| Age | Commit message (Collapse) | Author |
|
|
|
|
|
Using Arguments / to deal with volatile definitions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- deprecating `fintype.arg_(min|max)P`
- removing dangling comments connecting min max and meet join
- better compatibility module
- removing broken notations with `\min` and `\max` (no neutral available)
- fixing `incompare` and `incomparel` in order.v
- adding missing elimination lemmas (`(comparable_)?(max|min)E[lg][et]`)
- adding missing `(comparable|real)_arg(min|max)P`
- CHANGELOG update
|
|
|
|
|
|
|
|
- Replace `altP eqP` and `altP (_ =P _)` with `eqVneq`:
The improved `eqVneq` lemma (#351) is redesigned as a comparison predicate and
introduces a hypothesis in the form of `x != y` in the second case. Thus,
`case: (altP eqP)`, `case: (altP (x =P _))` and `case: (altP (x =P y))` idioms
can be replaced with `case: eqVneq`, `case: (eqVneq x)` and
`case: (eqVneq x y)` respectively. This replacement slightly simplifies and
reduces proof scripts.
- use `have [] :=` rather than `case` if it is better.
- `by apply:` -> `exact:`.
- `apply/lem1; apply/lem2` or `apply: lem1; apply: lem2` -> `apply/lem1/lem2`.
- `move/lem1; move/lem2` -> `move/lem1/lem2`.
- Remove `GRing.` prefix if applicable.
- `negbTE` -> `negPf`, `eq_refl` -> `eqxx` and `sym_equal` -> `esym`.
|
|
Replaced the legacy generalised induction idiom with a more robust one
that does not rely on the `{-2}` numerical occurrence selector, using
either new helper lemmas `ubnP` and `ltnSE` or a specific `nat`
induction principle `ltn_ind`.
Added (non-strict in)equality induction helper lemmas
Added `ubnP[lg]?eq` helper lemmas that abstract an integer expression
along with some (in)equality, in preparation for some generalised
induction. Note that while `ubnPleq` is very similar to `ubnP` (indeed
`ubnP M` is basically `ubnPleq M.+1`), `ubnPgeq` is used to remember
that the inductive value remains below the initial one.
Used the change log to give notice to users to update the generalised
induction idioms in their proofs to one of the new forms before
Mathcomp 1.11.
|
|
from
`ltngtP m n : compare_nat m n (m <= n) (n <= m) (m < n) (n < m) (n == m) (m == n)`
to
`ltngtP m n : compare_nat m n (n == m) (m == n) (n <= m) (m <= n) (n < m) (m < n)`,
to make it tries to match subterms with `m < n` first, `m <= n`, then `m == n`.
|
|
|
|
Also changed eqsVneq.
|
|
|
|
|
|
- Change the naming of permutation lemmas so they conform to a
consistent policy: `perm_eq` lemmas have a `perm_` (_not_ `perm_eq`)
prefix, or sometimes a `_perm` suffix for lemmas that _prove_ `perm_eq`
using a property when there is also a lemma _using_ `perm_eq` for the
same property. Lemmas that do not concern `perm_eq` do _not_ have
`perm` in their name.
- Change the definition of `permutations` for a time- and space-
back-to-front generation algorithm.
- Add frequency tally operations `tally`, `incr_tally`, `wf_tally` and
`tally_seq`, used by the improved `permutation` algorithm.
- add deprecated aliases for renamed lemmas
|
|
Use `{pred T}` systematically for generic _collective_ boolean
predicate.
Use `PredType` to construct `predType` instances.
Instrument core `ssreflect` files to replicate these and other new
features introduces by coq/coq#9555 (`nonPropType` interface,
`simpl_rel` that simplifies with `inE`).
|
|
|
|
|
|
Least common childen
|
|
- Added `permutations` and some `perm_eq` lemmas suggested by @MrSet
in #299 (except the link to the coq lib `Permutation` predicate).
Use insertions to construct permutations. This definition is closer
to the one proposed by @MrSet, than one using rotations (it adds one
line to the definition of `permutations` but the proofs become a
little simpler.)
- Added support for casts on `map` comprehension general terms.
- Added `allpairs_map[lr]` suggested by @pi8027 in #314, but with
equational proofs; changed `allpairs_comp` to its converse
`map_allpairs` for consistency.
- Add three `allpairs` extensionality lemmas: for the non-localised,
dependent localised and non-dependent localised cases; as per
`eq_in_map`, the latter two are equivalences.
- Documented the `all2` predicate added in #224, and the view
combinators added in #202.
- Renamed `seq2_ind` to `seq_ind2`, and weakened the induction
hypothesis, adding a `size` equality assumption.
- Corrected the header to use `<=>` for `bool` predicate
documentation, and `<->` for `Prop` predicates, following the
library’s general convention.
- Replaced the `nosimpl` in `rev` with a `Arguments simpl never`
directive, making it possible to merge the `Rev` section into the
main `Sequences` section.
- Miscellaneous improvements to proof scripts and file organisation.
- Correct maximal implicits of `constant`.
- Fixes omitted `Prenex Implicit` declaration.
- Other implicits fixes.
- Fix apparent `done` regression It appears `done` now does a weaker
form of intros, and this broke the `dtuple_onP` proof. Updated the
proof to eliminate the issue.
(Commit log edited by @CohenCyril during the squash.)
|
|
|
|
Coq currently fails to resolve Miller patterns against open evars
(issue coq/#9663), in particular it fails to unify `T -> ?R` with
`forall x : T, ?dR x` even when `?dR` does not have `x` in its context.
