffP eqP); [apply: card0_eq | apply: eq_card0]. Qed.
Lemma pred0Pn P : reflect (exists x, P x) (~~ pred0b P).
Proof.
case: (pickP P) => [x Px | P0].
by rewrite (introN (pred0P P)) => [|P0]; [left; exists x | rewrite P0 in Px].
by rewrite -lt0n eq_card0 //; right=> [[x]]; rewrite P0.
Qed.
Lemma card_gt0P A : reflect (exists i, i \in A) (#|A| > 0).
Proof. by rewrite lt0n; apply: pred0Pn. Qed.
Lemma subsetE A B : (A \subset B) = pred0b [predD A & B].
Proof. by rewrite unlock. Qed.
Lemma subsetP A B : reflect {subset A <= B} (A \subset B).
Proof.
rewrite unlock; apply: (iffP (pred0P _)) => [AB0 x | sAB x /=].
by apply/implyP; apply/idPn; rewrite negb_imply andbC [_ && _]AB0.
by rewrite andbC -negb_imply; apply/negbF/implyP; apply: sAB.
Qed.
Lemma subsetPn A B :
reflect (exists2 x, x \in A & x \notin B) (~~ (A \subset B)).
Proof.
rewrite unlock; apply: (iffP (pred0Pn _)) => [[x] | [x Ax nBx]].
by case/andP; exists x.
by exists x; rewrite /= nBx.
Qed.
Lemma subset_leq_card A B : A \subset B -> #|A| <= #|B|.
Proof.
move=> sAB.
rewrite -(cardID A B) [#|predI _ _|](@eq_card _ A) ?leq_addr //= => x.
by rewrite !inE andbC; case Ax: (x \in A) => //; apply: subsetP Ax.
Qed.
Lemma subxx_hint (mA : mem_pred T) : subset mA mA.
Proof.
by case: mA => A; have:= introT (subsetP A A); rewrite !unlock => ->.
Qed.
Hint Resolve subxx_hint.
(* The parametrization by predType makes it easier to apply subxx. *)
Lemma subxx (pT : predType T) (pA : pT) : pA \subset pA.
Proof. by []. Qed.
Lemma eq_subset A1 A2 : A1 =i A2 -> subset (mem A1) =1 subset (mem A2).
Proof.
move=> eqA12 [B]; rewrite !unlock; congr (_ == 0).
by apply: eq_card => x; rewrite inE /= eqA12.
Qed.
Lemma eq_subset_r B1 B2 : B1 =i B2 ->
(@subset T)^~ (mem B1) =1 (@subset T)^~ (mem B2).
Proof.
move=> eqB12 [A]; rewrite !unlock; congr (_ == 0).
by apply: eq_card => x; rewrite !inE /= eqB12.
Qed.
Lemma eq_subxx A B : A =i B -> A \subset B.
Proof. by move/eq_subset->. Qed.
Lemma subset_predT A : A \subset T.
Proof. by apply/subsetP. Qed.
Lemma predT_subset A : T \subset A -> forall x, x \in A.
Proof. by move/subsetP=> allA x; apply: allA. Qed.
Lemma subset_pred1 A x : (pred1 x \subset A) = (x \in A).
Proof. by apply/subsetP/idP=> [-> // | Ax y /eqP-> //]; apply: eqxx. Qed.
Lemma subset_eqP A B : reflect (A =i B) ((A \subset B) && (B \subset A)).
Proof.
apply: (iffP andP) => [[sAB sBA] x| eqAB]; last by rewrite !eq_subxx.
by apply/idP/idP; apply: subsetP.
Qed.
Lemma subset_cardP A B : #|A| = #|B| -> reflect (A =i B) (A \subset B).
Proof.
move=> eqcAB; case: (subsetP A B) (subset_eqP A B) => //= sAB.
case: (subsetP B A) => [//|[]] x Bx; apply/idPn => Ax.
case/idP: (ltnn #|A|); rewrite {2}eqcAB (cardD1 x B) Bx /=.
apply: subset_leq_card; apply/subsetP=> y Ay; rewrite inE /= andbC.
by rewrite sAB //; apply/eqP => eqyx; rewrite -eqyx Ay in Ax.
Qed.
Lemma subset_leqif_card A B : A \subset B -> #|A| <= #|B| ?= iff (B \subset A).
Proof.
move=> sAB; split; [exact: subset_leq_card | apply/eqP/idP].
by move/subset_cardP=> sABP; rewrite (eq_subset_r (sABP sAB)).
by move=> sBA; apply: eq_card; apply/subset_eqP; rewrite sAB.
Qed.
Lemma subset_trans A B C : A \subset B -> B \subset C -> A \subset C.
Proof.
by move/subsetP=> sAB /subsetP=> sBC; apply/subsetP=> x /sAB; apply: sBC.
Qed.
Lemma subset_all s A : (s \subset A) = all (mem A) s.
Proof. exact: (sameP (subsetP _ _) allP). Qed.
Lemma properE A B : A \proper B = (A \subset B) && ~~(B \subset A).
Proof. by []. Qed.
Lemma properP A B :
reflect (A \subset B /\ (exists2 x, x \in B & x \notin A)) (A \proper B).
Proof.
by rewrite properE; apply: (iffP andP) => [] [-> /subsetPn].
Qed.
Lemma proper_sub A B : A \proper B -> A \subset B.
Proof. by case/andP. Qed.
Lemma proper_subn A B : A \proper B -> ~~ (B \subset A).
Proof. by case/andP. Qed.
Lemma proper_trans A B C : A \proper B -> B \proper C -> A \proper C.
Proof.
case/properP=> sAB [x Bx nAx] /properP[sBC [y Cy nBy]].
rewrite properE (subset_trans sAB) //=; apply/subsetPn; exists y => //.
by apply: contra nBy; apply: subsetP.
Qed.
Lemma proper_sub_trans A B C : A \proper B -> B \subset C -> A \proper C.
Proof.
case/properP=> sAB [x Bx nAx] sBC; rewrite properE (subset_trans sAB) //.
by apply/subsetPn; exists x; rewrite ?(subsetP _ _ sBC).
Qed.
Lemma sub_proper_trans A B C : A \subset B -> B \proper C -> A \proper C.
Proof.
move=> sAB /properP[sBC [x Cx nBx]]; rewrite properE (subset_trans sAB) //.
by apply/subsetPn; exists x => //; apply: contra nBx; apply: subsetP.
Qed.
Lemma proper_card A B : A \proper B -> #|A| < #|B|.
Proof.
by case/andP=> sAB nsBA; rewrite ltn_neqAle !(subset_leqif_card sAB) andbT.
Qed.
Lemma proper_irrefl A : ~~ (A \proper A).
Proof. by rewrite properE subxx. Qed.
Lemma properxx A : (A \proper A) = false.
Proof. by rewrite properE subxx. Qed.
Lemma eq_proper A B : A =i B -> proper (mem A) =1 proper (mem B).
Proof.
move=> eAB [C]; congr (_ && _); first exact: (eq_subset eAB).
by rewrite (eq_subset_r eAB).
Qed.
Lemma eq_proper_r A B : A =i B ->
(@proper T)^~ (mem A) =1 (@proper T)^~ (mem B).
Proof.
move=> eAB [C]; congr (_ && _); first exact: (eq_subset_r eAB).
by rewrite (eq_subset eAB).
Qed.
Lemma disjoint_sym A B : [disjoint A & B] = [disjoint B & A].
Proof. by congr (_ == 0); apply: eq_card => x; apply: andbC. Qed.
Lemma eq_disjoint A1 A2 : A1 =i A2 -> disjoint (mem A1) =1 disjoint (mem A2).
Proof.
by move=> eqA12 [B]; congr (_ == 0); apply: eq_card => x; rewrite !inE eqA12.
Qed.
Lemma eq_disjoint_r B1 B2 : B1 =i B2 ->
(@disjoint T)^~ (mem B1) =1 (@disjoint T)^~ (mem B2).
Proof.
by move=> eqB12 [A]; congr (_ == 0); apply: eq_card => x; rewrite !inE eqB12.
Qed.
Lemma subset_disjoint A B : (A \subset B) = [disjoint A & [predC B]].
Proof. by rewrite disjoint_sym unlock. Qed.
