| Age | Commit message (Collapse) | Author |
|
|
|
|
|
|
|
- deprecating `fintype.arg_(min|max)P`
- removing dangling comments connecting min max and meet join
- better compatibility module
- removing broken notations with `\min` and `\max` (no neutral available)
- fixing `incompare` and `incomparel` in order.v
- adding missing elimination lemmas (`(comparable_)?(max|min)E[lg][et]`)
- adding missing `(comparable|real)_arg(min|max)P`
- CHANGELOG update
|
|
|
|
- Replace `altP eqP` and `altP (_ =P _)` with `eqVneq`:
The improved `eqVneq` lemma (#351) is redesigned as a comparison predicate and
introduces a hypothesis in the form of `x != y` in the second case. Thus,
`case: (altP eqP)`, `case: (altP (x =P _))` and `case: (altP (x =P y))` idioms
can be replaced with `case: eqVneq`, `case: (eqVneq x)` and
`case: (eqVneq x y)` respectively. This replacement slightly simplifies and
reduces proof scripts.
- use `have [] :=` rather than `case` if it is better.
- `by apply:` -> `exact:`.
- `apply/lem1; apply/lem2` or `apply: lem1; apply: lem2` -> `apply/lem1/lem2`.
- `move/lem1; move/lem2` -> `move/lem1/lem2`.
- Remove `GRing.` prefix if applicable.
- `negbTE` -> `negPf`, `eq_refl` -> `eqxx` and `sym_equal` -> `esym`.
|
|
Replaced the legacy generalised induction idiom with a more robust one
that does not rely on the `{-2}` numerical occurrence selector, using
either new helper lemmas `ubnP` and `ltnSE` or a specific `nat`
induction principle `ltn_ind`.
Added (non-strict in)equality induction helper lemmas
Added `ubnP[lg]?eq` helper lemmas that abstract an integer expression
along with some (in)equality, in preparation for some generalised
induction. Note that while `ubnPleq` is very similar to `ubnP` (indeed
`ubnP M` is basically `ubnPleq M.+1`), `ubnPgeq` is used to remember
that the inductive value remains below the initial one.
Used the change log to give notice to users to update the generalised
induction idioms in their proofs to one of the new forms before
Mathcomp 1.11.
|
|
from
`ltngtP m n : compare_nat m n (m <= n) (n <= m) (m < n) (n < m) (n == m) (m == n)`
to
`ltngtP m n : compare_nat m n (n == m) (m == n) (n <= m) (m <= n) (n < m) (m < n)`,
to make it tries to match subterms with `m < n` first, `m <= n`, then `m == n`.
|
|
|
|
Also changed eqsVneq.
|
|
- Change the naming of permutation lemmas so they conform to a
consistent policy: `perm_eq` lemmas have a `perm_` (_not_ `perm_eq`)
prefix, or sometimes a `_perm` suffix for lemmas that _prove_ `perm_eq`
using a property when there is also a lemma _using_ `perm_eq` for the
same property. Lemmas that do not concern `perm_eq` do _not_ have
`perm` in their name.
- Change the definition of `permutations` for a time- and space-
back-to-front generation algorithm.
- Add frequency tally operations `tally`, `incr_tally`, `wf_tally` and
`tally_seq`, used by the improved `permutation` algorithm.
- add deprecated aliases for renamed lemmas
|
|
|
|
```
Warning: Adding and removing hints in the core database implicitly is
deprecated. Please specify a hint database.
[implicit-core-hint-db,deprecated]
```
|
|
As suggested by @ggonthier
[here](https://github.com/math-comp/math-comp/pull/249#pullrequestreview-177938295)
> One of the design ideas for the `Arguments` command was that it would allow
to centralise the documentation of the application of constants.
In that spirit it would be in my opinion better to make as much use of this
as possible, and to document the parameter names whenever possible,
especially that of implicit parameters.
and
[here](https://github.com/math-comp/math-comp/pull/253#discussion_r237434163):
> As a general rule, defined functional constants should have maximal prenex
implicit arguments, as this facilitates their use as arguments to functionals,
because this mimics the way function constants are treated in functional
programming languages with Hindley-Milner type inference. Conversely, lemmas and
theorems should have on-demand implicit arguments, possibly interspersed with
explicit ones, as it's fairly common for other lemmas to have universally
quantified premises; also, this makes it easier to specify such arguments with
the apply: tactic. This policy may be amended for lemmas that are used as
functional arguments, such as reflection or cancellation lemmas. Unfortunately
there is currently no easy way to tell Coq to use different defaults for
definitions and lemmas, so MathComp sticks to the on-demand default, as there
are significantly more lemmas than definition, and use the Prenex Implicits to
redress matters in bulk for definitions. However, this is not completely
systematic, and is sometimes omitted for constants that are not used as
functional arguments in the library, or inside the sections in which the
definition occur, since such commands need to be repeated after the section is
closed. Since Arguments commands should document the intended constant usage as
best as possible, they should follow the implicits policy - even in cases such
as this where the Prenex Implicits had been skipped.
|
|
See the discussion here:
https://github.com/math-comp/math-comp/pull/242#discussion_r233778114
|
|
|
|
|
|
|
|
|
|
|
|
This factors proofs in mxabelem and finfield and removes
dependencies between these two files.
|
|
|
|
|
|
|
|
|