(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) Require Import mathcomp.ssreflect.ssreflect. From mathcomp Require Import ssrfun ssrbool eqtype ssrnat seq choice. (******************************************************************************) (* The Finite interface describes Types with finitely many elements, *) (* supplying a duplicate-free sequence of all the elements. It is a subclass *) (* of Countable and thus of Choice and Equality. As with Countable, the *) (* interface explicitly includes these somewhat redundant superclasses to *) (* ensure that Canonical instance inference remains consistent. Finiteness *) (* could be stated more simply by bounding the range of the pickle function *) (* supplied by the Countable interface, but this would yield a useless *) (* computational interpretation due to the wasteful Peano integer encodings. *) (* Because the Countable interface is closely tied to the Finite interface *) (* and is not much used on its own, the Countable mixin is included inside *) (* the Finite mixin; this makes it much easier to derive Finite variants of *) (* interfaces, in this file for subFinType, and in the finalg library. *) (* We define the following interfaces and structures: *) (* finType == the packed class type of the Finite interface. *) (* FinType m == the packed class for the Finite mixin m. *) (* Finite.axiom e <-> every x : T occurs exactly once in e : seq T. *) (* FinMixin ax_e == the Finite mixin for T, encapsulating *) (* ax_e : Finite.axiom e for some e : seq T. *) (* UniqFinMixin uniq_e total_e == an alternative mixin constructor that uses *) (* uniq_e : uniq e and total_e : e =i xpredT. *) (* PcanFinMixin fK == the Finite mixin for T, given f : T -> fT and g with fT *) (* a finType and fK : pcancel f g. *) (* CanFinMixin fK == the Finite mixin for T, given f : T -> fT and g with fT *) (* a finType and fK : cancel f g. *) (* subFinType == the join interface type for subType and finType. *) (* [finType of T for fT] == clone for T of the finType fT. *) (* [finType of T] == clone for T of the finType inferred for T. *) (* [subFinType of T] == a subFinType structure for T, when T already has both *) (* finType and subType structures. *) (* [finMixin of T by <:] == a finType structure for T, when T has a subType *) (* structure over an existing finType. *) (* We define or propagate the finType structure appropriately for all basic *) (* types : unit, bool, option, prod, sum, sig and sigT. We also define a *) (* generic type constructor for finite subtypes based on an explicit *) (* enumeration: *) (* seq_sub s == the subType of all x \in s, where s : seq T for some *) (* eqType T; seq_sub s has a canonical finType instance *) (* when T is a choiceType. *) (* adhoc_seq_sub_choiceType s, adhoc_seq_sub_finType s == *) (* non-canonical instances for seq_sub s, s : seq T, *) (* which can be used when T is not a choiceType. *) (* Bounded integers are supported by the following type and operations: *) (* 'I_n, ordinal n == the finite subType of integers i < n, whose *) (* enumeration is {0, ..., n.-1}. 'I_n coerces to nat, *) (* so all the integer arithmetic functions can be used *) (* with 'I_n. *) (* Ordinal lt_i_n == the element of 'I_n with (nat) value i, given *) (* lt_i_n : i < n. *) (* nat_of_ord i == the nat value of i : 'I_n (this function is a *) (* coercion so it is not usually displayed). *) (* ord_enum n == the explicit increasing sequence of the i : 'I_n. *) (* cast_ord eq_n_m i == the element j : 'I_m with the same value as i : 'I_n *) (* given eq_n_m : n = m (indeed, i : nat and j : nat *) (* are convertible). *) (* widen_ord le_n_m i == a j : 'I_m with the same value as i : 'I_n, given *) (* le_n_m : n <= m. *) (* rev_ord i == the complement to n.-1 of i : 'I_n, such that *) (* i + rev_ord i = n.-1. *) (* inord k == the i : 'I_n.+1 with value k (n is inferred from the *) (* context). *) (* sub_ord k == the i : 'I_n.+1 with value n - k (n is inferred from *) (* the context). *) (* ord0 == the i : 'I_n.+1 with value 0 (n is inferred from the *) (* context). *) (* ord_max == the i : 'I_n.+1 with value n (n is inferred from the *) (* context). *) (* bump h k == k.+1 if k >= h, else k (this is a nat function). *) (* unbump h k == k.-1 if k > h, else k (this is a nat function). *) (* lift i j == the j' : 'I_n with value bump i j, where i : 'I_n *) (* and j : 'I_n.-1. *) (* unlift i j == None if i = j, else Some j', where j' : 'I_n.-1 has *) (* value unbump i j, given i, j : 'I_n. *) (* lshift n j == the i : 'I_(m + n) with value j : 'I_m. *) (* rshift m k == the i : 'I_(m + n) with value m + k, k : 'I_n. *) (* unsplit u == either lshift n j or rshift m k, depending on *) (* whether if u : 'I_m + 'I_n is inl j or inr k. *) (* split i == the u : 'I_m + 'I_n such that i = unsplit u; the *) (* type 'I_(m + n) of i determines the split. *) (* Finally, every type T with a finType structure supports the following *) (* operations: *) (* enum A == a duplicate-free list of all the x \in A, where A is a *) (* collective predicate over T. *) (* #|A| == the cardinal of A, i.e., the number of x \in A. *) (* enum_val i == the i'th item of enum A, where i : 'I_(#|A|). *) (* enum_rank x == the i : 'I_(#|T|) such that enum_val i = x. *) (* enum_rank_in Ax0 x == some i : 'I_(#|A|) such that enum_val i = x if *) (* x \in A, given Ax0 : x0 \in A. *) (* A \subset B == all x \in A satisfy x \in B. *) (* A \proper B == all x \in A satisfy x \in B but not the converse. *) (* [disjoint A & B] == no x \in A satisfies x \in B. *) (* image f A == the sequence of f x for all x : T such that x \in A *) (* (where a is an applicative predicate), of length #|P|. *) (* The codomain of F can be any type, but image f A can *) (* only be used as a collective predicate is it is an *) (* eqType. *) (* codom f == a sequence spanning the codomain of f (:= image f T). *) (* [seq F | x : T in A] := image (fun x : T => F) A. *) (* [seq F | x : T] := [seq F | x <- {: T}]. *) (* [seq F | x in A], [seq F | x] == variants without casts. *) (* iinv im_y == some x such that P x holds and f x = y, given *) (* im_y : y \in image f P. *) (* invF inj_f y == the x such that f x = y, for inj_j : injective f with *) (* f : T -> T. *) (* dinjectiveb A f == the restriction of f : T -> R to A is injective *) (* (this is a bolean predicate, R must be an eqType). *) (* injectiveb f == f : T -> R is injective (boolean predicate). *) (* pred0b A == no x : T satisfies x \in A. *) (* [forall x, P] == P (in which x can appear) is true for all values of x; *) (* x must range over a finType. *) (* [exists x, P] == P is true for some value of x. *) (* [forall (x | C), P] := [forall x, C ==> P]. *) (* [forall x in A, P] := [forall (x | x \in A), P]. *) (* [exists (x | C), P] := [exists x, C && P]. *) (* [exists x in A, P] := [exists (x | x \in A), P]. *) (* and typed variants [forall x : T, P], [forall (x : T | C), P], *) (* [exists x : T, P], [exists x : T in A, P], etc. *) (* -> The outer brackets can be omitted when nesting finitary quantifiers, *) (* e.g., [forall i in I, forall j in J, exists a, f i j == a]. *) (* 'forall_pP == view for [forall x, p _], for pP : reflect .. (p _). *) (* 'exists_pP == view for [exists x, p _], for pP : reflect .. (p _). *) (* [pick x | P] == Some x, for an x such that P holds, or None if there *) (* is no such x. *) (* [pick x : T] == Some x with x : T, provided T is nonempty, else None. *) (* [pick x in A] == Some x, with x \in A, or None if A is empty. *) (* [pick x in A | P] == Some x, with x \in A s.t. P holds, else None. *) (* [pick x | P & Q] := [pick x | P & Q]. *) (* [pick x in A | P & Q] := [pick x | P & Q]. *) (* and (un)typed variants [pick x : T | P], [pick x : T in A], [pick x], etc. *) (* [arg min_(i < i0 | P) M] == a value of i : T minimizing M : nat, subject *) (* to the condition P (i may appear in P and M), and *) (* provided P holds for i0. *) (* [arg max_(i > i0 | P) M] == a value of i maximizing M subject to P and *) (* provided P holds for i0. *) (* [arg min_(i < i0 in A) M] == an i \in A minimizing M if i0 \in A. *) (* [arg max_(i > i0 in A) M] == an i \in A maximizing M if i0 \in A. *) (* [arg min_(i < i0) M] == an i : T minimizing M, given i0 : T. *) (* [arg max_(i > i0) M] == an i : T maximizing M, given i0 : T. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Module Finite. Section RawMixin. Variable T : eqType. Definition axiom e := forall x : T, count_mem x e = 1. Lemma uniq_enumP e : uniq e -> e =i T -> axiom e. Proof. by move=> Ue sT x; rewrite count_uniq_mem ?sT. Qed. Record mixin_of := Mixin { mixin_base : Countable.mixin_of T; mixin_enum : seq T; _ : axiom mixin_enum }. End RawMixin. Section Mixins. Variable T : countType. Definition EnumMixin := let: Countable.Pack _ (Countable.Class _ m) _ as cT := T return forall e : seq cT, axiom e -> mixin_of cT in @Mixin (EqType _ _) m. Definition UniqMixin e Ue eT := @EnumMixin e (uniq_enumP Ue eT). Variable n : nat. Definition count_enum := pmap (@pickle_inv T) (iota 0 n). Hypothesis ubT : forall x : T, pickle x < n. Lemma count_enumP : axiom count_enum. Proof. apply: uniq_enumP (pmap_uniq (@pickle_invK T) (iota_uniq _ _)) _ => x. by rewrite mem_pmap -pickleK_inv map_f // mem_iota ubT. Qed. Definition CountMixin := EnumMixin count_enumP. End Mixins. Section ClassDef. Record class_of T := Class { base : Choice.class_of T; mixin : mixin_of (Equality.Pack base T) }. Definition base2 T c := Countable.Class (@base T c) (mixin_base (mixin c)). Local Coercion base : class_of >-> Choice.class_of. Structure type : Type := Pack {sort; _ : class_of sort; _ : Type}. Local Coercion sort : type >-> Sortclass. Variables (T : Type) (cT : type). Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. Definition clone c of phant_id class c := @Pack T c T. Let xT := let: Pack T _ _ := cT in T. Notation xclass := (class : class_of xT). Definition pack b0 (m0 : mixin_of (EqType T b0)) := fun bT b & phant_id (Choice.class bT) b => fun m & phant_id m0 m => Pack (@Class T b m) T. Definition eqType := @Equality.Pack cT xclass xT. Definition choiceType := @Choice.Pack cT xclass xT. Definition countType := @Countable.Pack cT (base2 xclass) xT. End ClassDef. Module Import Exports. Coercion mixin_base : mixin_of >-> Countable.mixin_of. Coercion base : class_of >-> Choice.class_of. Coercion mixin : class_of >-> mixin_of. Coercion base2 : class_of >-> Countable.class_of. Coercion sort : type >-> Sortclass. Coercion eqType : type >-> Equality.type. Canonical eqType. Coercion choiceType : type >-> Choice.type. Canonical choiceType. Coercion countType : type >-> Countable.type. Canonical countType. Notation finType := type. Notation FinType T m := (@pack T _ m _ _ id _ id). Notation FinMixin := EnumMixin. Notation UniqFinMixin := UniqMixin. Notation "[ 'finType' 'of' T 'for' cT ]" := (@clone T cT _ idfun) (at level 0, format "[ 'finType' 'of' T 'for' cT ]") : form_scope. Notation "[ 'finType' 'of' T ]" := (@clone T _ _ id) (at level 0, format "[ 'finType' 'of' T ]") : form_scope. End Exports. Module Type EnumSig. Parameter enum : forall cT : type, seq cT. Axiom enumDef : enum = fun cT => mixin_enum (class cT). End EnumSig. Module EnumDef : EnumSig. Definition enum cT := mixin_enum (class cT). Definition enumDef := erefl enum. End EnumDef. Notation enum := EnumDef.enum. End Finite. Export Finite.Exports. Canonical finEnum_unlock := Unlockable Finite.EnumDef.enumDef. (* Workaround for the silly syntactic uniformity restriction on coercions; *) (* this avoids a cross-dependency between finset.v and prime.v for the *) (* definition of the \pi(A) notation. *) Definition fin_pred_sort (T : finType) (pT : predType T) := pred_sort pT. Identity Coercion pred_sort_of_fin : fin_pred_sort >-> pred_sort. Definition enum_mem T (mA : mem_pred _) := filter mA (Finite.enum T). Notation enum A := (enum_mem (mem A)). Definition pick (T : finType) (P : pred T) := ohead (enum P). Notation "[ 'pick' x | P ]" := (pick (fun x => P%B)) (at level 0, x ident, format "[ 'pick' x | P ]") : form_scope. Notation "[ 'pick' x : T | P ]" := (pick (fun x : T => P%B)) (at level 0, x ident, only parsing) : form_scope. Definition pick_true T (x : T) := true. Notation "[ 'pick' x : T ]" := [pick x : T | pick_true x] (at level 0, x ident, only parsing). Notation "[ 'pick' x ]" := [pick x : _] (at level 0, x ident, only parsing) : form_scope. Notation "[ 'pic' 'k' x : T ]" := [pick x : T | pick_true _] (at level 0, x ident, format "[ 'pic' 'k' x : T ]") : form_scope. Notation "[ 'pick' x | P & Q ]" := [pick x | P && Q ] (at level 0, x ident, format "[ '[hv ' 'pick' x | P '/ ' & Q ] ']'") : form_scope. Notation "[ 'pick' x : T | P & Q ]" := [pick x : T | P && Q ] (at level 0, x ident, only parsing) : form_scope. Notation "[ 'pick' x 'in' A ]" := [pick x | x \in A] (at level 0, x ident, format "[ 'pick' x 'in' A ]") : form_scope. Notation "[ 'pick' x : T 'in' A ]" := [pick x : T | x \in A] (at level 0, x ident, only parsing) : form_scope. Notation "[ 'pick' x 'in' A | P ]" := [pick x | x \in A & P ] (at level 0, x ident, format "[ '[hv ' 'pick' x 'in' A '/ ' | P ] ']'") : form_scope. Notation "[ 'pick' x : T 'in' A | P ]" := [pick x : T | x \in A & P ] (at level 0, x ident, only parsing) : form_scope. Notation "[ 'pick' x 'in' A | P & Q ]" := [pick x in A | P && Q] (at level 0, x ident, format "[ '[hv ' 'pick' x 'in' A '/ ' | P '/ ' & Q ] ']'") : form_scope. Notation "[ 'pick' x : T 'in' A | P & Q ]" := [pick x : T in A | P && Q] (at level 0, x ident, only parsing) : form_scope. (* We lock the definitions of card and subset to mitigate divergence of the *) (* Coq term comparison algorithm. *) Local Notation card_type := (forall T : finType, mem_pred T -> nat). Local Notation card_def := (fun T mA => size (enum_mem mA)). Module Type CardDefSig. Parameter card : card_type. Axiom cardEdef : card = card_def. End CardDefSig. Module CardDef : CardDefSig. Definition card : card_type := card_def. Definition cardEdef := erefl card. End CardDef. (* Should be Include, but for a silly restriction: can't Include at toplevel! *) Export CardDef. Canonical card_unlock := Unlockable cardEdef. (* A is at level 99 to allow the notation #|G : H| in groups. *) Notation "#| A |" := (card (mem A)) (at level 0, A at level 99, format "#| A |") : nat_scope. Definition pred0b (T : finType) (P : pred T) := #|P| == 0. Prenex Implicits pred0b. Module FiniteQuant. CoInductive quantified := Quantified of bool. Delimit Scope fin_quant_scope with Q. (* Bogus, only used to declare scope. *) Bind Scope fin_quant_scope with quantified. Notation "F ^*" := (Quantified F) (at level 2). Notation "F ^~" := (~~ F) (at level 2). Section Definitions. Variable T : finType. Implicit Types (B : quantified) (x y : T). Definition quant0b Bp := pred0b [pred x : T | let: F^* := Bp x x in F]. (* The first redundant argument protects the notation from Coq's K-term *) (* display kludge; the second protects it from simpl and /=. *) Definition ex B x y := B. (* Binding the predicate value rather than projecting it prevents spurious *) (* unfolding of the boolean connectives by unification. *) Definition all B x y := let: F^* := B in F^~^*. Definition all_in C B x y := let: F^* := B in (C ==> F)^~^*. Definition ex_in C B x y := let: F^* := B in (C && F)^*. End Definitions. Notation "[ x | B ]" := (quant0b (fun x => B x)) (at level 0, x ident). Notation "[ x : T | B ]" := (quant0b (fun x : T => B x)) (at level 0, x ident). Module Exports. Notation ", F" := F^* (at level 200, format ", '/ ' F") : fin_quant_scope. Notation "[ 'forall' x B ]" := [x | all B] (at level 0, x at level 99, B at level 200, format "[ '[hv' 'forall' x B ] ']'") : bool_scope. Notation "[ 'forall' x : T B ]" := [x : T | all B] (at level 0, x at level 99, B at level 200, only parsing) : bool_scope. Notation "[ 'forall' ( x | C ) B ]" := [x | all_in C B] (at level 0, x at level 99, B at level 200, format "[ '[hv' '[' 'forall' ( x '/ ' | C ) ']' B ] ']'") : bool_scope. Notation "[ 'forall' ( x : T | C ) B ]" := [x : T | all_in C B] (at level 0, x at level 99, B at level 200, only parsing) : bool_scope. Notation "[ 'forall' x 'in' A B ]" := [x | all_in (x \in A) B] (at level 0, x at level 99, B at level 200, format "[ '[hv' '[' 'forall' x '/ ' 'in' A ']' B ] ']'") : bool_scope. Notation "[ 'forall' x : T 'in' A B ]" := [x : T | all_in (x \in A) B] (at level 0, x at level 99, B at level 200, only parsing) : bool_scope. Notation ", 'forall' x B" := [x | all B]^* (at level 200, x at level 99, B at level 200, format ", '/ ' 'forall' x B") : fin_quant_scope. Notation ", 'forall' x : T B" := [x : T | all B]^* (at level 200, x at level 99, B at level 200, only parsing) : fin_quant_scope. Notation ", 'forall' ( x | C ) B" := [x | all_in C B]^* (at level 200, x at level 99, B at level 200, format ", '/ ' '[' 'forall' ( x '/ ' | C ) ']' B") : fin_quant_scope. Notation ", 'forall' ( x : T | C ) B" := [x : T | all_in C B]^* (at level 200, x at level 99, B at level 200, only parsing) : fin_quant_scope. Notation ", 'forall' x 'in' A B" := [x | all_in (x \in A) B]^* (at level 200, x at level 99, B at level 200, format ", '/ ' '[' 'forall' x '/ ' 'in' A ']' B") : bool_scope. Notation ", 'forall' x : T 'in' A B" := [x : T | all_in (x \in A) B]^* (at level 200, x at level 99, B at level 200, only parsing) : bool_scope. Notation "[ 'exists' x B ]" := [x | ex B]^~ (at level 0, x at level 99, B at level 200, format "[ '[hv' 'exists' x B ] ']'") : bool_scope. Notation "[ 'exists' x : T B ]" := [x : T | ex B]^~ (at level 0, x at level 99, B at level 200, only parsing) : bool_scope. Notation "[ 'exists' ( x | C ) B ]" := [x | ex_in C B]^~ (at level 0, x at level 99, B at level 200, format "[ '[hv' '[' 'exists' ( x '/ ' | C ) ']' B ] ']'") : bool_scope. Notation "[ 'exists' ( x : T | C ) B ]" := [x : T | ex_in C B]^~ (at level 0, x at level 99, B at level 200, only parsing) : bool_scope. Notation "[ 'exists' x 'in' A B ]" := [x | ex_in (x \in A) B]^~ (at level 0, x at level 99, B