Lemma disjoint_subset A B : [disjoint A & B] = (A \subset [predC B]).
Proof.
by rewrite subset_disjoint; apply: eq_disjoint_r => x; rewrite !inE /= negbK.
Qed.
Lemma disjoint_trans A B C :
A \subset B -> [disjoint B & C] -> [disjoint A & C].
Proof. by rewrite 2!disjoint_subset; apply: subset_trans. Qed.
Lemma disjoint0 A : [disjoint pred0 & A].
Proof. exact/pred0P. Qed.
Lemma eq_disjoint0 A B : A =i pred0 -> [disjoint A & B].
Proof. by move/eq_disjoint->; apply: disjoint0. Qed.
Lemma disjoint1 x A : [disjoint pred1 x & A] = (x \notin A).
Proof.
apply/negbRL/(sameP (pred0Pn _)).
apply: introP => [Ax | notAx [_ /andP[/eqP->]]]; last exact: negP.
by exists x; rewrite !inE eqxx.
Qed.
Lemma eq_disjoint1 x A B :
A =i pred1 x -> [disjoint A & B] = (x \notin B).
Proof. by move/eq_disjoint->; apply: disjoint1. Qed.
Lemma disjointU A B C :
[disjoint predU A B & C] = [disjoint A & C] && [disjoint B & C].
Proof.
case: [disjoint A & C] / (pred0P (xpredI A C)) => [A0 | nA0] /=.
by congr (_ == 0); apply: eq_card => x; rewrite [x \in _]andb_orl A0.
apply/pred0P=> nABC; case: nA0 => x; apply/idPn=> /=; move/(_ x): nABC.
by rewrite [_ x]andb_orl; case/norP.
Qed.
Lemma disjointU1 x A B :
[disjoint predU1 x A & B] = (x \notin B) && [disjoint A & B].
Proof. by rewrite disjointU disjoint1. Qed.
Lemma disjoint_cons x s B :
[disjoint x :: s & B] = (x \notin B) && [disjoint s & B].
Proof. exact: disjointU1. Qed.
Lemma disjoint_has s A : [disjoint s & A] = ~~ has (mem A) s.
Proof.
rewrite -(@eq_has _ (mem (enum A))) => [|x]; last exact: mem_enum.
rewrite has_sym has_filter -filter_predI -has_filter has_count -eqn0Ngt.
by rewrite -size_filter /disjoint /pred0b unlock.
Qed.
Lemma disjoint_cat s1 s2 A :
[disjoint s1 ++ s2 & A] = [disjoint s1 & A] && [disjoint s2 & A].
Proof. by rewrite !disjoint_has has_cat negb_or. Qed.
End OpsTheory.
Hint Resolve subxx_hint.
Arguments pred0P [T P].
Arguments pred0Pn [T P].
Arguments subsetP [T A B].
Arguments subsetPn [T A B].
Arguments subset_eqP [T A B].
Arguments card_uniqP [T s].
Arguments properP [T A B].
Prenex Implicits pred0P pred0Pn subsetP subsetPn subset_eqP card_uniqP.
(**********************************************************************)
(* *)
(* Boolean quantifiers for finType *)
(* *)
(**********************************************************************)
Section QuantifierCombinators.
Variables (T : finType) (P : pred T) (PP : T -> Prop).
Hypothesis viewP : forall x, reflect (PP x) (P x).
Lemma existsPP : reflect (exists x, PP x) [exists x, P x].
Proof. by apply: (iffP pred0Pn) => -[x /viewP]; exists x. Qed.
Lemma forallPP : reflect (forall x, PP x) [forall x, P x].
Proof. by apply: (iffP pred0P) => /= allP x; have /viewP//=-> := allP x. Qed.
End QuantifierCombinators.
Notation "'exists_ view" := (existsPP (fun _ => view))
(at level 4, right associativity, format "''exists_' view").
Notation "'forall_ view" := (forallPP (fun _ => view))
(at level 4, right associativity, format "''forall_' view").
Section Quantifiers.
Variables (T : finType) (rT : T -> eqType).
Implicit Type (D P : pred T) (f : forall x, rT x).
Lemma forallP P : reflect (forall x, P x) [forall x, P x].
Proof. exact: 'forall_idP. Qed.
Lemma eqfunP f1 f2 : reflect (forall x, f1 x = f2 x) [forall x, f1 x == f2 x].
Proof. exact: 'forall_eqP. Qed.
Lemma forall_inP D P : reflect (forall x, D x -> P x) [forall (x | D x), P x].
Proof. exact: 'forall_implyP. Qed.
Lemma eqfun_inP D f1 f2 :
reflect {in D, forall x, f1 x = f2 x} [forall (x | x \in D), f1 x == f2 x].
Proof. by apply: (iffP 'forall_implyP) => eq_f12 x Dx; apply/eqP/eq_f12. Qed.
Lemma existsP P : reflect (exists x, P x) [exists x, P x].
Proof. exact: 'exists_idP. Qed.
Lemma exists_eqP f1 f2 :
reflect (exists x, f1 x = f2 x) [exists x, f1 x == f2 x].
Proof. exact: 'exists_eqP. Qed.
Lemma exists_inP D P : reflect (exists2 x, D x & P x) [exists (x | D x), P x].
Proof. by apply: (iffP 'exists_andP) => [[x []] | [x]]; exists x. Qed.
Lemma exists_eq_inP D f1 f2 :
reflect (exists2 x, D x & f1 x = f2 x) [exists (x | D x), f1 x == f2 x].
Proof. by apply: (iffP (exists_inP _ _)) => [] [x Dx /eqP]; exists x. Qed.
Lemma eq_existsb P1 P2 : P1 =1 P2 -> [exists x, P1 x] = [exists x, P2 x].
Proof. by move=> eqP12; congr (_ != 0); apply: eq_card. Qed.
Lemma eq_existsb_in D P1 P2 :
(forall x, D x -> P1 x = P2 x) ->
[exists (x | D x), P1 x] = [exists (x | D x), P2 x].
Proof. by move=> eqP12; apply: eq_existsb => x; apply: andb_id2l => /eqP12. Qed.
Lemma eq_forallb P1 P2 : P1 =1 P2 -> [forall x, P1 x] = [forall x, P2 x].
Proof. by move=> eqP12; apply/negb_inj/eq_existsb=> /= x; rewrite eqP12. Qed.
Lemma eq_forallb_in D P1 P2 :
(forall x, D x -> P1 x = P2 x) ->
[forall (x | D x), P1 x] = [forall (x | D x), P2 x].
Proof.
by move=> eqP12; apply: eq_forallb => i; case Di: (D i); rewrite // eqP12.
Qed.
Lemma negb_forall P : ~~ [forall x, P x] = [exists x, ~~ P x].
Proof. by []. Qed.
Lemma negb_forall_in D P :
~~ [forall (x | D x), P x] = [exists (x | D x), ~~ P x].
Proof. by apply: eq_existsb => x; rewrite negb_imply. Qed.
Lemma negb_exists P : ~~ [exists x, P x] = [forall x, ~~ P x].
Proof. by apply/negbLR/esym/eq_existsb=> x; apply: negbK. Qed.
Lemma negb_exists_in D P :
~~ [exists (x | D x), P x] = [forall (x | D x), ~~ P x].
Proof. by rewrite negb_exists; apply/eq_forallb => x; rewrite [~~ _]fun_if. Qed.
End Quantifiers.
Arguments forallP [T P].
Arguments eqfunP [T rT f1 f2].
Arguments forall_inP [T D P].
Arguments eqfun_inP [T rT D f1 f2].
Arguments existsP [T P].
Arguments exists_eqP [T rT f1 f2].
Arguments exists_inP [T D P].
Arguments exists_eq_inP [T rT D f1 f2].
Section Extrema.
Variables (I : finType) (i0 : I) (P : pred I) (F : I -> nat).
Let arg_pred ord := [pred i | P i & [forall (j | P j), ord (F i) (F j)]].
Definition arg_min := odflt i0 (pick (arg_pred leq)).
Definition arg_max := odflt i0 (pick (arg_pred geq)).
CoInductive extremum_spec (ord : rel nat) : I -> Type :=
ExtremumSpec i of P i & (forall j, P j -> ord (F i) (F j))
: extremum_spec ord i.