As a result canonical structures and constructor notations for the
new generalised dependent `finfun`s fail for the non-dependent use
cases, which is an unacceptable regression.
This commit mitigates the problem by specialising the canonical
instances and most of the constructor notation to the non-dependent
case, and introducing an alias of the `finfun_of` type that has
canonical instances for the dependent case, to allow experimentation
with that feature.
With this fix the whole `MathComp` library compiles, with a few
minor changes. The change in `integral_char` fixes a performance issue
that appears to be the consequence of insufficient locking of both
`finfun_eqType` and `cfIirr`; this will be explored in a further commit.
|
|
Construct `finfun_of` directly from a bespoke indexed inductive type,
which both makes it structurally positive (and therefore usable as a
container in an `Inductive` definition), and accommodates naturally
dependent functions.
This is still WIP, because this PR exposed a serious shortcoming of
the Coq unification algorithm’s implantation of Miller patterns. This
bug defeats the inference of `Canonical` structures for `{ffun S -> T}`
when the instances are defined in the dependent case!
This causes unmanageable regressions starting in `matrix.v`, so I
have not been able to check for any impact past that. I’m pushing this
commit so that the Coq issue may be addressed.
Made `fun_of_fin` structurally decreasing: Changed the primitive
accessor of `finfun_of` from `tfgraph` to the `Funclass` coercion
`fun_of_fin`. This will make it possible to define recursive functions
on inductive types built using finite functions. While`tfgraph` is
still useful to transport the tuple canonical structures to
`finfun_of`, it is no longer central to the theory so its role has
been reduced.
|
|
* (Update make's path accordingly)
* This patch is required for opam 2.0 pinning
* As a result, these *.opam files are now similar to the opam files in
https://github.com/coq/opam-coq-archive/blob/master/extra-dev/packages/coq-mathcomp-*/coq-mathcomp-*.dev/
|
|
Like injectivity lemmas, instances of cancellation lemmas (whose
conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or
`ocancel`) are passed to
generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should
not have trailing on-demand implicits _just before_ the `cancel`
conclusion, as these would be inconvenient to insert (requiring
essentially an explicit eta-expansion).
We therefore use `Arguments` or `Prenex Implicits` directives to make
all such arguments maximally inserted implicits. We don’t, however make
other arguments implicit, so as not to spoil direct instantiation of
the lemmas (in, e.g., `rewrite -[y](invmK injf)`).
We have also tried to do this with lemmas whose statement matches a
`cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern
unification will pick up `f = fun x => E[x]`).
We also adjusted implicits of a few stray injectivity
lemmas, and defined constants.
We provide a shorthand for reindexing a bigop with a permutation.
Finally we used the new implicit signatures to simplify proofs that
use injectivity or cancellation lemmas.
|
|
```
Warning: Adding and removing hints in the core database implicitly is
deprecated. Please specify a hint database.
[implicit-core-hint-db,deprecated]
```
|
|
As suggested by @ggonthier
[here](https://github.com/math-comp/math-comp/pull/249#pullrequestreview-177938295)
> One of the design ideas for the `Arguments` command was that it would allow
to centralise the documentation of the application of constants.
In that spirit it would be in my opinion better to make as much use of this
as possible, and to document the parameter names whenever possible,
especially that of implicit parameters.
and
[here](https://github.com/math-comp/math-comp/pull/253#discussion_r237434163):
> As a general rule, defined functional constants should have maximal prenex
implicit arguments, as this facilitates their use as arguments to functionals,
because this mimics the way function constants are treated in functional
programming languages with Hindley-Milner type inference. Conversely, lemmas and
theorems should have on-demand implicit arguments, possibly interspersed with
explicit ones, as it's fairly common for other lemmas to have universally
quantified premises; also, this makes it easier to specify such arguments with
the apply: tactic. This policy may be amended for lemmas that are used as
functional arguments, such as reflection or cancellation lemmas. Unfortunately
there is currently no easy way to tell Coq to use different defaults for
definitions and lemmas, so MathComp sticks to the on-demand default, as there
are significantly more lemmas than definition, and use the Prenex Implicits to
redress matters in bulk for definitions. However, this is not completely
systematic, and is sometimes omitted for constants that are not used as
functional arguments in the library, or inside the sections in which the
definition occur, since such commands need to be repeated after the section is
closed. Since Arguments commands should document the intended constant usage as
best as possible, they should follow the implicits policy - even in cases such
as this where the Prenex Implicits had been skipped.
|
|
See the discussion here:
https://github.com/math-comp/math-comp/pull/242#discussion_r233778114
|
|
should fix #238
|
|
This commit fixes the following issue:
```shell
$ opam pin add coq-mathcomp-ssreflect --dev
[ERROR] "dev-repo" field missing in coq-mathcomp-ssreflect metadata,
you'll need to specify the pinning location
```
This commit also changes http to https for the homepage links.
|
|
- Cleanup, refactoring and generalize the makefile architecture
- Reuses @strub math-comp/analysis Makefile / Makefile.common organization
- As #174, this fixes #88, but looks more stable than trying to fix the use of the MAKEFLAGS internal variable
|
|
|
|
|
|
|
|
|
|
|
|
|
|
It was emitting a deprecation warning and will soon be removed from Coq.
|
|
|
|
New packager
|
|
|
|
Fixes #139
|
|
|