at level 200, format "[ '[hv' '[' 'exists' x '/ ' 'in' A ']' B ] ']'") : bool_scope. Notation "[ 'exists' x : T 'in' A B ]" := [x : T | ex_in (x \in A) B]^~ (at level 0, x at level 99, B at level 200, only parsing) : bool_scope. Notation ", 'exists' x B" := [x | ex B]^~^* (at level 200, x at level 99, B at level 200, format ", '/ ' 'exists' x B") : fin_quant_scope. Notation ", 'exists' x : T B" := [x : T | ex B]^~^* (at level 200, x at level 99, B at level 200, only parsing) : fin_quant_scope. Notation ", 'exists' ( x | C ) B" := [x | ex_in C B]^~^* (at level 200, x at level 99, B at level 200, format ", '/ ' '[' 'exists' ( x '/ ' | C ) ']' B") : fin_quant_scope. Notation ", 'exists' ( x : T | C ) B" := [x : T | ex_in C B]^~^* (at level 200, x at level 99, B at level 200, only parsing) : fin_quant_scope. Notation ", 'exists' x 'in' A B" := [x | ex_in (x \in A) B]^~^* (at level 200, x at level 99, B at level 200, format ", '/ ' '[' 'exists' x '/ ' 'in' A ']' B") : bool_scope. Notation ", 'exists' x : T 'in' A B" := [x : T | ex_in (x \in A) B]^~^* (at level 200, x at level 99, B at level 200, only parsing) : bool_scope. End Exports. End FiniteQuant. Export FiniteQuant.Exports. Definition disjoint T (A B : mem_pred _) := @pred0b T (predI A B). Notation "[ 'disjoint' A & B ]" := (disjoint (mem A) (mem B)) (at level 0, format "'[hv' [ 'disjoint' '/ ' A '/' & B ] ']'") : bool_scope. Local Notation subset_type := (forall (T : finType) (A B : mem_pred T), bool). Local Notation subset_def := (fun T A B => pred0b (predD A B)). Module Type SubsetDefSig. Parameter subset : subset_type. Axiom subsetEdef : subset = subset_def. End SubsetDefSig. Module Export SubsetDef : SubsetDefSig. Definition subset : subset_type := subset_def. Definition subsetEdef := erefl subset. End SubsetDef. Canonical subset_unlock := Unlockable subsetEdef. Notation "A \subset B" := (subset (mem A) (mem B)) (at level 70, no associativity) : bool_scope. Definition proper T A B := @subset T A B && ~~ subset B A. Notation "A \proper B" := (proper (mem A) (mem B)) (at level 70, no associativity) : bool_scope. (* image, xinv, inv, and ordinal operations will be defined later. *) Section OpsTheory. Variable T : finType. Implicit Types A B C P Q : pred T. Implicit Types x y : T. Implicit Type s : seq T. Lemma enumP : Finite.axiom (Finite.enum T). Proof. by rewrite unlock; case T => ? [? []]. Qed. Section EnumPick. Variable P : pred T. Lemma enumT : enum T = Finite.enum T. Proof. exact: filter_predT. Qed. Lemma mem_enum A : enum A =i A. Proof. by move=> x; rewrite mem_filter andbC -has_pred1 has_count enumP. Qed. Lemma enum_uniq : uniq (enum P). Proof. by apply/filter_uniq/count_mem_uniq => x; rewrite enumP -enumT mem_enum. Qed. Lemma enum0 : enum pred0 = Nil T. Proof. exact: filter_pred0. Qed. Lemma enum1 x : enum (pred1 x) = [:: x]. Proof. rewrite [enum _](all_pred1P x _ _); first by rewrite size_filter enumP. by apply/allP=> y; rewrite mem_enum. Qed. CoInductive pick_spec : option T -> Type := | Pick x of P x : pick_spec (Some x) | Nopick of P =1 xpred0 : pick_spec None. Lemma pickP : pick_spec (pick P). Proof. rewrite /pick; case: (enum _) (mem_enum P) => [|x s] Pxs /=. by right; apply: fsym. by left; rewrite -[P _]Pxs mem_head. Qed. End EnumPick. Lemma eq_enum P Q : P =i Q -> enum P = enum Q. Proof. by move=> eqPQ; apply: eq_filter. Qed. Lemma eq_pick P Q : P =1 Q -> pick P = pick Q. Proof. by move=> eqPQ; rewrite /pick (eq_enum eqPQ). Qed. Lemma cardE A : #|A| = size (enum A). Proof. by rewrite unlock. Qed. Lemma eq_card A B : A =i B -> #|A| = #|B|. Proof. by move=> eqAB; rewrite !cardE (eq_enum eqAB). Qed. Lemma eq_card_trans A B n : #|A| = n -> B =i A -> #|B| = n. Proof. by move <-; apply: eq_card. Qed. Lemma card0 : #|@pred0 T| = 0. Proof. by rewrite cardE enum0. Qed. Lemma cardT : #|T| = size (enum T). Proof. by rewrite cardE. Qed. Lemma card1 x : #|pred1 x| = 1. Proof. by rewrite cardE enum1. Qed. Lemma eq_card0 A : A =i pred0 -> #|A| = 0. Proof. exact: eq_card_trans card0. Qed. Lemma eq_cardT A : A =i predT -> #|A| = size (enum T). Proof. exact: eq_card_trans cardT. Qed. Lemma eq_card1 x A : A =i pred1 x -> #|A| = 1. Proof. exact: eq_card_trans (card1 x). Qed. Lemma cardUI A B : #|[predU A & B]| + #|[predI A & B]| = #|A| + #|B|. Proof. by rewrite !cardE !size_filter count_predUI. Qed. Lemma cardID B A : #|[predI A & B]| + #|[predD A & B]| = #|A|. Proof. rewrite -cardUI addnC [#|predI _ _|]eq_card0 => [|x] /=. by apply: eq_card => x; rewrite !inE andbC -andb_orl orbN. by rewrite !inE -!andbA andbC andbA andbN. Qed. Lemma cardC A : #|A| + #|[predC A]| = #|T|. Proof. by rewrite !cardE !size_filter count_predC. Qed. Lemma cardU1 x A : #|[predU1 x & A]| = (x \notin A) + #|A|. Proof. case Ax: (x \in A). by apply: eq_card => y; rewrite inE /=; case: eqP => // ->. rewrite /= -(card1 x) -cardUI addnC. rewrite [#|predI _ _|]eq_card0 => [|y /=]; first exact: eq_card. by rewrite !inE; case: eqP => // ->. Qed. Lemma card2 x y : #|pred2 x y| = (x != y).+1. Proof. by rewrite cardU1 card1 addn1. Qed. Lemma cardC1 x : #|predC1 x| = #|T|.-1. Proof. by rewrite -(cardC (pred1 x)) card1. Qed. Lemma cardD1 x A : #|A| = (x \in A) + #|[predD1 A & x]|. Proof. case Ax: (x \in A); last first. by apply: eq_card => y; rewrite !inE /=; case: eqP => // ->. rewrite /= -(card1 x) -cardUI addnC /=. rewrite [#|predI _ _|]eq_card0 => [|y]; last by rewrite !inE; case: eqP. by apply: eq_card => y; rewrite !inE; case: eqP => // ->. Qed. Lemma max_card A : #|A| <= #|T|. Proof. by rewrite -(cardC A) leq_addr. Qed. Lemma card_size s : #|s| <= size s. Proof. elim: s => [|x s IHs] /=; first by rewrite card0. by rewrite cardU1 /=; case: (~~ _) => //; apply: leqW. Qed. Lemma card_uniqP s : reflect (#|s| = size s) (uniq s). Proof. elim: s => [|x s IHs]; first by left; apply: card0. rewrite cardU1 /= /addn; case: {+}(x \in s) => /=. by right=> card_Ssz; have:= card_size s; rewrite card_Ssz ltnn. by apply: (iffP IHs) => [<-| [<-]]. Qed. Lemma card0_eq A : #|A| = 0 -> A =i pred0. Proof. by move=> A0 x; apply/idP => Ax; rewrite (cardD1 x) Ax in A0. Qed. Lemma pred0P P : reflect (P =1 pred0) (pred0b P). Proof. by apply: (iffP eqP); [apply: card0_eq | apply: eq_card0]. Qed. Lemma pred0Pn P : reflect (exists x, P x) (~~ pred0b P). Proof. case: (pickP P) => [x Px | P0]. by rewrite (introN (pred0P P)) => [|P0]; [left; exists x | rewrite P0 in Px]. by rewrite -lt0n eq_card0 //; right=> [[x]]; rewrite P0. Qed. Lemma card_gt0P A : reflect (exists i, i \in A) (#|A| > 0). Proof. by rewrite lt0n; apply: pred0Pn. Qed. Lemma subsetE A B : (A \subset B) = pred0b [predD A & B]. Proof. by rewrite unlock. Qed. Lemma subsetP A B : reflect {subset A <= B} (A \subset B). Proof. rewrite unlock; apply: (iffP (pred0P _)) => [AB0 x | sAB x /=]. by apply/implyP; apply/idPn; rewrite negb_imply andbC [_ && _]AB0. by rewrite andbC -negb_imply; apply/negbF/implyP; apply: sAB. Qed. Lemma subsetPn A B : reflect (exists2 x, x \in A & x \notin B) (~~ (A \subset B)). Proof. rewrite unlock; apply: (iffP (pred0Pn _)) => [[x] | [x Ax nBx]]. by case/andP; exists x. by exists x; rewrite /= nBx. Qed. Lemma subset_leq_card A B : A \subset B -> #|A| <= #|B|. Proof. move=> sAB. rewrite -(cardID A B) [#|predI _ _|](@eq_card _ A) ?leq_addr //= => x. by rewrite !inE andbC; case Ax: (x \in A) => //; apply: subsetP Ax. Qed. Lemma subxx_hint (mA : mem_pred T) : subset mA mA. Proof. by case: mA => A; have:= introT (subsetP A A); rewrite !unlock => ->. Qed. Hint Resolve subxx_hint. (* The parametrization by predType makes it easier to apply subxx. *) Lemma subxx (pT : predType T) (pA : pT) : pA \subset pA. Proof. by []. Qed. Lemma eq_subset A1 A2 : A1 =i A2 -> subset (mem A1) =1 subset (mem A2). Proof. move=> eqA12 [B]; rewrite !unlock; congr (_ == 0). by apply: eq_card => x; rewrite inE /= eqA12. Qed. Lemma eq_subset_r B1 B2 : B1 =i B2 -> (@subset T)^~ (mem B1) =1 (@subset T)^~ (mem B2). Proof. move=> eqB12 [A]; rewrite !unlock; congr (_ == 0). by apply: eq_card => x; rewrite !inE /= eqB12. Qed. Lemma eq_subxx A B : A =i B -> A \subset B. Proof. by move/eq_subset->. Qed. Lemma subset_predT A : A \subset T. Proof. by apply/subsetP. Qed. Lemma predT_subset A : T \subset A -> forall x, x \in A. Proof. by move/subsetP=> allA x; apply: allA. Qed. Lemma subset_pred1 A x : (pred1 x \subset A) = (x \in A). Proof. by apply/subsetP/idP=> [-> // | Ax y /eqP-> //]; apply: eqxx. Qed. Lemma subset_eqP A B : reflect (A =i B) ((A \subset B) && (B \subset A)). Proof. apply: (iffP andP) => [[sAB sBA] x| eqAB]; last by rewrite !eq_subxx. by apply/idP/idP; apply: subsetP. Qed. Lemma subset_cardP A B : #|A| = #|B| -> reflect (A =i B) (A \subset B). Proof. move=> eqcAB; case: (subsetP A B) (subset_eqP A B) => //= sAB. case: (subsetP B A) => [//|[]] x Bx; apply/idPn => Ax. case/idP: (ltnn #|A|); rewrite {2}eqcAB (cardD1 x B) Bx /=. apply: subset_leq_card; apply/subsetP=> y Ay; rewrite inE /= andbC. by rewrite sAB //; apply/eqP => eqyx; rewrite -eqyx Ay in Ax. Qed. Lemma subset_leqif_card A B : A \subset B -> #|A| <= #|B| ?