Hypothesis Pi0 : P i0.
Let FP n := [exists (i | P i), F i == n].
Let FP_F i : P i -> FP (F i).
Proof. by move=> Pi; apply/existsP; exists i; rewrite Pi /=. Qed.
Let exFP : exists n, FP n. Proof. by exists (F i0); apply: FP_F. Qed.
Lemma arg_minP : extremum_spec leq arg_min.
Proof.
rewrite /arg_min; case: pickP => [i /andP[Pi /forallP/= min_i] | no_i].
by split=> // j; apply/implyP.
case/ex_minnP: exFP => n ex_i min_i; case/pred0P: ex_i => i /=.
apply: contraFF (no_i i) => /andP[Pi /eqP def_n]; rewrite /= Pi.
by apply/forall_inP=> j Pj; rewrite def_n min_i ?FP_F.
Qed.
Lemma arg_maxP : extremum_spec geq arg_max.
Proof.
rewrite /arg_max; case: pickP => [i /andP[Pi /forall_inP/= max_i] | no_i].
by split=> // j; apply/implyP.
have (n): FP n -> n <= foldr maxn 0 (map F (enum P)).
case/existsP=> i; rewrite -[P i]mem_enum andbC /= => /andP[/eqP <-].
elim: (enum P) => //= j e IHe; rewrite leq_max orbC !inE.
by case/predU1P=> [-> | /IHe-> //]; rewrite leqnn orbT.
case/ex_maxnP=> // n ex_i max_i; case/pred0P: ex_i => i /=.
apply: contraFF (no_i i) => /andP[Pi def_n]; rewrite /= Pi.
by apply/forall_inP=> j Pj; rewrite (eqP def_n) max_i ?FP_F.
Qed.
End Extrema.
Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" :=
(arg_min i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : form_scope.
Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" :=
[arg min_(i < i0 | i \in A) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'min_' ( i < i0 'in' A ) F ]") : form_scope.
Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'min_' ( i < i0 ) F ]") : form_scope.
Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" :=
(arg_max i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : form_scope.
Notation "[ 'arg' 'max_' ( i > i0 'in' A ) F ]" :=
[arg max_(i > i0 | i \in A) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'max_' ( i > i0 'in' A ) F ]") : form_scope.
Notation "[ 'arg' 'max_' ( i > i0 ) F ]" := [arg max_(i > i0 | true) F]
(at level 0, i, i0 at level 10,
format "[ 'arg' 'max_' ( i > i0 ) F ]") : form_scope.
(**********************************************************************)
(* *)
(* Boolean injectivity test for functions with a finType domain *)
(* *)
(**********************************************************************)
Section Injectiveb.
Variables (aT : finType) (rT : eqType) (f : aT -> rT).
Implicit Type D : pred aT.
Definition dinjectiveb D := uniq (map f (enum D)).
Definition injectiveb := dinjectiveb aT.
Lemma dinjectivePn D :
reflect (exists2 x, x \in D & exists2 y, y \in [predD1 D & x] & f x = f y)
(~~ dinjectiveb D).
Proof.
apply: (iffP idP) => [injf | [x Dx [y Dxy eqfxy]]]; last first.
move: Dx; rewrite -(mem_enum D) => /rot_to[i E defE].
rewrite /dinjectiveb -(rot_uniq i) -map_rot defE /=; apply/nandP; left.
rewrite inE /= -(mem_enum D) -(mem_rot i) defE inE in Dxy.
rewrite andb_orr andbC andbN in Dxy.
by rewrite eqfxy map_f //; case/andP: Dxy.
pose p := [pred x in D | [exists (y | y \in [predD1 D & x]), f x == f y]].
case: (pickP p) => [x /= /andP[Dx /exists_inP[y Dxy /eqP eqfxy]] | no_p].
by exists x; last exists y.
rewrite /dinjectiveb map_inj_in_uniq ?enum_uniq // in injf => x y Dx Dy eqfxy.
apply: contraNeq (negbT (no_p x)) => ne_xy /=; rewrite -mem_enum Dx.
by apply/existsP; exists y; rewrite /= !inE eq_sym ne_xy -mem_enum Dy eqfxy /=.
Qed.
Lemma dinjectiveP D : reflect {in D &, injective f} (dinjectiveb D).
Proof.
rewrite -[dinjectiveb D]negbK.
case: dinjectivePn=> [noinjf | injf]; constructor.
case: noinjf => x Dx [y /andP[neqxy /= Dy] eqfxy] injf.
by case/eqP: neqxy; apply: injf.
move=> x y Dx Dy /= eqfxy; apply/eqP; apply/idPn=> nxy; case: injf.
by exists x => //; exists y => //=; rewrite inE /= eq_sym nxy.
Qed.
Lemma injectivePn :
reflect (exists x, exists2 y, x != y & f x = f y) (~~ injectiveb).
Proof.
apply: (iffP (dinjectivePn _)) => [[x _ [y nxy eqfxy]] | [x [y nxy eqfxy]]];
by exists x => //; exists y => //; rewrite inE /= andbT eq_sym in nxy *.
Qed.
Lemma injectiveP : reflect (injective f) injectiveb.
Proof. by apply: (iffP (dinjectiveP _)) => injf x y => [|_ _]; apply: injf. Qed.
End Injectiveb.
Definition image_mem T T' f mA : seq T' := map f (@enum_mem T mA).
Notation image f A := (image_mem f (mem A)).
Notation "[ 'seq' F | x 'in' A ]" := (image (fun x => F) A)
(at level 0, F at level 99, x ident,
format "'[hv' [ 'seq' F '/ ' | x 'in' A ] ']'") : seq_scope.
Notation "[ 'seq' F | x : T 'in' A ]" := (image (fun x : T => F) A)
(at level 0, F at level 99, x ident, only parsing) : seq_scope.
Notation "[ 'seq' F | x : T ]" :=
[seq F | x : T in sort_of_simpl_pred (@pred_of_argType T)]
(at level 0, F at level 99, x ident,
format "'[hv' [ 'seq' F '/ ' | x : T ] ']'") : seq_scope.
Notation "[ 'seq' F , x ]" := [seq F | x : _ ]
(at level 0, F at level 99, x ident, only parsing) : seq_scope.
Definition codom T T' f := @image_mem T T' f (mem T).
Section Image.
Variable T : finType.
Implicit Type A : pred T.
Section SizeImage.
Variables (T' : Type) (f : T -> T').
Lemma size_image A : size (image f A) = #|A|.
Proof. by rewrite size_map -cardE. Qed.
Lemma size_codom : size (codom f) = #|T|.
Proof. exact: size_image. Qed.
Lemma codomE : codom f = map f (enum T).
Proof. by []. Qed.
End SizeImage.
Variables (T' : eqType) (f : T -> T').
Lemma imageP A y : reflect (exists2 x, x \in A & y = f x) (y \in image f A).
Proof.
by apply: (iffP mapP) => [] [x Ax y_fx]; exists x; rewrite // mem_enum in Ax *.
Qed.
Lemma codomP y : reflect (exists x, y = f x) (y \in codom f).
Proof. by apply: (iffP (imageP _ y)) => [][x]; exists x. Qed.
Remark iinv_proof A y : y \in image f A -> {x | x \in A & f x = y}.
Proof.
move=> fy; pose b x := A x && (f x == y).
case: (pickP b) => [x /andP[Ax /eqP] | nfy]; first by exists x.
by case/negP: fy => /imageP[x Ax fx_y]; case/andP: (nfy x); rewrite fx_y.
Qed.
Definition iinv A y fAy := s2val (@iinv_proof A y fAy).
Lemma f_iinv A y fAy : f (@iinv A y fAy) = y.
Proof. exact: s2valP' (iinv_proof fAy). Qed.
Lemma mem_iinv A y fAy : @iinv A y fAy \in A.
Proof. exact: s2valP (iinv_proof fAy). Qed.
Lemma in_iinv_f A : {in A &, injective f} ->
forall x fAfx, x \in A -> @iinv A (f x) fAfx = x.
Proof.
by move=> injf x fAfx Ax; apply: injf => //; [apply: mem_iinv | apply: f_iinv].
Qed.
Lemma preim_iinv A B y fAy : preim f B (@iinv A y fAy) = B y.
Proof. by rewrite /= f_iinv. Qed.