= iff (B \subset A). Proof. move=> sAB; split; [exact: subset_leq_card | apply/eqP/idP]. by move/subset_cardP=> sABP; rewrite (eq_subset_r (sABP sAB)). by move=> sBA; apply: eq_card; apply/subset_eqP; rewrite sAB. Qed. Lemma subset_trans A B C : A \subset B -> B \subset C -> A \subset C. Proof. by move/subsetP=> sAB /subsetP=> sBC; apply/subsetP=> x /sAB; apply: sBC. Qed. Lemma subset_all s A : (s \subset A) = all (mem A) s. Proof. exact: (sameP (subsetP _ _) allP). Qed. Lemma properE A B : A \proper B = (A \subset B) && ~~(B \subset A). Proof. by []. Qed. Lemma properP A B : reflect (A \subset B /\ (exists2 x, x \in B & x \notin A)) (A \proper B). Proof. by rewrite properE; apply: (iffP andP) => [] [-> /subsetPn]. Qed. Lemma proper_sub A B : A \proper B -> A \subset B. Proof. by case/andP. Qed. Lemma proper_subn A B : A \proper B -> ~~ (B \subset A). Proof. by case/andP. Qed. Lemma proper_trans A B C : A \proper B -> B \proper C -> A \proper C. Proof. case/properP=> sAB [x Bx nAx] /properP[sBC [y Cy nBy]]. rewrite properE (subset_trans sAB) //=; apply/subsetPn; exists y => //. by apply: contra nBy; apply: subsetP. Qed. Lemma proper_sub_trans A B C : A \proper B -> B \subset C -> A \proper C. Proof. case/properP=> sAB [x Bx nAx] sBC; rewrite properE (subset_trans sAB) //. by apply/subsetPn; exists x; rewrite ?(subsetP _ _ sBC). Qed. Lemma sub_proper_trans A B C : A \subset B -> B \proper C -> A \proper C. Proof. move=> sAB /properP[sBC [x Cx nBx]]; rewrite properE (subset_trans sAB) //. by apply/subsetPn; exists x => //; apply: contra nBx; apply: subsetP. Qed. Lemma proper_card A B : A \proper B -> #|A| < #|B|. Proof. by case/andP=> sAB nsBA; rewrite ltn_neqAle !(subset_leqif_card sAB) andbT. Qed. Lemma proper_irrefl A : ~~ (A \proper A). Proof. by rewrite properE subxx. Qed. Lemma properxx A : (A \proper A) = false. Proof. by rewrite properE subxx. Qed. Lemma eq_proper A B : A =i B -> proper (mem A) =1 proper (mem B). Proof. move=> eAB [C]; congr (_ && _); first exact: (eq_subset eAB). by rewrite (eq_subset_r eAB). Qed. Lemma eq_proper_r A B : A =i B -> (@proper T)^~ (mem A) =1 (@proper T)^~ (mem B). Proof. move=> eAB [C]; congr (_ && _); first exact: (eq_subset_r eAB). by rewrite (eq_subset eAB). Qed. Lemma disjoint_sym A B : [disjoint A & B] = [disjoint B & A]. Proof. by congr (_ == 0); apply: eq_card => x; apply: andbC. Qed. Lemma eq_disjoint A1 A2 : A1 =i A2 -> disjoint (mem A1) =1 disjoint (mem A2). Proof. by move=> eqA12 [B]; congr (_ == 0); apply: eq_card => x; rewrite !inE eqA12. Qed. Lemma eq_disjoint_r B1 B2 : B1 =i B2 -> (@disjoint T)^~ (mem B1) =1 (@disjoint T)^~ (mem B2). Proof. by move=> eqB12 [A]; congr (_ == 0); apply: eq_card => x; rewrite !inE eqB12. Qed. Lemma subset_disjoint A B : (A \subset B) = [disjoint A & [predC B]]. Proof. by rewrite disjoint_sym unlock. Qed. Lemma disjoint_subset A B : [disjoint A & B] = (A \subset [predC B]). Proof. by rewrite subset_disjoint; apply: eq_disjoint_r => x; rewrite !inE /= negbK. Qed. Lemma disjoint_trans A B C : A \subset B -> [disjoint B & C] -> [disjoint A & C]. Proof. by rewrite 2!disjoint_subset; apply: subset_trans. Qed. Lemma disjoint0 A : [disjoint pred0 & A]. Proof. exact/pred0P. Qed. Lemma eq_disjoint0 A B : A =i pred0 -> [disjoint A & B]. Proof. by move/eq_disjoint->; apply: disjoint0. Qed. Lemma disjoint1 x A : [disjoint pred1 x & A] = (x \notin A). Proof. apply/negbRL/(sameP (pred0Pn _)). apply: introP => [Ax | notAx [_ /andP[/eqP->]]]; last exact: negP. by exists x; rewrite !inE eqxx. Qed. Lemma eq_disjoint1 x A B : A =i pred1 x -> [disjoint A & B] = (x \notin B). Proof. by move/eq_disjoint->; apply: disjoint1. Qed. Lemma disjointU A B C : [disjoint predU A B & C] = [disjoint A & C] && [disjoint B & C]. Proof. case: [disjoint A & C] / (pred0P (xpredI A C)) => [A0 | nA0] /=. by congr (_ == 0); apply: eq_card => x; rewrite [x \in _]andb_orl A0. apply/pred0P=> nABC; case: nA0 => x; apply/idPn=> /=; move/(_ x): nABC. by rewrite [_ x]andb_orl; case/norP. Qed. Lemma disjointU1 x A B : [disjoint predU1 x A & B] = (x \notin B) && [disjoint A & B]. Proof. by rewrite disjointU disjoint1. Qed. Lemma disjoint_cons x s B : [disjoint x :: s & B] = (x \notin B) && [disjoint s & B]. Proof. exact: disjointU1. Qed. Lemma disjoint_has s A : [disjoint s & A] = ~~ has (mem A) s. Proof. rewrite -(@eq_has _ (mem (enum A))) => [|x]; last exact: mem_enum. rewrite has_sym has_filter -filter_predI -has_filter has_count -eqn0Ngt. by rewrite -size_filter /disjoint /pred0b unlock. Qed. Lemma disjoint_cat s1 s2 A : [disjoint s1 ++ s2 & A] = [disjoint s1 & A] && [disjoint s2 & A]. Proof. by rewrite !disjoint_has has_cat negb_or. Qed. End OpsTheory. Hint Resolve subxx_hint. Arguments pred0P [T P]. Arguments pred0Pn [T P]. Arguments subsetP [T A B]. Arguments subsetPn [T A B]. Arguments subset_eqP [T A B]. Arguments card_uniqP [T s]. Arguments properP [T A B]. Prenex Implicits pred0P pred0Pn subsetP subsetPn subset_eqP card_uniqP. (**********************************************************************) (* *) (* Boolean quantifiers for finType *) (* *) (**********************************************************************) Section QuantifierCombinators. Variables (T : finType) (P : pred T) (PP : T -> Prop). Hypothesis viewP : forall x, reflect (PP x) (P x). Lemma existsPP : reflect (exists x, PP x) [exists x, P x]. Proof. by apply: (iffP pred0Pn) => -[x /viewP]; exists x. Qed. Lemma forallPP : reflect (forall x, PP x) [forall x, P x]. Proof. by apply: (iffP pred0P) => /= allP x; have /viewP//=-> := allP x. Qed. End QuantifierCombinators. Notation "'exists_ view" := (existsPP (fun _ => view)) (at level 4, right associativity, format "''exists_' view"). Notation "'forall_ view" := (forallPP (fun _ => view)) (at level 4, right associativity, format "''forall_' view"). Section Quantifiers. Variables (T : finType) (rT : T -> eqType). Implicit Type (D P : pred T) (f : forall x, rT x). Lemma forallP P : reflect (forall x, P x) [forall x, P x]. Proof. exact: 'forall_idP. Qed. Lemma eqfunP f1 f2 : reflect (forall x, f1 x = f2 x) [forall x, f1 x == f2 x]. Proof. exact: 'forall_eqP. Qed. Lemma forall_inP D P : reflect (forall x, D x -> P x) [forall (x | D x), P x]. Proof. exact: 'forall_implyP. Qed. Lemma eqfun_inP D f1 f2 : reflect {in D, forall x, f1 x = f2 x} [forall (x | x \in D), f1 x == f2 x]. Proof. by apply: (iffP 'forall_implyP) => eq_f12 x Dx; apply/eqP/eq_f12. Qed. Lemma existsP P : reflect (exists x, P x) [exists x, P x]. Proof. exact: 'exists_idP. Qed. Lemma exists_eqP f1 f2 : reflect (exists x, f1 x = f2 x) [exists x, f1 x == f2 x]. Proof. exact: 'exists_eqP. Qed. Lemma exists_inP D P : reflect (exists2 x, D x & P x) [exists (x | D x), P x]. Proof. by apply: (iffP 'exists_andP) => [[x []] | [x]]; exists x. Qed. Lemma exists_eq_inP D f1 f2 : reflect (exists2 x, D x & f1 x = f2 x) [exists (x | D x), f1 x == f2 x]. Proof. by apply: (iffP (exists_inP _ _)) => [] [x Dx /eqP]; exists x. Qed. Lemma eq_existsb P1 P2 : P1 =1 P2 -> [exists x, P1 x] = [exists x, P2 x]. Proof. by move=> eqP12; congr (_ != 0); apply: eq_card. Qed. Lemma eq_existsb_in D P1 P2 : (forall x, D x -> P1 x = P2 x) -> [exists (x | D x), P1 x] = [exists (x | D x), P2 x]. Proof. by move=> eqP12; apply: eq_existsb => x; apply: andb_id2l => /eqP12. Qed. Lemma eq_forallb P1 P2 : P1 =1 P2 -> [forall x, P1 x] = [forall x, P2 x]. Proof. by move=> eqP12; apply/negb_inj/eq_existsb=> /= x; rewrite eqP12. Qed. Lemma eq_forallb_in D P1 P2 : (forall x, D x -> P1 x = P2 x) -> [forall (x | D x), P1 x] = [forall (x | D x), P2 x]. Proof. by move=> eqP12; apply: eq_forallb => i; case Di: (D i); rewrite // eqP12. Qed. Lemma negb_forall P : ~~ [forall x, P x] = [exists x, ~~ P x]. Proof. by []. Qed. Lemma negb_forall_in D P : ~~ [forall (x | D x), P x] = [exists (x | D x), ~~ P x]. Proof. by apply: eq_existsb => x; rewrite negb_imply. Qed. Lemma negb_exists P : ~~ [exists x, P x] = [forall x, ~~ P x]. Proof. by apply/negbLR/esym/eq_existsb=> x; apply: negbK. Qed. Lemma negb_exists_in D P : ~~ [exists (x | D x), P x] = [forall (x | D x), ~~ P x]. Proof. by rewrite negb_exists; apply/eq_forallb => x; rewrite [~~ _]fun_if. Qed. End Quantifiers. Arguments forallP [T P]. Arguments eqfunP [T rT f1 f2]. Arguments forall_inP [T D P]. Arguments eqfun_inP [T rT D f1 f2]. Arguments existsP [T P]. Arguments exists_eqP [T rT f1 f2]. Arguments exists_inP [T D P]. Arguments exists_eq_inP [T rT D f1 f2]. Section Extrema. Variables (I : finType) (i0 : I) (P : pred I) (F : I -> nat). Let arg_pred ord := [pred i | P i & [forall (j | P j), ord (F i) (F j)]]. Definition arg_min := odflt i0 (pick (arg_pred leq)). Definition arg_max := odflt i0 (pick (arg_pred geq)). CoInductive extremum_spec (ord : rel nat) : I -> Type := ExtremumSpec i of P i & (forall j, P j -> ord (F i) (F j)) : extremum_spec ord i. Hypothesis Pi0 : P i0. Let FP n := [exists (i | P i), F i == n]. Let FP_F i : P i -> FP (F i). Proof. by move=> Pi; apply/existsP; exists i; rewrite Pi /=. Qed. Let exFP : exists n, FP n. Proof. by exists (F i0); apply: FP_F. Qed. Lemma arg_minP : extremum_spec leq arg_min. Proof. rewrite /arg_min; case: pickP => [i /andP[Pi /forallP/= min_i] | no_i]. by split=> // j; apply/implyP. case/ex_minnP: exFP => n ex_i min_i; case/pred0P: ex_i => i /=. apply: contraFF (no_i i) => /andP[Pi /eqP def_n]; rewrite /= Pi. by apply/forall_inP=> j Pj; rewrite def_n min_i ?FP_F. Qed. Lemma arg_maxP : extremum_spec geq arg_max. Proof. rewrite /arg_max; case: pickP => [i /andP[Pi /forall_inP/= max_i] | no_i]. by split=> // j; apply/implyP. have (n): FP n -> n <= foldr maxn 0 (map F (enum P)). case/existsP=> i; rewrite -[P i]mem_enum andbC /= => /andP[/eqP <-]. elim: (enum P) => //= j e IHe; rewrite leq_max orbC !inE. by case/predU1P=> [-> | /IHe-> //]; rewrite leqnn orbT. case/ex_maxnP=> // n ex_i max_i; case/pred0P: ex_i => i /=. apply: contraFF (no_i i) => /andP[Pi def_n]; rewrite /= Pi. by apply/forall_inP=> j Pj; rewrite (eqP def_n) max_i ?FP_F. Qed. End Extrema. Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" := (arg_min i0 (fun i => P%B) (fun i => F)) (at level 0, i, i0 at level 10, format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : form_scope. Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" := [arg min_(i < i0 | i \in A) F] (at level 0, i, i0 at level 10, format "[ 'arg' 'min_' ( i < i0 'in' A ) F ]") : form_scope. Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F] (at level 0, i, i0 at level 10, format "[ 'arg' 'min_' ( i < i0 ) F ]") : form_scope. Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" := (arg_max i0 (fun i => P%B) (fun i => F)) (at level 0, i, i0 at level 10, format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : form_scope. Notation "[ 'arg' 'max_' ( i > i0 'in' A ) F ]" := [arg max_(i > i0 | i \in A) F] (at level 0, i, i0 at level 10, format "[ 'arg' 'max_' ( i > i0 'in' A ) F ]") : form_scope. Notation "[ 'arg' 'max_' ( i > i0 ) F ]" := [arg max_(i > i0 | true) F] (at level 0, i, i0 at level 10, format "[ 'arg' 'max_' ( i > i0 ) F ]") : form_scope. (**********************************************************************) (* *) (* Boolean injectivity test for functions with a finType domain *) (* *) (**********************************************************************) Section Injectiveb. Variables (aT : finType) (rT : eqType) (f : aT -> rT). Implicit Type D : pred aT. Definition dinjectiveb D := uniq (map f (enum D)). Definition injectiveb := dinjectiveb aT. Lemma dinjectivePn D : reflect (exists2 x, x \in D & exists2 y, y \in [predD1 D & x] & f x = f y) (~~ dinjectiveb D). Proof. apply: (iffP idP) => [injf | [x Dx [y Dxy eqfxy]]]; last first. move: Dx; rewrite -(mem_enum D) => /rot_to[i E defE]. rewrite /dinjectiveb -(rot_uniq i) -map_rot defE /=; apply/nandP; left. rewrite inE /= -(mem_enum D) -(mem_rot i) defE inE in Dxy. rewrite andb_orr andbC andbN in Dxy. by rewrite eqfxy map_f //; case/andP: Dxy. pose p := [pred x in D | [exists (y | y \in [predD1 D & x]), f x == f y]]. case: (pickP p) => [x /= /andP[Dx /exists_inP[y Dxy /eqP eqfxy]] | no_p]. by exists x; last exists y. rewrite /dinjectiveb map_inj_in_uniq ?enum_uniq // in injf => x y Dx Dy eqfxy. apply: contraNeq (negbT (no_p x)) => ne_xy /=; rewrite -mem_enum Dx. by apply/existsP; exists y; rewrite /= !inE eq_sym ne_xy -mem_enum Dy eqfxy /=. Qed. Lemma dinjectiveP D : reflect {in D &, injective f} (dinjectiveb D). Proof. rewrite -[dinjectiveb D]negbK. case: dinjectivePn=> [noinjf | injf]; constructor. case: noinjf => x Dx [y /andP[neqxy /= Dy] eqfxy] injf. by case/eqP: neqxy; apply: injf. move=> x y Dx Dy /= eqfxy; apply/eqP; apply/idPn=> nxy; case: injf. by exists x => //; exists y => //=; rewrite inE /= eq_sym nxy. Qed. Lemma injectivePn : reflect (exists x, exists2 y, x != y & f x = f y) (~~ injectiveb). Proof. apply: (iffP (dinjectivePn _)) => [[x _ [y nxy eqfxy]] | [x [y nxy eqfxy]]]; by exists x => //; exists y => //; rewrite inE /= andbT eq_sym in nxy *. Qed. Lemma injectiveP : reflect (injective f) injectiveb. Proof. by apply: (iffP (dinjectiveP _)) => injf x y => [|_ _]; apply: injf. Qed. End Injectiveb. Definition image_mem T T' f mA : seq T' := map f (@enum_mem T mA). Notation image f A := (image_mem f (mem A)). Notation "[ 'seq' F | x 'in' A ]" := (image (fun x => F) A) (at level 0, F at level 99, x ident, format "'[hv' [ 'seq' F '/ ' | x 'in' A ] ']'") : seq_scope. Notation "[ 'seq' F | x : T 'in' A ]" := (image (fun x : T => F) A) (at level 0, F at level 99, x ident, only parsing) : seq_scope. Notation "[ 'seq' F | x : T ]" := [seq F | x : T in sort_of_simpl_pred (@pred_of_argType T)] (at level 0, F at level 99, x ident, format "'[hv' [ 'seq' F '/ ' | x : T ] ']'") : seq_scope. Notation "[ 'seq' F , x ]" := [seq F | x : _ ] (at level 0, F at level 99, x ident, only parsing) : seq_scope. Definition codom T T' f := @image_mem T T' f (mem T). Section Image. Variable T : finType. Implicit Type A : pred T. Section SizeImage. Variables (T' : Type) (f : T -> T'). Lemma size_image A : size (image f A) = #|A|. Proof. by rewrite size_map -cardE. Qed. Lemma size_codom : size (codom f) = #|T|. Proof. exact: size_image. Qed. Lemma codomE : codom f = map f (enum T). Proof. by []. Qed. End SizeImage. Variables (T' : eqType) (f : T -> T'). Lemma imageP A y : reflect (exists2 x, x \in A & y = f x) (y \in image f A). Proof. by apply: (iffP mapP) => [] [x Ax y_fx]; exists x; rewrite // mem_enum in Ax *. Qed. Lemma codomP y : reflect (exists x, y = f x) (y \in codom f). Proof. by apply: (iffP (imageP _ y)) => [][x]; exists x. Qed. Remark iinv_proof A y : y \in image f A -> {x | x \in A & f x = y}. Proof. move=> fy; pose b x := A x && (f x == y). case: (pickP b) => [x /andP[Ax /eqP] | nfy]; first by exists x. by case/negP: fy => /imageP[x Ax fx_y]; case/andP: (nfy x); rewrite fx_y. Qed. Definition iinv A y fAy := s2val (@iinv_proof A y fAy). Lemma f_iinv A y fAy : f (@iinv A y fAy) = y. Proof. exact: s2valP' (iinv_proof fAy). Qed. Lemma mem_iinv A y fAy : @iinv A y fAy \in A. Proof. exact: s2valP (iinv_proof fAy). Qed. Lemma in_iinv_f A : {in A &, injective f} -> forall x fAfx, x \in A -> @iinv A (f x) fAfx = x. Proof. by move=> injf x fAfx Ax; apply: injf => //; [apply: mem_iinv | apply: f_iinv]. Qed. Lemma preim_iinv A B y fAy : preim f B (@iinv A y fAy) = B y. Proof. by rewrite /= f_iinv. Qed. Lemma image_f A x : x \in A -> f x \in image f A. Proof. by move=> Ax; apply/imageP; exists x. Qed. Lemma codom_f x : f x \in codom f. Proof. by apply: image_f. Qed. Lemma image_codom A : {subset image f A <= codom f}. Proof. by move=> _ /imageP[x _ ->]; apply: codom_f. Qed. Lemma image_pred0 : image f pred0 =i pred0. Proof. by move=> x; rewrite /image_mem /= enum0. Qed. Section Injective. Hypothesis injf : injective f. Lemma mem_image A x : (f x \in image f A) = (x \in A). Proof. by rewrite mem_map ?mem_enum. Qed. Lemma pre_image A : [preim f of image f A] =i A. Proof. by move=> x; rewrite inE /= mem_image. Qed. Lemma image_iinv A y (fTy : y \in codom f) : (y \in image f A) = (iinv fTy \in A). Proof. by rewrite -mem_image ?f_iinv. Qed. Lemma iinv_f x fTfx : @iinv T (f x) fTfx = x. Proof. by apply: in_iinv_f; first apply: in2W. Qed. Lemma image_pre (B : pred T') : image f [preim f of B] =i [predI B & codom f]. Proof. by move=> y; rewrite /image_mem -filter_map /= mem_filter -enumT. Qed. Lemma bij_on_codom (x0 : T) : {on [pred y in codom f], bijective f}. Proof. pose g y := iinv (valP (insigd (codom_f x0) y)). by exists g => [x fAfx | y fAy]; first apply: injf; rewrite f_iinv insubdK. Qed. Lemma bij_on_image A (x0 : T) : {on [pred y in image f A], bijective f}. Proof. exact: subon_bij (@image_codom A) (bij_on_codom x0). Qed. End Injective. Fixpoint preim_seq s := if s is y :: s' then (if pick (preim f (pred1 y)) is Some x then cons x else id) (preim_seq s') else [::]. Lemma map_preim (s : seq T') : {subset s <= codom f} -> map f (preim_seq s) = s. Proof. elim: s => //= y s IHs; case: pickP => [x /eqP fx_y | nfTy] fTs. by rewrite /= fx_y IHs // => z s_z; apply: fTs; apply: predU1r. by case/imageP: (fTs y (mem_head y s)) => x _ fx_y; case/eqP: (nfTy x). Qed. End Image. Prenex Implicits codom iinv. Arguments imageP [T T' f A y]. Arguments codomP [T T' f y]. Lemma flatten_imageP (aT : finType) (rT : eqType) A (P : pred aT) (y : rT) : reflect (exists2 x, x \in P & y \in A x) (y \in flatten [seq A x | x in P]). Proof. by apply: (iffP flatten_mapP) => [][x Px]; exists x; rewrite ?mem_enum in Px *. Qed. Arguments flatten_imageP [aT rT A P y]. Section CardFunImage. Variables (T T' : finType) (f : T -> T'). Implicit Type A : pred T. Lemma leq_image_card A : #|image f A| <= #|A|. Proof. by rewrite (cardE A) -(size_map f) card_size. Qed. Lemma card_in_image A : {in A &, injective f} -> #|image f A| = #|A|. Proof. move=> injf; rewrite (cardE A) -(size_map f); apply/card_uniqP. by rewrite map_inj_in_uniq ?enum_uniq // => x y; rewrite !mem_enum; apply: injf. Qed. Lemma image_injP A : reflect {in A &, injective f} (#|image