Lemma image_f A x : x \in A -> f x \in image f A.
Proof. by move=> Ax; apply/imageP; exists x. Qed.
Lemma codom_f x : f x \in codom f.
Proof. by apply: image_f. Qed.
Lemma image_codom A : {subset image f A <= codom f}.
Proof. by move=> _ /imageP[x _ ->]; apply: codom_f. Qed.
Lemma image_pred0 : image f pred0 =i pred0.
Proof. by move=> x; rewrite /image_mem /= enum0. Qed.
Section Injective.
Hypothesis injf : injective f.
Lemma mem_image A x : (f x \in image f A) = (x \in A).
Proof. by rewrite mem_map ?mem_enum. Qed.
Lemma pre_image A : [preim f of image f A] =i A.
Proof. by move=> x; rewrite inE /= mem_image. Qed.
Lemma image_iinv A y (fTy : y \in codom f) :
(y \in image f A) = (iinv fTy \in A).
Proof. by rewrite -mem_image ?f_iinv. Qed.
Lemma iinv_f x fTfx : @iinv T (f x) fTfx = x.
Proof. by apply: in_iinv_f; first apply: in2W. Qed.
Lemma image_pre (B : pred T') : image f [preim f of B] =i [predI B & codom f].
Proof. by move=> y; rewrite /image_mem -filter_map /= mem_filter -enumT. Qed.
Lemma bij_on_codom (x0 : T) : {on [pred y in codom f], bijective f}.
Proof.
pose g y := iinv (valP (insigd (codom_f x0) y)).
by exists g => [x fAfx | y fAy]; first apply: injf; rewrite f_iinv insubdK.
Qed.
Lemma bij_on_image A (x0 : T) : {on [pred y in image f A], bijective f}.
Proof. exact: subon_bij (@image_codom A) (bij_on_codom x0). Qed.
End Injective.
Fixpoint preim_seq s :=
if s is y :: s' then
(if pick (preim f (pred1 y)) is Some x then cons x else id) (preim_seq s')
else [::].
Lemma map_preim (s : seq T') : {subset s <= codom f} -> map f (preim_seq s) = s.
Proof.
elim: s => //= y s IHs; case: pickP => [x /eqP fx_y | nfTy] fTs.
by rewrite /= fx_y IHs // => z s_z; apply: fTs; apply: predU1r.
by case/imageP: (fTs y (mem_head y s)) => x _ fx_y; case/eqP: (nfTy x).
Qed.
End Image.
Prenex Implicits codom iinv.
Arguments imageP [T T' f A y].
Arguments codomP [T T' f y].
Lemma flatten_imageP (aT : finType) (rT : eqType) A (P : pred aT) (y : rT) :
reflect (exists2 x, x \in P & y \in A x) (y \in flatten [seq A x | x in P]).
Proof.
by apply: (iffP flatten_mapP) => [][x Px]; exists x; rewrite ?mem_enum in Px *.
Qed.
Arguments flatten_imageP [aT rT A P y].
Section CardFunImage.
Variables (T T' : finType) (f : T -> T').
Implicit Type A : pred T.
Lemma leq_image_card A : #|image f A| <= #|A|.
Proof. by rewrite (cardE A) -(size_map f) card_size. Qed.
Lemma card_in_image A : {in A &, injective f} -> #|image f A| = #|A|.
Proof.
move=> injf; rewrite (cardE A) -(size_map f); apply/card_uniqP.
by rewrite map_inj_in_uniq ?enum_uniq // => x y; rewrite !mem_enum; apply: injf.
Qed.
Lemma image_injP A : reflect {in A &, injective f} (#|image f A| == #|A|).
Proof.
apply: (iffP eqP) => [eqfA |]; last exact: card_in_image.
by apply/dinjectiveP; apply/card_uniqP; rewrite size_map -cardE.
Qed.
Hypothesis injf : injective f.
Lemma card_image A : #|image f A| = #|A|.
Proof. by apply: card_in_image; apply: in2W. Qed.
Lemma card_codom : #|codom f| = #|T|.
Proof. exact: card_image. Qed.
Lemma card_preim (B : pred T') : #|[preim f of B]| = #|[predI codom f & B]|.
Proof.
rewrite -card_image /=; apply: eq_card => y.
by rewrite [y \in _]image_pre !inE andbC.
Qed.
Hypothesis card_range : #|T| = #|T'|.
Lemma inj_card_onto y : y \in codom f.
Proof. by move: y; apply/subset_cardP; rewrite ?card_codom ?subset_predT. Qed.
Lemma inj_card_bij : bijective f.
Proof.
by exists (fun y => iinv (inj_card_onto y)) => y; rewrite ?iinv_f ?f_iinv.
Qed.
End CardFunImage.
Arguments image_injP [T T' f A].
Section FinCancel.
Variables (T : finType) (f g : T -> T).
Section Inv.
Hypothesis injf : injective f.
Lemma injF_onto y : y \in codom f. Proof. exact: inj_card_onto. Qed.
Definition invF y := iinv (injF_onto y).
Lemma invF_f : cancel f invF. Proof. by move=> x; apply: iinv_f. Qed.
Lemma f_invF : cancel invF f. Proof. by move=> y; apply: f_iinv. Qed.
Lemma injF_bij : bijective f. Proof. exact: inj_card_bij. Qed.
End Inv.
Hypothesis fK : cancel f g.
Lemma canF_sym : cancel g f.
Proof. exact/(bij_can_sym (injF_bij (can_inj fK))). Qed.
Lemma canF_LR x y : x = g y -> f x = y.
Proof. exact: canLR canF_sym. Qed.
Lemma canF_RL x y : g x = y -> x = f y.
Proof. exact: canRL canF_sym. Qed.
Lemma canF_eq x y : (f x == y) = (x == g y).
Proof. exact: (can2_eq fK canF_sym). Qed.
Lemma canF_invF : g =1 invF (can_inj fK).
Proof. by move=> y; apply: (canLR fK); rewrite f_invF. Qed.
End FinCancel.
Section EqImage.
Variables (T : finType) (T' : Type).
Lemma eq_image (A B : pred T) (f g : T -> T') :
A =i B -> f =1 g -> image f A = image g B.
Proof.
by move=> eqAB eqfg; rewrite /image_mem (eq_enum eqAB) (eq_map eqfg).
Qed.
Lemma eq_codom (f g : T -> T') : f =1 g -> codom f = codom g.
Proof. exact: eq_image. Qed.
Lemma eq_invF f g injf injg : f =1 g -> @invF T f injf =1 @invF T g injg.
Proof.
by move=> eq_fg x; apply: (canLR (invF_f injf)); rewrite eq_fg f_invF.
Qed.
End EqImage.
(* Standard finTypes *)
Lemma unit_enumP : Finite.axiom [::tt]. Proof. by case. Qed.
Definition unit_finMixin := Eval hnf in FinMixin unit_enumP.
Canonical unit_finType := Eval hnf in FinType unit unit_finMixin.
Lemma card_unit : #|{: unit}| = 1. Proof. by rewrite cardT enumT unlock. Qed.
Lemma bool_enumP : Finite.axiom [:: true; false]. Proof. by case. Qed.
Definition bool_finMixin := Eval hnf in FinMixin bool_enumP.
Canonical bool_finType := Eval hnf in FinType bool bool_finMixin.
Lemma card_bool : #|{: bool}| = 2. Proof. by rewrite cardT enumT unlock. Qed.
Local Notation enumF T := (Finite.enum T).
Section OptionFinType.
Variable T : finType.
Definition option_enum := None :: map some (enumF T).
Lemma option_enumP : Finite.axiom option_enum.
Proof. by case=> [x|]; rewrite /= count_map (count_pred0, enumP). Qed.
Definition option_finMixin := Eval hnf in FinMixin option_enumP.
Canonical option_finType := Eval hnf in FinType (option T) option_finMixin.
Lemma card_option : #|{: option T}| = #|T|.+1.
Proof. by rewrite !cardT !enumT {1}unlock /= !size_map. Qed.
End OptionFinType.
Section TransferFinType.
Variables (eT : countType) (fT : finType) (f : eT -> fT).
Lemma pcan_enumP g : pcancel f g -> Finite.axiom (undup (pmap g (enumF fT))).
Proof.
move=> fK x; rewrite count_uniq_mem ?undup_uniq // mem_undup.
by rewrite mem_pmap -fK map_f // -enumT mem_enum.
Qed.
Definition PcanFinMixin g fK := FinMixin (@pcan_enumP g fK).
Definition CanFinMixin g (fK : cancel f g) := PcanFinMixin (can_pcan fK).
End TransferFinType.
Section SubFinType.
Variables (T : choiceType) (P : pred T).
Import Finite.
Structure subFinType := SubFinType {
subFin_sort :> subType P;
_ : mixin_of (sub_eqType subFin_sort)
}.
Definition pack_subFinType U :=
fun cT b m & phant_id (class cT) (@Class U b m) =>
fun sT m' & phant_id m' m => @SubFinType sT m'.
Implicit Type sT : subFinType.
Definition subFin_mixin sT :=
let: SubFinType _ m := sT return mixin_of (sub_eqType sT) in m.
Coercion subFinType_subCountType sT := @SubCountType _ _ sT (subFin_mixin sT).
Canonical subFinType_subCountType.
Coercion subFinType_finType sT :=
Pack (@Class sT (sub_choiceClass sT) (subFin_mixin sT)) sT.
Canonical subFinType_finType.
Lemma codom_val sT x : (x \in codom (val : sT -> T)) = P x.
Proof.
by apply/codomP/idP=> [[u ->]|Px]; last exists (Sub x Px); rewrite ?valP ?SubK.
Qed.
End SubFinType.
(* This assumes that T has both finType and subCountType structures. *)
Notation "[ 'subFinType' 'of' T ]" := (@pack_subFinType _ _ T _ _ _ id _ _ id)
(at level 0, format "[ 'subFinType' 'of' T ]") : form_scope.
Section FinTypeForSub.
Variables (T : finType) (P : pred T) (sT : subCountType P).
Definition sub_enum : seq sT := pmap insub (enumF T).
Lemma mem_sub_enum u : u \in sub_enum.
Proof. by rewrite mem_pmap_sub -enumT mem_enum. Qed.
Lemma sub_enum_uniq : uniq sub_enum.
Proof. by rewrite pmap_sub_uniq // -enumT enum_uniq. Qed.
Lemma val_sub_enum : map val sub_enum = enum P.
Proof.
rewrite pmap_filter; last exact: insubK.
by apply: eq_filter => x; apply: isSome_insub.
Qed.
(* We can't declare a canonical structure here because we've already *)
(* stated that subType_sort and FinType.sort unify via to the *)
(* subType_finType structure. *)
Definition SubFinMixin := UniqFinMixin sub_enum_uniq mem_sub_enum.
Definition SubFinMixin_for (eT : eqType) of phant eT :=
eq_rect _ Finite.mixin_of SubFinMixin eT.
Variable sfT : subFinType P.
Lemma card_sub : #|sfT| = #|[pred x | P x]|.
Proof. by rewrite -(eq_card (codom_val sfT)) (card_image val_inj). Qed.
Lemma eq_card_sub (A : pred sfT) : A =i predT -> #|A| = #|[pred x | P x]|.
Proof. exact: eq_card_trans card_sub. Qed.
End FinTypeForSub.
(* This assumes that T has a subCountType structure over a type that *)
(* has a finType structure. *)
Notation "[ 'finMixin' 'of' T 'by' <: ]" :=
(SubFinMixin_for (Phant T) (erefl _))
(at level 0, format "[ 'finMixin' 'of' T 'by' <: ]") : form_scope.
(* Regression for the subFinType stack
Record myb : Type := MyB {myv : bool; _ : ~~ myv}.
Canonical myb_sub := Eval hnf in [subType for myv].
Definition myb_eqm := Eval hnf in [eqMixin of myb by <:].
Canonical myb_eq := Eval hnf in EqType myb myb_eqm.
Definition myb_chm := [choiceMixin of myb by <:].
Canonical myb_ch := Eval hnf in ChoiceType myb myb_chm.
Definition myb_cntm := [countMixin of myb by <:].
Canonical myb_cnt := Eval hnf in CountType myb myb_cntm.
Canonical myb_scnt := Eval hnf in [subCountType of myb].
Definition myb_finm := [finMixin of myb by <:].
Canonical myb_fin := Eval hnf in FinType myb myb_finm.
Canonical myb_sfin := Eval hnf in [subFinType of myb].
Print Canonical Projections.
Print myb_finm.
Print myb_cntm.
*)
Section CardSig.
Variables (T : finType) (P : pred T).
Definition sig_finMixin := [finMixin of {x | P x} by <:].
Canonical sig_finType := Eval hnf in FinType {x | P x} sig_finMixin.
Canonical sig_subFinType := Eval hnf in [subFinType of {x | P x}].
Lemma card_sig : #|{: {x | P x}}| = #|[pred x | P x]|.
Proof. exact: card_sub. Qed.
End CardSig.
(* Subtype for an explicit enumeration. *)
Section SeqSubType.
Variables (T : eqType) (s : seq T).
Record seq_sub : Type := SeqSub {ssval : T; ssvalP : in_mem ssval (@mem T _ s)}.
Canonical seq_sub_subType := Eval hnf in [subType for ssval].
Definition seq_sub_eqMixin := Eval hnf in [eqMixin of seq_sub by <:].
Canonical seq_sub_eqType := Eval hnf in EqType seq_sub seq_sub_eqMixin.
Definition seq_sub_enum : seq seq_sub := undup (pmap insub s).
Lemma mem_seq_sub_enum x : x \in seq_sub_enum.
Proof. by rewrite mem_undup mem_pmap -valK map_f ?ssvalP. Qed.
Lemma val_seq_sub_enum : uniq s -> map val seq_sub_enum = s.
Proof.
move=> Us; rewrite /seq_sub_enum undup_id ?pmap_sub_uniq //.
rewrite (pmap_filter (@insubK _ _ _)); apply/all_filterP.
by apply/allP => x; rewrite isSome_insub.
Qed.
Definition seq_sub_pickle x := index x seq_sub_enum.
Definition seq_sub_unpickle n := nth None (map some seq_sub_enum) n.
Lemma seq_sub_pickleK : pcancel seq_sub_pickle seq_sub_unpickle.
Proof.
rewrite /seq_sub_unpickle => x.
by rewrite (nth_map x) ?nth_index ?index_mem ?mem_seq_sub_enum.
Qed.
Definition seq_sub_countMixin := CountMixin seq_sub_pickleK.
Fact seq_sub_axiom : Finite.axiom seq_sub_enum.
Proof. exact: Finite.uniq_enumP (undup_uniq _) mem_seq_sub_enum. Qed.
Definition seq_sub_finMixin := Finite.Mixin seq_sub_countMixin seq_sub_axiom.
(* Beware: these are not the canonical instances, as they are not consistent *)
(* with the generic sub_choiceType canonical instance. *)
Definition adhoc_seq_sub_choiceMixin := PcanChoiceMixin seq_sub_pickleK.
Definition adhoc_seq_sub_choiceType :=
Eval hnf in ChoiceType seq_sub adhoc_seq_sub_choiceMixin.
Definition adhoc_seq_sub_finType :=
[finType of seq_sub for FinType adhoc_seq_sub_choiceType seq_sub_finMixin].
End SeqSubType.
Section SeqFinType.
Variables (T : choiceType) (s : seq T).
Local Notation sT := (seq_sub s).
Definition seq_sub_choiceMixin := [choiceMixin of sT by <:].
Canonical seq_sub_choiceType := Eval hnf in ChoiceType sT seq_sub_choiceMixin.
Canonical seq_sub_countType := Eval hnf in CountType sT (seq_sub_countMixin s).
Canonical seq_sub_subCountType := Eval hnf in [subCountType of sT].
Canonical seq_sub_finType := Eval hnf in FinType sT (seq_sub_finMixin s).
Canonical seq_sub_subFinType := Eval hnf in [subFinType of sT].
Lemma card_seq_sub : uniq s -> #|{:sT}| = size s.
Proof.
by move=> Us; rewrite cardE enumT -(size_map val) unlock val_seq_sub_enum.
Qed.
End SeqFinType.
(**********************************************************************)
(* *)
(* Ordinal finType : {0, ... , n-1} *)
(* *)
(**********************************************************************)
Section OrdinalSub.