f A| == #|A|). Proof. apply: (iffP eqP) => [eqfA |]; last exact: card_in_image. by apply/dinjectiveP; apply/card_uniqP; rewrite size_map -cardE. Qed. Hypothesis injf : injective f. Lemma card_image A : #|image f A| = #|A|. Proof. by apply: card_in_image; apply: in2W. Qed. Lemma card_codom : #|codom f| = #|T|. Proof. exact: card_image. Qed. Lemma card_preim (B : pred T') : #|[preim f of B]| = #|[predI codom f & B]|. Proof. rewrite -card_image /=; apply: eq_card => y. by rewrite [y \in _]image_pre !inE andbC. Qed. Hypothesis card_range : #|T| = #|T'|. Lemma inj_card_onto y : y \in codom f. Proof. by move: y; apply/subset_cardP; rewrite ?card_codom ?subset_predT. Qed. Lemma inj_card_bij : bijective f. Proof. by exists (fun y => iinv (inj_card_onto y)) => y; rewrite ?iinv_f ?f_iinv. Qed. End CardFunImage. Arguments image_injP [T T' f A]. Section FinCancel. Variables (T : finType) (f g : T -> T). Section Inv. Hypothesis injf : injective f. Lemma injF_onto y : y \in codom f. Proof. exact: inj_card_onto. Qed. Definition invF y := iinv (injF_onto y). Lemma invF_f : cancel f invF. Proof. by move=> x; apply: iinv_f. Qed. Lemma f_invF : cancel invF f. Proof. by move=> y; apply: f_iinv. Qed. Lemma injF_bij : bijective f. Proof. exact: inj_card_bij. Qed. End Inv. Hypothesis fK : cancel f g. Lemma canF_sym : cancel g f. Proof. exact/(bij_can_sym (injF_bij (can_inj fK))). Qed. Lemma canF_LR x y : x = g y -> f x = y. Proof. exact: canLR canF_sym. Qed. Lemma canF_RL x y : g x = y -> x = f y. Proof. exact: canRL canF_sym. Qed. Lemma canF_eq x y : (f x == y) = (x == g y). Proof. exact: (can2_eq fK canF_sym). Qed. Lemma canF_invF : g =1 invF (can_inj fK). Proof. by move=> y; apply: (canLR fK); rewrite f_invF. Qed. End FinCancel. Section EqImage. Variables (T : finType) (T' : Type). Lemma eq_image (A B : pred T) (f g : T -> T') : A =i B -> f =1 g -> image f A = image g B. Proof. by move=> eqAB eqfg; rewrite /image_mem (eq_enum eqAB) (eq_map eqfg). Qed. Lemma eq_codom (f g : T -> T') : f =1 g -> codom f = codom g. Proof. exact: eq_image. Qed. Lemma eq_invF f g injf injg : f =1 g -> @invF T f injf =1 @invF T g injg. Proof. by move=> eq_fg x; apply: (canLR (invF_f injf)); rewrite eq_fg f_invF. Qed. End EqImage. (* Standard finTypes *) Lemma unit_enumP : Finite.axiom [::tt]. Proof. by case. Qed. Definition unit_finMixin := Eval hnf in FinMixin unit_enumP. Canonical unit_finType := Eval hnf in FinType unit unit_finMixin. Lemma card_unit : #|{: unit}| = 1. Proof. by rewrite cardT enumT unlock. Qed. Lemma bool_enumP : Finite.axiom [:: true; false]. Proof. by case. Qed. Definition bool_finMixin := Eval hnf in FinMixin bool_enumP. Canonical bool_finType := Eval hnf in FinType bool bool_finMixin. Lemma card_bool : #|{: bool}| = 2. Proof. by rewrite cardT enumT unlock. Qed. Local Notation enumF T := (Finite.enum T). Section OptionFinType. Variable T : finType. Definition option_enum := None :: map some (enumF T). Lemma option_enumP : Finite.axiom option_enum. Proof. by case=> [x|]; rewrite /= count_map (count_pred0, enumP). Qed. Definition option_finMixin := Eval hnf in FinMixin option_enumP. Canonical option_finType := Eval hnf in FinType (option T) option_finMixin. Lemma card_option : #|{: option T}| = #|T|.+1. Proof. by rewrite !cardT !enumT {1}unlock /= !size_map. Qed. End OptionFinType. Section TransferFinType. Variables (eT : countType) (fT : finType) (f : eT -> fT). Lemma pcan_enumP g : pcancel f g -> Finite.axiom (undup (pmap g (enumF fT))). Proof. move=> fK x; rewrite count_uniq_mem ?undup_uniq // mem_undup. by rewrite mem_pmap -fK map_f // -enumT mem_enum. Qed. Definition PcanFinMixin g fK := FinMixin (@pcan_enumP g fK). Definition CanFinMixin g (fK : cancel f g) := PcanFinMixin (can_pcan fK). End TransferFinType. Section SubFinType. Variables (T : choiceType) (P : pred T). Import Finite. Structure subFinType := SubFinType { subFin_sort :> subType P; _ : mixin_of (sub_eqType subFin_sort) }. Definition pack_subFinType U := fun cT b m & phant_id (class cT) (@Class U b m) => fun sT m' & phant_id m' m => @SubFinType sT m'. Implicit Type sT : subFinType. Definition subFin_mixin sT := let: SubFinType _ m := sT return mixin_of (sub_eqType sT) in m. Coercion subFinType_subCountType sT := @SubCountType _ _ sT (subFin_mixin sT). Canonical subFinType_subCountType. Coercion subFinType_finType sT := Pack (@Class sT (sub_choiceClass sT) (subFin_mixin sT)) sT. Canonical subFinType_finType. Lemma codom_val sT x : (x \in codom (val : sT -> T)) = P x. Proof. by apply/codomP/idP=> [[u ->]|Px]; last exists (Sub x Px); rewrite ?valP ?SubK. Qed. End SubFinType. (* This assumes that T has both finType and subCountType structures. *) Notation "[ 'subFinType' 'of' T ]" := (@pack_subFinType _ _ T _ _ _ id _ _ id) (at level 0, format "[ 'subFinType' 'of' T ]") : form_scope. Section FinTypeForSub. Variables (T : finType) (P : pred T) (sT : subCountType P). Definition sub_enum : seq sT := pmap insub (enumF T). Lemma mem_sub_enum u : u \in sub_enum. Proof. by rewrite mem_pmap_sub -enumT mem_enum. Qed. Lemma sub_enum_uniq : uniq sub_enum. Proof. by rewrite pmap_sub_uniq // -enumT enum_uniq. Qed. Lemma val_sub_enum : map val sub_enum = enum P. Proof. rewrite pmap_filter; last exact: insubK. by apply: eq_filter => x; apply: isSome_insub. Qed. (* We can't declare a canonical structure here because we've already *) (* stated that subType_sort and FinType.sort unify via to the *) (* subType_finType structure. *) Definition SubFinMixin := UniqFinMixin sub_enum_uniq mem_sub_enum. Definition SubFinMixin_for (eT : eqType) of phant eT := eq_rect _ Finite.mixin_of SubFinMixin eT. Variable sfT : subFinType P. Lemma card_sub : #|sfT| = #|[pred x | P x]|. Proof. by rewrite -(eq_card (codom_val sfT)) (card_image val_inj). Qed. Lemma eq_card_sub (A : pred sfT) : A =i predT -> #|A| = #|[pred x | P x]|. Proof. exact: eq_card_trans card_sub. Qed. End FinTypeForSub. (* This assumes that T has a subCountType structure over a type that *) (* has a finType structure. *) Notation "[ 'finMixin' 'of' T 'by' <: ]" := (SubFinMixin_for (Phant T) (erefl _)) (at level 0, format "[ 'finMixin' 'of' T 'by' <: ]") : form_scope. (* Regression for the subFinType stack Record myb : Type := MyB {myv : bool; _ : ~~ myv}. Canonical myb_sub := Eval hnf in [subType for myv]. Definition myb_eqm := Eval hnf in [eqMixin of myb by <:]. Canonical myb_eq := Eval hnf in EqType myb myb_eqm. Definition myb_chm := [choiceMixin of myb by <:]. Canonical myb_ch := Eval hnf in ChoiceType myb myb_chm. Definition myb_cntm := [countMixin of myb by <:]. Canonical myb_cnt := Eval hnf in CountType myb myb_cntm. Canonical myb_scnt := Eval hnf in [subCountType of myb]. Definition myb_finm := [finMixin of myb by <:]. Canonical myb_fin := Eval hnf in FinType myb myb_finm. Canonical myb_sfin := Eval hnf in [subFinType of myb]. Print Canonical Projections. Print myb_finm. Print myb_cntm. *) Section CardSig. Variables (T : finType) (P : pred T). Definition sig_finMixin := [finMixin of {x | P x} by <:]. Canonical sig_finType := Eval hnf in FinType {x | P x} sig_finMixin. Canonical sig_subFinType := Eval hnf in [subFinType of {x | P x}]. Lemma card_sig : #|{: {x | P x}}| = #|[pred x | P x]|. Proof. exact: card_sub. Qed. End CardSig. (* Subtype for an explicit enumeration. *) Section SeqSubType. Variables (T : eqType) (s : seq T). Record seq_sub : Type := SeqSub {ssval : T; ssvalP : in_mem ssval (@mem T _ s)}. Canonical seq_sub_subType := Eval hnf in [subType for ssval]. Definition seq_sub_eqMixin := Eval hnf in [eqMixin of seq_sub by <:]. Canonical seq_sub_eqType := Eval hnf in EqType seq_sub seq_sub_eqMixin. Definition seq_sub_enum : seq seq_sub := undup (pmap insub s). Lemma mem_seq_sub_enum x : x \in seq_sub_enum. Proof. by rewrite mem_undup mem_pmap -valK map_f ?ssvalP. Qed. Lemma val_seq_sub_enum : uniq s -> map val seq_sub_enum = s. Proof. move=> Us; rewrite /seq_sub_enum undup_id ?pmap_sub_uniq //. rewrite (pmap_filter (@insubK _ _ _)); apply/all_filterP. by apply/allP => x; rewrite isSome_insub. Qed. Definition seq_sub_pickle x := index x seq_sub_enum. Definition seq_sub_unpickle n := nth None (map some seq_sub_enum) n. Lemma seq_sub_pickleK : pcancel seq_sub_pickle seq_sub_unpickle. Proof. rewrite /seq_sub_unpickle => x. by rewrite (nth_map x) ?nth_index ?index_mem ?mem_seq_sub_enum. Qed. Definition seq_sub_countMixin := CountMixin seq_sub_pickleK. Fact seq_sub_axiom : Finite.axiom seq_sub_enum. Proof. exact: Finite.uniq_enumP (undup_uniq _) mem_seq_sub_enum. Qed. Definition seq_sub_finMixin := Finite.Mixin seq_sub_countMixin seq_sub_axiom. (* Beware: these are not the canonical instances, as they are not consistent *) (* with the generic sub_choiceType canonical instance. *) Definition adhoc_seq_sub_choiceMixin := PcanChoiceMixin seq_sub_pickleK. Definition adhoc_seq_sub_choiceType := Eval hnf in ChoiceType seq_sub adhoc_seq_sub_choiceMixin. Definition adhoc_seq_sub_finType := [finType of seq_sub for FinType adhoc_seq_sub_choiceType seq_sub_finMixin]. End