Variable n : nat.
Inductive ordinal : predArgType := Ordinal m of m < n.
Coercion nat_of_ord i := let: Ordinal m _ := i in m.
Canonical ordinal_subType := [subType for nat_of_ord].
Definition ordinal_eqMixin := Eval hnf in [eqMixin of ordinal by <:].
Canonical ordinal_eqType := Eval hnf in EqType ordinal ordinal_eqMixin.
Definition ordinal_choiceMixin := [choiceMixin of ordinal by <:].
Canonical ordinal_choiceType :=
Eval hnf in ChoiceType ordinal ordinal_choiceMixin.
Definition ordinal_countMixin := [countMixin of ordinal by <:].
Canonical ordinal_countType := Eval hnf in CountType ordinal ordinal_countMixin.
Canonical ordinal_subCountType := [subCountType of ordinal].
Lemma ltn_ord (i : ordinal) : i < n. Proof. exact: valP i. Qed.
Lemma ord_inj : injective nat_of_ord. Proof. exact: val_inj. Qed.
Definition ord_enum : seq ordinal := pmap insub (iota 0 n).
Lemma val_ord_enum : map val ord_enum = iota 0 n.
Proof.
rewrite pmap_filter; last exact: insubK.
by apply/all_filterP; apply/allP=> i; rewrite mem_iota isSome_insub.
Qed.
Lemma ord_enum_uniq : uniq ord_enum.
Proof. by rewrite pmap_sub_uniq ?iota_uniq. Qed.
Lemma mem_ord_enum i : i \in ord_enum.
Proof. by rewrite -(mem_map ord_inj) val_ord_enum mem_iota ltn_ord. Qed.
Definition ordinal_finMixin :=
Eval hnf in UniqFinMixin ord_enum_uniq mem_ord_enum.
Canonical ordinal_finType := Eval hnf in FinType ordinal ordinal_finMixin.
Canonical ordinal_subFinType := Eval hnf in [subFinType of ordinal].
End OrdinalSub.
Notation "''I_' n" := (ordinal n)
(at level 8, n at level 2, format "''I_' n").
Hint Resolve ltn_ord.
Section OrdinalEnum.
Variable n : nat.
Lemma val_enum_ord : map val (enum 'I_n) = iota 0 n.
Proof. by rewrite enumT unlock val_ord_enum. Qed.
Lemma size_enum_ord : size (enum 'I_n) = n.
Proof. by rewrite -(size_map val) val_enum_ord size_iota. Qed.
Lemma card_ord : #|'I_n| = n.
Proof. by rewrite cardE size_enum_ord. Qed.
Lemma nth_enum_ord i0 m : m < n -> nth i0 (enum 'I_n) m = m :> nat.
Proof.
by move=> ?; rewrite -(nth_map _ 0) (size_enum_ord, val_enum_ord) // nth_iota.
Qed.
Lemma nth_ord_enum (i0 i : 'I_n) : nth i0 (enum 'I_n) i = i.
Proof. by apply: val_inj; apply: nth_enum_ord. Qed.
Lemma index_enum_ord (i : 'I_n) : index i (enum 'I_n) = i.
Proof.
by rewrite -{1}(nth_ord_enum i i) index_uniq ?(enum_uniq, size_enum_ord).
Qed.
End OrdinalEnum.
Lemma widen_ord_proof n m (i : 'I_n) : n <= m -> i < m.
Proof. exact: leq_trans. Qed.
Definition widen_ord n m le_n_m i := Ordinal (@widen_ord_proof n m i le_n_m).
Lemma cast_ord_proof n m (i : 'I_n) : n = m -> i < m.
Proof. by move <-. Qed.
Definition cast_ord n m eq_n_m i := Ordinal (@cast_ord_proof n m i eq_n_m).
Lemma cast_ord_id n eq_n i : cast_ord eq_n i = i :> 'I_n.
Proof. exact: val_inj. Qed.
Lemma cast_ord_comp n1 n2 n3 eq_n2 eq_n3 i :
@cast_ord n2 n3 eq_n3 (@cast_ord n1 n2 eq_n2 i) =
cast_ord (etrans eq_n2 eq_n3) i.
Proof. exact: val_inj. Qed.
Lemma cast_ordK n1 n2 eq_n :
cancel (@cast_ord n1 n2 eq_n) (cast_ord (esym eq_n)).
Proof. by move=> i; apply: val_inj. Qed.
Lemma cast_ordKV n1 n2 eq_n :
cancel (cast_ord (esym eq_n)) (@cast_ord n1 n2 eq_n).
Proof. by move=> i; apply: val_inj. Qed.
Lemma cast_ord_inj n1 n2 eq_n : injective (@cast_ord n1 n2 eq_n).
Proof. exact: can_inj (cast_ordK eq_n). Qed.
Lemma rev_ord_proof n (i : 'I_n) : n - i.+1 < n.
Proof. by case: n i => [|n] [i lt_i_n] //; rewrite ltnS subSS leq_subr. Qed.
Definition rev_ord n i := Ordinal (@rev_ord_proof n i).
Lemma rev_ordK n : involutive (@rev_ord n).
Proof.
by case: n => [|n] [i lti] //; apply: val_inj; rewrite /= !subSS subKn.
Qed.
Lemma rev_ord_inj {n} : injective (@rev_ord n).
Proof. exact: inv_inj (@rev_ordK n). Qed.
(* bijection between any finType T and the Ordinal finType of its cardinal *)
Section EnumRank.
Variable T : finType.
Implicit Type A : pred T.
Lemma enum_rank_subproof x0 A : x0 \in A -> 0 < #|A|.
Proof. by move=> Ax0; rewrite (cardD1 x0) Ax0. Qed.
Definition enum_rank_in x0 A (Ax0 : x0 \in A) x :=
insubd (Ordinal (@enum_rank_subproof x0 [eta A] Ax0)) (index x (enum A)).
Definition enum_rank x := @enum_rank_in x T (erefl true) x.
Lemma enum_default A : 'I_(#|A|) -> T.
Proof. by rewrite cardE; case: (enum A) => [|//] []. Qed.
Definition enum_val A i := nth (@enum_default [eta A] i) (enum A) i.
Prenex Implicits enum_val.
Lemma enum_valP A i : @enum_val A i \in A.
Proof. by rewrite -mem_enum mem_nth -?cardE. Qed.
Lemma enum_val_nth A x i : @enum_val A i = nth x (enum A) i.
Proof. by apply: set_nth_default; rewrite cardE in i *; apply: ltn_ord. Qed.
Lemma nth_image T' y0 (f : T -> T') A (i : 'I_#|A|) :
nth y0 (image f A) i = f (enum_val i).
Proof. by rewrite -(nth_map _ y0) // -cardE. Qed.
Lemma nth_codom T' y0 (f : T -> T') (i : 'I_#|T|) :
nth y0 (codom f) i = f (enum_val i).
Proof. exact: nth_image. Qed.
Lemma nth_enum_rank_in x00 x0 A Ax0 :
{in A, cancel (@enum_rank_in x0 A Ax0) (nth x00 (enum A))}.
Proof.
move=> x Ax; rewrite /= insubdK ?nth_index ?mem_enum //.
by rewrite cardE [_ \in _]index_mem mem_enum.
Qed.
Lemma nth_enum_rank x0 : cancel enum_rank (nth x0 (enum T)).
Proof. by move=> x; apply: nth_enum_rank_in. Qed.
Lemma enum_rankK_in x0 A Ax0 :
{in A, cancel (@enum_rank_in x0 A Ax0) enum_val}.
Proof. by move=> x; apply: nth_enum_rank_in. Qed.
Lemma enum_rankK : cancel enum_rank enum_val.
Proof. by move=> x; apply: enum_rankK_in. Qed.
Lemma enum_valK_in x0 A Ax0 : cancel enum_val (@enum_rank_in x0 A Ax0).
Proof.
move=> x; apply: ord_inj; rewrite insubdK; last first.
by rewrite cardE [_ \in _]index_mem mem_nth // -cardE.
by rewrite index_uniq ?enum_uniq // -cardE.
Qed.
Lemma enum_valK : cancel enum_val enum_rank.
Proof. by move=> x; apply: enum_valK_in. Qed.
Lemma enum_rank_inj : injective enum_rank.
Proof. exact: can_inj enum_rankK. Qed.
Lemma enum_val_inj A : injective (@enum_val A).
Proof. by move=> i; apply: can_inj (enum_valK_in (enum_valP i)) (i). Qed.
Lemma enum_val_bij_in x0 A : x0 \in A -> {on A, bijective (@enum_val A)}.
Proof.
move=> Ax0; exists (enum_rank_in Ax0) => [i _|]; last exact: enum_rankK_in.
exact: enum_valK_in.
Qed.
Lemma enum_rank_bij : bijective enum_rank.
Proof. by move: enum_rankK enum_valK; exists (@enum_val T). Qed.
Lemma enum_val_bij : bijective (@enum_val T).
Proof. by move: enum_rankK enum_valK; exists enum_rank. Qed.
(* Due to the limitations of the Coq unification patterns, P can only be *)
(* inferred from the premise of this lemma, not its conclusion. As a result *)
(* this lemma will only be usable in forward chaining style. *)
Lemma fin_all_exists U (P : forall x : T, U x -> Prop) :
(forall x, exists u, P x u) -> (exists u, forall x, P x (u x)).
Proof.
move=> ex_u; pose Q m x := enum_rank x < m -> {ux | P x ux}.
suffices: forall m, m <= #|T| -> exists w : forall x, Q m x, True.
case/(_ #|T|)=> // w _; pose u x := sval (w x (ltn_ord _)).
by exists u => x; rewrite {}/u; case: (w x _).
elim=> [|m IHm] ltmX; first by have w x: Q 0 x by []; exists w.
have{IHm} [w _] := IHm (ltnW ltmX); pose i := Ordinal ltmX.
have [u Pu] := ex_u (enum_val i); suffices w' x: Q m.+1 x by exists w'.
rewrite /Q ltnS leq_eqVlt (val_eqE _ i); case: eqP => [def_i _ | _ /w //].
by rewrite -def_i enum_rankK in u Pu; exists u.
Qed.
Lemma fin_all_exists2 U (P Q : forall x : T, U x -> Prop) :
(forall x, exists2 u, P x u & Q x u) ->
(exists2 u, forall x, P x (u x) & forall x, Q x (u x)).
Proof.
move=> ex_u; have (x): exists u, P x u /\ Q x u by have [u] := ex_u x; exists u.
by case/fin_all_exists=> u /all_and2[]; exists u.
Qed.
End EnumRank.
Arguments enum_val_inj {T A} [x1 x2].
Arguments enum_rank_inj {T} [x1 x2].
Prenex Implicits enum_val enum_rank.
Lemma enum_rank_ord n i : enum_rank i = cast_ord (esym (card_ord n)) i.
Proof.
by apply: val_inj; rewrite insubdK ?index_enum_ord // card_ord [_ \in _]ltn_ord.
Qed.
Lemma enum_val_ord n i : enum_val i = cast_ord (card_ord n) i.
Proof.
by apply: canLR (@enum_rankK _) _; apply: val_inj; rewrite enum_rank_ord.
Qed.
(* The integer bump / unbump operations. *)
Definition bump h i := (h <= i) + i.
Definition unbump h i := i - (h < i).
Lemma bumpK h : cancel (bump h) (unbump h).
Proof.
rewrite /bump /unbump => i.
have [le_hi | lt_ih] := leqP h i; first by rewrite ltnS le_hi subn1.
by rewrite ltnNge ltnW ?subn0.
Qed.
Lemma neq_bump h i : h != bump h i.
Proof.
rewrite /bump eqn_leq; have [le_hi | lt_ih] := leqP h i.
by rewrite ltnNge le_hi andbF.
by rewrite leqNgt lt_ih.
Qed.
Lemma unbumpKcond h i : bump h (unbump h i) = (i == h) + i.
Proof.
rewrite /bump /unbump leqNgt -subSKn.
case: (ltngtP i h) => /= [-> | ltih | ->] //; last by rewrite ltnn.
by rewrite subn1 /= leqNgt !(ltn_predK ltih, ltih, add1n).
Qed.
Lemma unbumpK h : {in predC1 h, cancel (unbump h) (bump h)}.
Proof. by move=> i; move/negbTE=> neq_h_i; rewrite unbumpKcond neq_h_i. Qed.
Lemma bump_addl h i k : bump (k + h) (k + i) = k + bump h i.
Proof. by rewrite /bump leq_add2l addnCA. Qed.
Lemma bumpS h i : bump h.+1 i.+1 = (bump h i).+1.
Proof. exact: addnS. Qed.
Lemma unbump_addl h i k : unbump (k + h) (k + i) = k + unbump h i.
Proof.
apply: (can_inj (bumpK (k + h))).
by rewrite bump_addl !unbumpKcond eqn_add2l addnCA.
Qed.
Lemma unbumpS h i : unbump h.+1 i.+1 = (unbump h i).+1.
Proof. exact: unbump_addl 1. Qed.
Lemma leq_bump h i j : (i <= bump h j) = (unbump h i <= j).
Proof.
rewrite /bump leq_subLR.
case: (leqP i h) (leqP h j) => [le_i_h | lt_h_i] [le_h_j | lt_j_h] //.
by rewrite leqW (leq_trans le_i_h).
by rewrite !(leqNgt i) ltnW (leq_trans _ lt_h_i).
Qed.
Lemma leq_bump2 h i j : (bump h i <= bump h j) = (i <= j).
Proof. by rewrite leq_bump bumpK. Qed.
Lemma bumpC h1 h2 i :
bump h1 (bump h2 i) = bump (bump h1 h2) (bump (unbump h2 h1) i).
Proof.
rewrite {1 5}/bump -leq_bump addnCA; congr (_ + (_ + _)).
rewrite 2!leq_bump /unbump /bump; case: (leqP h1 h2) => [le_h12 | lt_h21].
by rewrite subn0 ltnS le_h12 subn1.
by rewrite subn1 (ltn_predK lt_h21) (leqNgt h1) lt_h21 subn0.
Qed.
(* The lift operations on ordinals; to avoid a messy dependent type, *)
(* unlift is a partial operation (returns an option). *)
Lemma lift_subproof n h (i : 'I_n.-1) : bump h i < n.
Proof. by case: n i => [[]|n] //= i; rewrite -addnS (leq_add (leq_b1 _)). Qed.
Definition lift n (h : 'I_n) (i : 'I_n.-1) := Ordinal (lift_subproof h i).
Lemma unlift_subproof n (h : 'I_n) (u : {j | j != h}) : unbump h (val u) < n.-1.
Proof.
case: n h u => [|n h] [] //= j ne_jh.
rewrite -(leq_bump2 h.+1) bumpS unbumpK // /bump.
case: (ltngtP n h) => [|_|eq_nh]; rewrite ?(leqNgt _ h) ?ltn_ord //.
by rewrite ltn_neqAle [j <= _](valP j) {2}eq_nh andbT.
Qed.
Definition unlift n (h i : 'I_n) :=
omap (fun u : {j | j != h} => Ordinal (unlift_subproof u)) (insub i).
CoInductive unlift_spec n h i : option 'I_n.-1 -> Type :=
| UnliftSome j of i = lift h j : unlift_spec h i (Some j)
| UnliftNone of i = h : unlift_spec h i None.
Lemma unliftP n (h i : 'I_n) : unlift_spec h i (unlift h i).
Proof.
rewrite /unlift; case: insubP => [u nhi | ] def_i /=; constructor.
by apply: val_inj; rewrite /= def_i unbumpK.
by rewrite negbK in def_i; apply/eqP.
Qed.
Lemma neq_lift n (h : 'I_n) i : h != lift h i.
Proof. exact: neq_bump. Qed.
Lemma unlift_none n (h : 'I_n) : unlift h h = None.
Proof. by case: unliftP => // j Dh; case/eqP: (neq_lift h j). Qed.
Lemma unlift_some n (h i : 'I_n) :
h != i -> {j | i = lift h j & unlift h i = Some j}.
Proof.
rewrite eq_sym => /eqP neq_ih.
by case Dui: (unlift h i) / (unliftP h i) => [j Dh|//]; exists j.
Qed.
Lemma lift_inj n (h : 'I_n) : injective (lift h).