SeqSubType. Section SeqFinType. Variables (T : choiceType) (s : seq T). Local Notation sT := (seq_sub s). Definition seq_sub_choiceMixin := [choiceMixin of sT by <:]. Canonical seq_sub_choiceType := Eval hnf in ChoiceType sT seq_sub_choiceMixin. Canonical seq_sub_countType := Eval hnf in CountType sT (seq_sub_countMixin s). Canonical seq_sub_subCountType := Eval hnf in [subCountType of sT]. Canonical seq_sub_finType := Eval hnf in FinType sT (seq_sub_finMixin s). Canonical seq_sub_subFinType := Eval hnf in [subFinType of sT]. Lemma card_seq_sub : uniq s -> #|{:sT}| = size s. Proof. by move=> Us; rewrite cardE enumT -(size_map val) unlock val_seq_sub_enum. Qed. End SeqFinType. (**********************************************************************) (* *) (* Ordinal finType : {0, ... , n-1} *) (* *) (**********************************************************************) Section OrdinalSub. Variable n : nat. Inductive ordinal : predArgType := Ordinal m of m < n. Coercion nat_of_ord i := let: Ordinal m _ := i in m. Canonical ordinal_subType := [subType for nat_of_ord]. Definition ordinal_eqMixin := Eval hnf in [eqMixin of ordinal by <:]. Canonical ordinal_eqType := Eval hnf in EqType ordinal ordinal_eqMixin. Definition ordinal_choiceMixin := [choiceMixin of ordinal by <:]. Canonical ordinal_choiceType := Eval hnf in ChoiceType ordinal ordinal_choiceMixin. Definition ordinal_countMixin := [countMixin of ordinal by <:]. Canonical ordinal_countType := Eval hnf in CountType ordinal ordinal_countMixin. Canonical ordinal_subCountType := [subCountType of ordinal]. Lemma ltn_ord (i : ordinal) : i < n. Proof. exact: valP i. Qed. Lemma ord_inj : injective nat_of_ord. Proof. exact: val_inj. Qed. Definition ord_enum : seq ordinal := pmap insub (iota 0 n). Lemma val_ord_enum : map val ord_enum = iota 0 n. Proof. rewrite pmap_filter; last exact: insubK. by apply/all_filterP; apply/allP=> i; rewrite mem_iota isSome_insub. Qed. Lemma ord_enum_uniq : uniq ord_enum. Proof. by rewrite pmap_sub_uniq ?iota_uniq. Qed. Lemma mem_ord_enum i : i \in ord_enum. Proof. by rewrite -(mem_map ord_inj) val_ord_enum mem_iota ltn_ord. Qed. Definition ordinal_finMixin := Eval hnf in UniqFinMixin ord_enum_uniq mem_ord_enum. Canonical ordinal_finType := Eval hnf in FinType ordinal ordinal_finMixin. Canonical ordinal_subFinType := Eval hnf in [subFinType of ordinal]. End OrdinalSub. Notation "''I_' n" := (ordinal n) (at level 8, n at level 2, format "''I_' n"). Hint Resolve ltn_ord. Section OrdinalEnum. Variable n : nat. Lemma val_enum_ord : map val (enum 'I_n) = iota 0 n. Proof. by rewrite enumT unlock val_ord_enum. Qed. Lemma size_enum_ord : size (enum 'I_n) = n. Proof. by rewrite -(size_map val) val_enum_ord size_iota. Qed. Lemma card_ord : #|'I_n| = n. Proof. by rewrite cardE size_enum_ord. Qed. Lemma nth_enum_ord i0 m : m < n -> nth i0 (enum 'I_n) m = m :> nat. Proof. by move=> ?; rewrite -(nth_map _ 0) (size_enum_ord, val_enum_ord) // nth_iota. Qed. Lemma nth_ord_enum (i0 i : 'I_n) : nth i0 (enum 'I_n) i = i. Proof. by apply: val_inj; apply: nth_enum_ord. Qed. Lemma index_enum_ord (i : 'I_n) : index i (enum 'I_n) = i. Proof. by rewrite -{1}(nth_ord_enum i i) index_uniq ?(enum_uniq, size_enum_ord). Qed. End OrdinalEnum. Lemma widen_ord_proof n m (i : 'I_n) : n <= m -> i < m. Proof. exact: leq_trans. Qed. Definition widen_ord n m le_n_m i := Ordinal (@widen_ord_proof n m i le_n_m). Lemma cast_ord_proof n m (i : 'I_n) : n = m -> i < m. Proof. by move <-. Qed. Definition cast_ord n m eq_n_m i := Ordinal (@cast_ord_proof n m i eq_n_m). Lemma cast_ord_id n eq_n i : cast_ord eq_n i = i :> 'I_n. Proof. exact: val_inj. Qed. Lemma cast_ord_comp n1 n2 n3 eq_n2 eq_n3 i : @cast_ord n2 n3 eq_n3 (@cast_ord n1 n2 eq_n2 i) = cast_ord (etrans eq_n2 eq_n3) i. Proof. exact: val_inj. Qed. Lemma cast_ordK n1 n2 eq_n : cancel (@cast_ord n1 n2 eq_n) (cast_ord (esym eq_n)). Proof. by move=> i; apply: val_inj. Qed. Lemma cast_ordKV n1 n2 eq_n : cancel (cast_ord (esym eq_n)) (@cast_ord n1 n2 eq_n). Proof. by move=> i; apply: val_inj. Qed. Lemma cast_ord_inj n1 n2 eq_n : injective (@cast_ord n1 n2 eq_n). Proof. exact: can_inj (cast_ordK eq_n). Qed. Lemma rev_ord_proof n (i : 'I_n) : n - i.+1 < n. Proof. by case: n i => [|n] [i lt_i_n] //; rewrite ltnS subSS leq_subr. Qed. Definition rev_ord n i := Ordinal (@rev_ord_proof n i). Lemma rev_ordK n : involutive (@rev_ord n). Proof. by case: n => [|n] [i lti] //; apply: val_inj; rewrite /= !subSS subKn. Qed. Lemma rev_ord_inj {n} : injective (@rev_ord n). Proof. exact: inv_inj (@rev_ordK n). Qed. (* bijection between any finType T and the Ordinal finType of its cardinal *) Section EnumRank. Variable T : finType. Implicit Type A : pred T. Lemma enum_rank_subproof x0 A : x0 \in A -> 0 < #|A|. Proof. by move=> Ax0; rewrite (cardD1 x0) Ax0. Qed. Definition enum_rank_in x0 A (Ax0 : x0 \in A) x := insubd (Ordinal (@enum_rank_subproof x0 [eta A] Ax0)) (index x (enum A)). Definition enum_rank x := @enum_rank_in x T (erefl true) x. Lemma enum_default A : 'I_(#|A|) -> T. Proof. by rewrite cardE; case: (enum A) => [|//] []. Qed. Definition enum_val A i := nth (@enum_default [eta A] i) (enum A) i. Prenex Implicits enum_val. Lemma enum_valP A i : @enum_val A i \in A. Proof. by rewrite -mem_enum mem_nth -?cardE. Qed. Lemma enum_val_nth A x i : @enum_val A i = nth x (enum A) i. Proof. by apply: set_nth_default; rewrite cardE in i *; apply: ltn_ord. Qed. Lemma nth_image T' y0 (f : T -> T') A (i : 'I_#|A|) : nth y0 (image f A) i = f (enum_val i). Proof. by rewrite -(nth_map _ y0) // -cardE. Qed. Lemma nth_codom T' y0 (f : T -> T') (i : 'I_#|T|) : nth y0 (codom f) i = f (enum_val i). Proof. exact: nth_image. Qed. Lemma nth_enum_rank_in x00 x0 A Ax0 : {in A, cancel (@enum_rank_in x0 A Ax0) (nth x00 (enum A))}. Proof. move=> x Ax; rewrite /= insubdK ?nth_index ?mem_enum //. by rewrite cardE [_ \in _]index_mem mem_enum. Qed. Lemma nth_enum_rank x0 : cancel enum_rank (nth x0 (enum T)). Proof. by move=> x; apply: nth_enum_rank_in. Qed. Lemma enum_rankK_in x0 A Ax0 : {in A, cancel (@enum_rank_in x0 A Ax0) enum_val}. Proof. by move=> x; apply: nth_enum_rank_in. Qed. Lemma enum_rankK : cancel enum_rank enum_val. Proof. by move=> x; apply: enum_rankK_in. Qed. Lemma enum_valK_in x0 A Ax0 : cancel enum_val (@enum_rank_in x0 A Ax0). Proof. move=> x; apply: ord_inj; rewrite insubdK; last first. by rewrite cardE [_ \in _]index_mem mem_nth // -cardE. by rewrite index_uniq ?enum_uniq // -cardE. Qed. Lemma enum_valK : cancel enum_val enum_rank. Proof. by move=> x; apply: enum_valK_in. Qed. Lemma enum_rank_inj : injective enum_rank. Proof. exact: can_inj enum_rankK. Qed. Lemma enum_val_inj A : injective (@enum_val A). Proof. by move=> i; apply: can_inj (enum_valK_in (enum_valP i)) (i). Qed. Lemma enum_val_bij_in x0 A : x0 \in A -> {on A, bijective (@enum_val A)}. Proof. move=> Ax0; exists (enum_rank_in Ax0) => [i _|]; last exact: enum_rankK_in. exact: enum_valK_in. Qed. Lemma enum_rank_bij : bijective enum_rank. Proof. by move: enum_rankK enum_valK; exists (@enum_val T). Qed. Lemma enum_val_bij : bijective (@enum_val T). Proof. by move: enum_rankK enum_valK; exists enum_rank. Qed. (* Due to the limitations of the Coq unification patterns, P can only be *) (* inferred from the premise of this lemma, not its conclusion. As a result *) (* this lemma will only be usable in forward chaining style. *) Lemma fin_all_exists U (P : forall x : T, U x -> Prop) : (forall x, exists u, P x u) -> (exists u, forall x, P x (u x)). Proof. move=> ex_u; pose Q m x := enum_rank x < m -> {ux | P x ux}. suffices: forall m, m <= #|T| -> exists w : forall x, Q m x, True. case/(_ #|T|)=> // w _; pose u x := sval (w x (ltn_ord _)). by exists u => x; rewrite {}/u; case: (w x _). elim=> [|m IHm] ltmX; first by have w x: Q 0 x by []; exists w. have{IHm} [w _] := IHm (ltnW ltmX); pose i := Ordinal ltmX. have [u Pu] := ex_u (enum_val i); suffices w' x: Q m.+1 x by exists w'. rewrite /Q ltnS leq_eqVlt (val_eqE _ i); case: eqP => [def_i _ | _ /w //]. by rewrite -def_i enum_rankK in u Pu; exists u. Qed. Lemma fin_all_exists2 U (P Q : forall x : T, U x -> Prop) : (forall x, exists2 u, P x u & Q x u) -> (exists2 u, forall x, P x (u x) & forall x, Q x (u x)). Proof. move=> ex_u; have (x): exists u, P x u /\ Q x u by have [u] := ex_u x; exists u. by case/fin_all_exists=> u /all_and2[]; exists u. Qed. End EnumRank. Arguments enum_val_inj {T A} [x1 x2]. Arguments enum_rank_inj {T} [x1 x2]. Prenex Implicits enum_val enum_rank. Lemma enum_rank_ord n i : enum_rank i = cast_ord (esym (card_ord n)) i. Proof. by apply: val_inj; rewrite insubdK ?index_enum_ord // card_ord [_ \in _]ltn_ord. Qed. Lemma enum_val_ord n i : enum_val i = cast_ord (card_ord n) i. Proof. by apply: canLR (@enum_rankK _) _; apply: val_inj; rewrite enum_rank_ord. Qed. (* The integer bump / unbump operations. *) Definition bump h i := (h <= i) + i. Definition unbump h i := i - (h < i). Lemma bumpK h : cancel (bump h) (unbump h). Proof. rewrite /bump /unbump => i. have [le_hi | lt_ih] := leqP h i; first by rewrite ltnS le_hi subn1. by rewrite ltnNge ltnW ?subn0. Qed. Lemma neq_bump h i : h != bump h i. Proof. rewrite /bump eqn_leq; have [le_hi | lt_ih] := leqP h i. by rewrite ltnNge le_hi andbF. by rewrite leqNgt lt_ih. Qed. Lemma unbumpKcond h i : bump h (unbump h i) = (i == h) + i. Proof. rewrite /bump /unbump leqNgt -subSKn. case: (ltngtP i h) => /= [-> | ltih | ->] //; last by rewrite ltnn. by rewrite subn1 /= leqNgt !