Proof.
move=> i1 i2; move/eqP; rewrite [_ == _](can_eq (@bumpK _)) => eq_i12.
exact/eqP.
Qed.
Lemma liftK n (h : 'I_n) : pcancel (lift h) (unlift h).
Proof.
by move=> i; case: (unlift_some (neq_lift h i)) => j; move/lift_inj->.
Qed.
(* Shifting and splitting indices, for cutting and pasting arrays *)
Lemma lshift_subproof m n (i : 'I_m) : i < m + n.
Proof. by apply: leq_trans (valP i) _; apply: leq_addr. Qed.
Lemma rshift_subproof m n (i : 'I_n) : m + i < m + n.
Proof. by rewrite ltn_add2l. Qed.
Definition lshift m n (i : 'I_m) := Ordinal (lshift_subproof n i).
Definition rshift m n (i : 'I_n) := Ordinal (rshift_subproof m i).
Lemma split_subproof m n (i : 'I_(m + n)) : i >= m -> i - m < n.
Proof. by move/subSn <-; rewrite leq_subLR. Qed.
Definition split m n (i : 'I_(m + n)) : 'I_m + 'I_n :=
match ltnP (i) m with
| LtnNotGeq lt_i_m => inl _ (Ordinal lt_i_m)
| GeqNotLtn ge_i_m => inr _ (Ordinal (split_subproof ge_i_m))
end.
CoInductive split_spec m n (i : 'I_(m + n)) : 'I_m + 'I_n -> bool -> Type :=
| SplitLo (j : 'I_m) of i = j :> nat : split_spec i (inl _ j) true
| SplitHi (k : 'I_n) of i = m + k :> nat : split_spec i (inr _ k) false.
Lemma splitP m n (i : 'I_(m + n)) : split_spec i (split i) (i < m).
Proof.
rewrite /split {-3}/leq.
by case: (@ltnP i m) => cmp_i_m //=; constructor; rewrite ?subnKC.
Qed.
Definition unsplit m n (jk : 'I_m + 'I_n) :=
match jk with inl j => lshift n j | inr k => rshift m k end.
Lemma ltn_unsplit m n (jk : 'I_m + 'I_n) : (unsplit jk < m) = jk.
Proof. by case: jk => [j|k]; rewrite /= ?ltn_ord // ltnNge leq_addr. Qed.
Lemma splitK m n : cancel (@split m n) (@unsplit m n).
Proof. by move=> i; apply: val_inj; case: splitP. Qed.
Lemma unsplitK m n : cancel (@unsplit m n) (@split m n).
Proof.
move=> jk; have:= ltn_unsplit jk.
by do [case: splitP; case: jk => //= i j] => [|/addnI] => /ord_inj->.
Qed.
Section OrdinalPos.
Variable n' : nat.
Local Notation n := n'.+1.
Definition ord0 := Ordinal (ltn0Sn n').
Definition ord_max := Ordinal (ltnSn n').
Lemma leq_ord (i : 'I_n) : i <= n'. Proof. exact: valP i. Qed.
Lemma sub_ord_proof m : n' - m < n.
Proof. by rewrite ltnS leq_subr. Qed.
Definition sub_ord m := Ordinal (sub_ord_proof m).
Lemma sub_ordK (i : 'I_n) : n' - (n' - i) = i.
Proof. by rewrite subKn ?leq_ord. Qed.
Definition inord m : 'I_n := insubd ord0 m.
Lemma inordK m : m < n -> inord m = m :> nat.
Proof. by move=> lt_m; rewrite val_insubd lt_m. Qed.
Lemma inord_val (i : 'I_n) : inord i = i.
Proof. by rewrite /inord /insubd valK. Qed.
Lemma enum_ordS : enum 'I_n = ord0 :: map (lift ord0) (enum 'I_n').
Proof.
apply: (inj_map val_inj); rewrite val_enum_ord /= -map_comp.
by rewrite (map_comp (addn 1)) val_enum_ord -iota_addl.
Qed.
Lemma lift_max (i : 'I_n') : lift ord_max i = i :> nat.
Proof. by rewrite /= /bump leqNgt ltn_ord. Qed.
Lemma lift0 (i : 'I_n') : lift ord0 i = i.+1 :> nat. Proof. by []. Qed.
End OrdinalPos.
Arguments ord0 {n'}.
Arguments ord_max {n'}.
Arguments inord {n'}.
Arguments sub_ord {n'}.
(* Product of two fintypes which is a fintype *)
Section ProdFinType.
Variable T1 T2 : finType.
Definition prod_enum := [seq (x1, x2) | x1 <- enum T1, x2 <- enum T2].
Lemma predX_prod_enum (A1 : pred T1) (A2 : pred T2) :
count [predX A1 & A2] prod_enum = #|A1| * #|A2|.
Proof.
rewrite !cardE !size_filter -!enumT /prod_enum.
elim: (enum T1) => //= x1 s1 IHs; rewrite count_cat {}IHs count_map /preim /=.
by case: (x1 \in A1); rewrite ?count_pred0.
Qed.
Lemma prod_enumP : Finite.axiom prod_enum.
Proof.
by case=> x1 x2; rewrite (predX_prod_enum (pred1 x1) (pred1 x2)) !card1.
Qed.
Definition prod_finMixin := Eval hnf in FinMixin prod_enumP.
Canonical prod_finType := Eval hnf in FinType (T1 * T2) prod_finMixin.
Lemma cardX (A1 : pred T1) (A2 : pred T2) : #|[predX A1 & A2]| = #|A1| * #|A2|.
Proof. by rewrite -predX_prod_enum unlock size_filter unlock. Qed.
Lemma card_prod : #|{: T1 * T2}| = #|T1| * #|T2|.
Proof. by rewrite -cardX; apply: eq_card; case. Qed.
Lemma eq_card_prod (A : pred (T1 * T2)) : A =i predT -> #|A| = #|T1| * #|T2|.
Proof. exact: eq_card_trans card_prod. Qed.
End ProdFinType.
Section TagFinType.
Variables (I : finType) (T_ : I -> finType).
Definition tag_enum :=
flatten [seq [seq Tagged T_ x | x <- enumF (T_ i)] | i <- enumF I].
Lemma tag_enumP : Finite.axiom tag_enum.
Proof.
case=> i x; rewrite -(enumP i) /tag_enum -enumT.
elim: (enum I) => //= j e IHe.
rewrite count_cat count_map {}IHe; congr (_ + _).
rewrite -size_filter -cardE /=; case: eqP => [-> | ne_j_i].
by apply: (@eq_card1 _ x) => y; rewrite -topredE /= tagged_asE ?eqxx.
by apply: eq_card0 => y.
Qed.
Definition tag_finMixin := Eval hnf in FinMixin tag_enumP.
Canonical tag_finType := Eval hnf in FinType {i : I & T_ i} tag_finMixin.
Lemma card_tagged :
#|{: {i : I & T_ i}}| = sumn (map (fun i => #|T_ i|) (enum I)).
Proof.
rewrite cardE !enumT {1}unlock size_flatten /shape -map_comp.
by congr (sumn _); apply: eq_map => i; rewrite /= size_map -enumT -cardE.
Qed.
End TagFinType.
Section SumFinType.
Variables T1 T2 : finType.
Definition sum_enum :=
[seq inl _ x | x <- enumF T1] ++ [seq inr _ y | y <- enumF T2].
Lemma sum_enum_uniq : uniq sum_enum.
Proof.
rewrite cat_uniq -!enumT !(enum_uniq, map_inj_uniq); try by move=> ? ? [].
by rewrite andbT; apply/hasP=> [[_ /mapP[x _ ->] /mapP[]]].
Qed.
Lemma mem_sum_enum u : u \in sum_enum.
Proof. by case: u => x; rewrite mem_cat -!enumT map_f ?mem_enum ?orbT. Qed.
Definition sum_finMixin := Eval hnf in UniqFinMixin sum_enum_uniq mem_sum_enum.
Canonical sum_finType := Eval hnf in FinType (T1 + T2) sum_finMixin.
Lemma card_sum : #|{: T1 + T2}| = #|T1| + #|T2|.
Proof. by rewrite !cardT !enumT {1}unlock size_cat !size_map. Qed.
End SumFinType.
|