(ltn_predK ltih, ltih, add1n). Qed. Lemma unbumpK h : {in predC1 h, cancel (unbump h) (bump h)}. Proof. by move=> i; move/negbTE=> neq_h_i; rewrite unbumpKcond neq_h_i. Qed. Lemma bump_addl h i k : bump (k + h) (k + i) = k + bump h i. Proof. by rewrite /bump leq_add2l addnCA. Qed. Lemma bumpS h i : bump h.+1 i.+1 = (bump h i).+1. Proof. exact: addnS. Qed. Lemma unbump_addl h i k : unbump (k + h) (k + i) = k + unbump h i. Proof. apply: (can_inj (bumpK (k + h))). by rewrite bump_addl !unbumpKcond eqn_add2l addnCA. Qed. Lemma unbumpS h i : unbump h.+1 i.+1 = (unbump h i).+1. Proof. exact: unbump_addl 1. Qed. Lemma leq_bump h i j : (i <= bump h j) = (unbump h i <= j). Proof. rewrite /bump leq_subLR. case: (leqP i h) (leqP h j) => [le_i_h | lt_h_i] [le_h_j | lt_j_h] //. by rewrite leqW (leq_trans le_i_h). by rewrite !(leqNgt i) ltnW (leq_trans _ lt_h_i). Qed. Lemma leq_bump2 h i j : (bump h i <= bump h j) = (i <= j). Proof. by rewrite leq_bump bumpK. Qed. Lemma bumpC h1 h2 i : bump h1 (bump h2 i) = bump (bump h1 h2) (bump (unbump h2 h1) i). Proof. rewrite {1 5}/bump -leq_bump addnCA; congr (_ + (_ + _)). rewrite 2!leq_bump /unbump /bump; case: (leqP h1 h2) => [le_h12 | lt_h21]. by rewrite subn0 ltnS le_h12 subn1. by rewrite subn1 (ltn_predK lt_h21) (leqNgt h1) lt_h21 subn0. Qed. (* The lift operations on ordinals; to avoid a messy dependent type, *) (* unlift is a partial operation (returns an option). *) Lemma lift_subproof n h (i : 'I_n.-1) : bump h i < n. Proof. by case: n i => [[]|n] //= i; rewrite -addnS (leq_add (leq_b1 _)). Qed. Definition lift n (h : 'I_n) (i : 'I_n.-1) := Ordinal (lift_subproof h i). Lemma unlift_subproof n (h : 'I_n) (u : {j | j != h}) : unbump h (val u) < n.-1. Proof. case: n h u => [|n h] [] //= j ne_jh. rewrite -(leq_bump2 h.+1) bumpS unbumpK // /bump. case: (ltngtP n h) => [|_|eq_nh]; rewrite ?(leqNgt _ h) ?ltn_ord //. by rewrite ltn_neqAle [j <= _](valP j) {2}eq_nh andbT. Qed. Definition unlift n (h i : 'I_n) := omap (fun u : {j | j != h} => Ordinal (unlift_subproof u)) (insub i). CoInductive unlift_spec n h i : option 'I_n.-1 -> Type := | UnliftSome j of i = lift h j : unlift_spec h i (Some j) | UnliftNone of i = h : unlift_spec h i None. Lemma unliftP n (h i : 'I_n) : unlift_spec h i (unlift h i). Proof. rewrite /unlift; case: insubP => [u nhi | ] def_i /=; constructor. by apply: val_inj; rewrite /= def_i unbumpK. by rewrite negbK in def_i; apply/eqP. Qed. Lemma neq_lift n (h : 'I_n) i : h != lift h i. Proof. exact: neq_bump. Qed. Lemma unlift_none n (h : 'I_n) : unlift h h = None. Proof. by case: unliftP => // j Dh; case/eqP: (neq_lift h j). Qed. Lemma unlift_some n (h i : 'I_n) : h != i -> {j | i = lift h j & unlift h i = Some j}. Proof. rewrite eq_sym => /eqP neq_ih. by case Dui: (unlift h i) / (unliftP h i) => [j Dh|//]; exists j. Qed. Lemma lift_inj n (h : 'I_n) : injective (lift h). Proof. move=> i1 i2; move/eqP; rewrite [_ == _](can_eq (@bumpK _)) => eq_i12. exact/eqP. Qed. Lemma liftK n (h : 'I_n) : pcancel (lift h) (unlift h). Proof. by move=> i; case: (unlift_some (neq_lift h i)) => j; move/lift_inj->. Qed. (* Shifting and splitting indices, for cutting and pasting arrays *) Lemma lshift_subproof m n (i : 'I_m) : i < m + n. Proof. by apply: leq_trans (valP i) _; apply: leq_addr. Qed. Lemma rshift_subproof m n (i : 'I_n) : m + i < m + n. Proof. by rewrite ltn_add2l. Qed. Definition lshift m n (i : 'I_m) := Ordinal (lshift_subproof n i). Definition rshift m n (i : 'I_n) := Ordinal (rshift_subproof m i). Lemma split_subproof m n (i : 'I_(m + n)) : i >= m -> i - m < n. Proof. by move/subSn <-; rewrite leq_subLR. Qed. Definition split m n (i : 'I_(m + n)) : 'I_m + 'I_n := match ltnP (i) m with | LtnNotGeq lt_i_m => inl _ (Ordinal lt_i_m) | GeqNotLtn ge_i_m => inr _ (Ordinal (split_subproof ge_i_m)) end. CoInductive split_spec m n (i : 'I_(m + n)) : 'I_m + 'I_n -> bool -> Type := | SplitLo (j : 'I_m) of i = j :> nat : split_spec i (inl _ j) true | SplitHi (k : 'I_n) of i = m + k :> nat : split_spec i (inr _ k) false. Lemma splitP m n (i : 'I_(m + n)) : split_spec i (split i) (i < m). Proof. rewrite /split {-3}/leq. by case: (@ltnP i m) => cmp_i_m //=; constructor; rewrite ?subnKC. Qed. Definition unsplit m n (jk : 'I_m + 'I_n) := match jk with inl j => lshift n j | inr k => rshift m k end. Lemma ltn_unsplit m n (jk : 'I_m + 'I_n) : (unsplit jk < m) = jk. Proof. by case: jk => [j|k]; rewrite /= ?ltn_ord // ltnNge leq_addr. Qed. Lemma splitK m n : cancel (@split m n) (@unsplit m n). Proof. by move=> i; apply: val_inj; case: splitP. Qed. Lemma unsplitK m n : cancel (@unsplit m n) (@split m n). Proof. move=> jk; have:= ltn_unsplit jk. by do [case: splitP; case: jk => //= i j] => [|/addnI] => /ord_inj->. Qed. Section OrdinalPos. Variable n' : nat. Local Notation n := n'.+1. Definition ord0 := Ordinal (ltn0Sn n'). Definition ord_max := Ordinal (ltnSn n'). Lemma leq_ord (i : 'I_n) : i <= n'. Proof. exact: valP i. Qed. Lemma sub_ord_proof m : n' - m < n. Proof. by rewrite ltnS leq_subr. Qed. Definition sub_ord m := Ordinal (sub_ord_proof m). Lemma sub_ordK (i : 'I_n) : n' - (n' - i) = i. Proof. by rewrite subKn ?leq_ord. Qed. Definition inord m : 'I_n := insubd ord0 m. Lemma inordK m : m < n -> inord m = m :> nat. Proof. by move=> lt_m; rewrite val_insubd lt_m. Qed. Lemma inord_val (i : 'I_n) : inord i = i. Proof. by rewrite /inord /insubd valK. Qed. Lemma enum_ordS : enum 'I_n = ord0 :: map (lift ord0) (enum 'I_n'). Proof. apply: (inj_map val_inj); rewrite val_enum_ord /= -map_comp. by rewrite (map_comp (addn 1)) val_enum_ord -iota_addl. Qed. Lemma lift_max (i : 'I_n') : lift ord_max i = i :> nat. Proof. by rewrite /= /bump leqNgt ltn_ord. Qed. Lemma lift0 (i : 'I_n') : lift ord0 i = i.+1 :> nat. Proof. by []. Qed. End OrdinalPos. Arguments ord0 {n'}. Arguments ord_max {n'}. Arguments inord {n'}. Arguments sub_ord {n'}. (* Product of two fintypes which is a fintype *) Section ProdFinType. Variable T1 T2 : finType. Definition prod_enum := [seq (x1, x2) | x1 <- enum T1, x2 <- enum T2]. Lemma predX_prod_enum (A1 : pred T1) (A2 : pred T2) : count [predX A1 & A2] prod_enum = #|A1| * #|A2|. Proof. rewrite !cardE !size_filter -!enumT /prod_enum. elim: (enum T1) => //= x1 s1 IHs; rewrite count_cat {}IHs count_map /preim /=. by case: (x1 \in A1); rewrite ?count_pred0. Qed. Lemma prod_enumP : Finite.axiom prod_enum. Proof. by case=> x1 x2; rewrite (predX_prod_enum (pred1 x1) (pred1 x2)) !card1. Qed. Definition prod_finMixin := Eval hnf in FinMixin prod_enumP. Canonical prod_finType := Eval hnf in FinType (T1 * T2) prod_finMixin. Lemma cardX (A1 : pred T1) (A2 : pred T2) : #|[predX A1 & A2]| = #|A1| * #|A2|. Proof. by rewrite -predX_prod_enum unlock size_filter unlock. Qed. Lemma card_prod : #|{: T1 * T2}| = #|T1| * #|T2|. Proof. by rewrite -cardX; apply: eq_card; case. Qed. Lemma eq_card_prod (A : pred (T1 * T2)) : A =i predT -> #|A| = #|T1| * #|T2|. Proof. exact: eq_card_trans card_prod. Qed. End ProdFinType. Section TagFinType. Variables (I : finType) (T_ : I -> finType). Definition tag_enum := flatten [seq [seq Tagged T_ x | x <- enumF (T_ i)] | i <- enumF I]. Lemma tag_enumP : Finite.axiom tag_enum. Proof. case=> i x; rewrite -(enumP i) /tag_enum -enumT. elim: (enum I) => //= j e IHe. rewrite count_cat count_map {}IHe; congr (_ + _). rewrite -size_filter -cardE /=; case: eqP => [-> | ne_j_i]. by apply: (@eq_card1 _ x) => y; rewrite -topredE /= tagged_asE ?eqxx. by apply: eq_card0 => y. Qed. Definition tag_finMixin := Eval hnf in FinMixin tag_enumP. Canonical tag_finType := Eval hnf in FinType {i : I & T_ i} tag_finMixin. Lemma card_tagged : #|{: {i : I & T_ i}}| = sumn (map (fun i => #|T_ i|) (enum I)). Proof. rewrite cardE !enumT {1}unlock size_flatten /shape -map_comp. by congr (sumn _); apply: eq_map => i; rewrite /= size_map -enumT -cardE. Qed. End TagFinType. Section SumFinType. Variables T1 T2 : finType. Definition sum_enum := [seq inl _ x | x <- enumF T1] ++ [seq inr _ y | y <- enumF T2]. Lemma sum_enum_uniq : uniq sum_enum. Proof. rewrite cat_uniq -!enumT !(enum_uniq, map_inj_uniq); try by move=> ? ? []. by rewrite andbT; apply/hasP=> [[_ /mapP[x _ ->] /mapP[]]]. Qed. Lemma mem_sum_enum u : u \in sum_enum. Proof. by case: u => x; rewrite mem_cat -!enumT map_f ?mem_enum ?orbT. Qed. Definition sum_finMixin := Eval hnf in UniqFinMixin sum_enum_uniq mem_sum_enum. Canonical sum_finType := Eval hnf in FinType (T1 + T2) sum_finMixin. Lemma card_sum : #|{: T1 + T2}| = #|T1| + #|T2|. Proof. by rewrite !cardT !enumT {1}unlock size_cat !size_map. Qed. End SumFinType.